

Monadic second-order logic for graphs Language and Graph Theoretical applications (Part 3) Bruno Courcelle

Université Bordeaux 1, LaBRI & Institut Universitaire de France

 Reference :
 Graph structure and monadic second-order logic,

 book to be published by Cambridge University Press, readable on :

 http://www.labri.fr/perso/courcell/ActSci.html

An overview chart

Summary

- 6. Monadic second-order transductions (extension of a classical concept in language theory).
- Robustness results : preservation of classes under direct and inverse monadic second-order transductions.
 Short proofs in graph theory.
- 8. Logic and *graph structure theory*: Comparing encoding powers of graph classes *via* monadic second-order transductions
- 9. Graph classes on which monadic second-order logic is *decidable*
- 10. Some open questions

6. Monadic second-order transductions

 Σ = finite set of relation symbols with fixed arities ($\rho(R)$ = arity of R).

STR(Σ): finite Σ -relational structures S = < D_S, (R_S)_{R $\in \Sigma$} >, R_S relation on D_S of arity $\rho(R)$

An MS-transduction is a partial function τ : STR(Σ) X "data" \rightarrow STR(Γ) specified by MS formulas.

<u>Basic case</u> : τ : STR(Σ) \rightarrow STR(Γ) ; T = τ (S) is defined "inside" S by MS formulas.

Examples : The edge -complement ; the transitive closure of a directed graph.

<u>Next case</u> : $T = \tau (S, "data")$; the "data" is a tuple $X_1, ..., X_p$ of subsets of the domain of S; these sets are called the parameters. Parameters $X_1, ..., X_p$ are constrained to satisfy an MS property.

Examples : $(G, \{u\}) \mapsto$ the connected component containing **u**.

(G,X,Y,Z) → the *minor* of G having vertex set X, resulting from the contraction of the edges of Y and the deletion of the edges and vertices of Z. (This transduction is MS_{2.2}; see below.)

> In the second example, no two vertices of X should be linked by a path of edges in Y.

 τ (S) := the set of all T = τ (S, X₁, ..., X_p)

for all "good" tuples of parameters.

The fundamental property of MS transductions

If
$$S \mapsto \tau(S)$$

then $\tau^{\#}(\psi) \longleftarrow \psi$

Every MS formula ψ has an effectively computable backwards translation $\tau \#(\psi)$, an MS formula such that :

S
$$|= \tau \#(\psi)$$
 if and only if $\tau(S) |= \psi$

The verification of ψ in the object structure $\tau(S)$ reduces to the verification of $\tau \#(\psi)$ in the given structure S (because S contain all the necessary information to describe $\tau(S)$; the MS properties of $\tau(S)$ are expressible *in* S by MS formulas).

Theorem : The composition of two MS-transductions is an MS-transduction.

Example 1 (without parameters): The square mapping δ on words : $u \rightarrow uu$

In $\delta(S)$, we redefine Suc (i.e., \rightarrow) as follows:

We also remove the "marker" predicates p1, p2.

Example 2: From a term to a cograph

Vertices = {x,y,z,u,v,w } = occurrences of constants in the term. Two vertices are adjacent if and only if their *least common ancestor* is labelled by \otimes (like y and z, or u and w).

These conditions can be expressed by MS formulas on the labelled tree.

Edge quantification and edge description

There are 2 representations for an input graph and 2 for the output: type 1 : $G = (V_G, edg_G)$ and type 2 : $Inc(G) = (V_G \cup E_G, in_G)$. Hence 4 types of graph transductions, denoted by : $MS_{1,1}$ (or MS to simplify), $MS_{1,2}$, $MS_{2,1}$ and $MS_{2,2}$

 $MS_{i,o}$ means i = type of input, o = type of output.

For sparse graphs, type 2 is equivalent to type 1.

Example 3 : From a tree to its incidence graph (also a tree)

 $T = \langle N, edg \rangle; \text{ we use parameter } \{r\} \text{ to make T rooted and directed}$ $\tau(T, \{r\}) = \langle N \cup (N - \{r\}) \times \{1\}, \text{inc}(.,.) \rangle$ in(x,y) is defined by : $x = (y,1) \lor \exists z \ [x = (z,1) \land edg(y,z)]$ $\land \text{ "y is on the path from r to z"]}$ From trees (or terms) to graphs : $MS_{1,1} = MS_{2,1} \text{ and } MS_{1,2} = MS_{2,2}.$ Main Results (will be made more precise):

(1) MS-transductions preserve bounded clique-width and the (corresponding) class of VR-equational sets.

(2) $MS_{2,2}$ -transductions preserve bounded tree-width and the (corresponding) class of HR-equational sets.

Meaning : Robustness of the *two* graph hierarchies based on clique-width and tree-width.

MS - transductions and MS_{2,2} - transductions are incomparable

Why ? For expressing graph properties, MS_2 logic is more powerful than MS_1 logic (the "ordinary" MS logic).

For building graphs with $MS_{2,2}$ - transductions, we have *more* possibilities of using the input graph, but we want *more* for the output : to specify each edge as a copy of some vertex or some edge of the input graph.

Transitive closure is $MS = MS_{1,1}$ but not $MS_{2,2}$

Edge subdivision is MS_{2,2} but not MS

Proofs: Easy since, if S is transformed into T by an MS-transduction :

 $|D_T| \leq k. |D_S|$ for fixed k

Exercises

- 1) Construct an MS-transduction that associates with a simple directed graph G the *directed acyclic graph* D of its strongly connected components. (The vertices of D are chosen among those of G).
- 2) Let G be undirected. For each k, G(k) is the simple graph with same vertices and an edge x—y iff x and y are at distance at most k. Define an MS-transduction that transforms G into G(k).
- 3) If G has clique-width \leq d, then G(k) has clique-width \leq f(k,d) for some function f. Try to prove this (without looking at the next section). No such function does exist for tree-width.
- Prove that the transformation of a simple graph G into its *incidence* graph Inc(G) is a MS-transduction on graphs of maximal degree d, for each fixed d.

7. Robustness results: Preservation of widths

For every class of graphs C:

1) If C has tree-width \leq k and τ is an $MS_{2,2}$ – transduction, then τ (C) has tree-width $\leq f_{\tau}(k)$

Follows from :

C has bounded tree-width $\Leftrightarrow C \subseteq \tau$ (Trees) for some $MS_{2,2}$ – transduction τ (the proof is constructive in both directions)

2) If C has clique-width \leq k and τ is an MS – transduction, then τ (C) has clique-width $\leq g_{\tau}(k)$.

Follows from :

C has bounded clique-width $\Leftrightarrow C \subseteq \tau$ (Trees) for some MS – transduction τ (the proof is constructive)

Proof sketch for the logical characterization of bounded clique-width

1) A *k*-clique-width term is a rooted binary tree with each node labelled by one of the finitely many operations symbols using labels 1,...,k.

2) For each k, an MS-transduction can construct the defined graph from this labelled tree. (Extension of the proof for cographs, cf. page 9.) *Hence* : If a graph class *C* has clique-width $\leq k$, then $C \subseteq \tau_k(Trees)$ for some MS-transduction τ_k .

The converse uses technical tools from model theory (Feferman-Vaught)

The proofs for tree-width are similar.

Gives easy proofs (but no good bounds) of facts like :

1) If C has bounded tree-width, its line graphs have bounded clique-width.

2) If C (directed graphs) has bounded tree-width or clique-width, the transitive closures of its graphs have bounded clique-width.

3) If C (directed graphs) has bounded clique-width, the transitive reductions of its graphs have bounded clique-width.

(Not trivial because clique-width is not monotone for subgraph inclusion).

4) The set of chordal graphs has unbounded clique-width (because an MS transduction can define all graphs from chordal graphs, and graphs have unbounded clique-width).

5) k-leaf powers and similar "power" graphs of trees have bounded cwd.

Theorem: Graphs Δ have bounded tree-width \Leftrightarrow G(Δ) have bounded clique-width.

- 1) MS transduction from $G(\Delta)$ to Δ ;
- 2) use "*split decomposition*" (Cunningham) and an MS-transduction from *prime* circle graphs to their unique chord diagrams.

Encoding a directed graph into a vertex-labelled undirected graph

Each vertex of G is split into 3 vertices labelled by 1,2,3 in B(G):

The clique-widths of G and B(G) are related by fixed functions. (Because the mapping B and its inverse are MS-transductions, hence they preserve bounded clique-width.)

Algorithms for checking *rank-width of undirected graphs* can be transformed into approximation algorithms for clique-width of directed graphs because rank-width and clique-width are related by fixed functions. (Oum, Hlineny, Seymour, Kanté)

Logical characterizations of equational sets

C is HR-equational \Leftrightarrow *C* = τ (*Trees*) for some $MS_{2,2}$ -transduction τ (for bounded tree-width we have \subseteq).

C is VR-equational \Leftrightarrow C = τ (*Trees*) for some

MS - transduction τ (for bounded clique-width we have \subseteq).

Consequences : Closure of equational sets under the corresponding transductions.

Robustness results for HR- and VR-equational sets

VR-equational \Rightarrow bounded clique-width.

(1) : A. Blumensath - B.C. (2) : J. Engelfriet.

Robustness results: Preservation and generation (2)

VR-equational \Rightarrow bounded clique-width.

HR-equational \Rightarrow bounded tree-width.

(1): A. Blumensath - B.C. (2): J. Engelfriet. (3): B.C.- J. Engelfriet

Recognizability is preserved under inverse monadic second-order transductions. (A.Blumensath - B.C., 2004)

Recognizability of sets of relational structures is relative to graph operations consisting of :

disjoint union and

unary operations expressed by quantifier-free formulas (QF)

Examples of QF operations: Edge-complement, relabellings,

Adda,b (cf. the definition of clique-width).

Proof sketch : Every MS transduction is the composition of MS transductions of 3 particular types : $-Copy_k$

- Parameterless and noncopying transduction

- Guessing unary relations

Recognizability is preserved by inverse transductions of each type.

Copy_k :

$S \rightarrow \underline{S \oplus S \oplus \dots S}$ (*k* times)

Disjoint union with binary relations $Y_{i,j}$ for $1 \le i < j \le k$ defined as $\{(x,y) / x \text{ is the } i\text{-copy}, y \text{ is the } j\text{-copy} \text{ of some } u \text{ in } D_S\}$

Facts : a) $Copy_k(S \oplus T) = Copy_k(S) \oplus Copy_k(T)$

b) For **f** quantifier-free, there is a quantifier-free operation **g** such that : $Copy_k(f(S)) = g(Copy_k(S))$

 $Copy_k$ is "almost" a homomorphism, and recognizability is preserved under inverse homomorphisms.

8. Encoding powers of graph classes via MS transductions

An MS-transduction τ defines a graph H *inside* a graph G with help of parameters (sets of vertices or edges of G): say that H is *encoded* in G : the encoding is represented by the parameters and τ is the *decoding* function.

The encoding powers of graph classes C and D can be compared as follows :

 $C \leq D$ if $C \subseteq \tau(D)$ for some MS transduction τ We get a *quasi-order on graph classes*. We consider $MS_{2,2}$ - transductions : (formulas use edge set quantifications and must construct incidence graphs as outputs.)

For graph classes C and D we let:

 $C \leq D$ if $C \subseteq \tau(D)$ for some MS_{2,2} -transduction τ

 $C \equiv D$ if $C \leq D$ and $D \leq C$

C < D if $C \leq D$ and $C \neq D$

 $C \leq_{c} D$ if C < D and there is no E with C < E < D

What is the structure of $<_{c}$ (the covering relation of \leq)?

With help of Robertson & Seymour : Graph Minors I and V :

```
\{\bullet\} < Paths <<sub>c</sub> Trees <<sub>c</sub> Grids
```

These classes encode respectively : finite sets, sets of graphs of bounded path-width, sets of graphs of bounded tree-width, all sets of graphs.

Proof : Trees <_c Grids.

If a graph class C has bounded tree-width, it is \leq Trees.

If C has unbounded tree-width, it contains all grids as minors,

hence: Grids \leq C and Grids \equiv C, because Graphs \leq Grids

A monadic second-order transduction using parameters X,Y,Z can transform all grids into all incidence graphs Inc(G).

More difficult: What is below Paths?

Answer: (A. Blumensath-B. C., LMCS 2010)

 $\{\bullet\} <_{C} T_{2} <_{C} \dots T_{n} <_{C} T_{n+1} <_{C} \dots < Paths <_{C} Trees <_{C} Square grids$

where T_n is the class of rooted trees of height at most n (and unbounded degree).

Idea : T_n encodes the classes of graphs having tree-decompositions of *height* at most n and width at most k (for all k).

Definition : *n*-depth tree-width of $G = twd_n(G) = minimal width of a tree-decomposition of G of height at most$ **n**.

Related notion : *tree-depth* (Nesetril, Ossona de Mendez). td(G) = minimal k such that each connected component of G has a depth-first (normal) spanning tree of height at most k.

Some properties of these variants of tree-width :

1) $pwd(G) \leq n.(twd_n(G) + 1)$

2) If G is a minor of H: $twd_n(G) \leq twd_n(H)$, $td(G) \leq td(H)$

3) td(G) \leq n implies twd_n(G) \leq n,

4) $twd_n(G) \leq k$ implies $td(G) \leq n.k$

Excluded Path Theorem

(cf. the Excluded Tree and Grid Theorems of GM1 and GM5)

- A class of graphs C excludes some path as a minor (equivalently, as a subgraph)
 - \Leftrightarrow for some n, C has bounded n-depth tree-width
 - \Leftrightarrow *C* has bounded tree depth.

We use n-depth tree-width rather than tree-depth to characterize the graph classes encoded by trees of *each height* n Logical properties of n-depth tree-width.

Proposition : For each n and k, there exists an MS_{2,2} -transduction that maps every graph of n-depth tree-width at most k *to all its strict* tree-decompositions of height at most n and width at most k

(*strict* = with certain connectivity properties ; every tree-decomposition can be made strict without increasing height and width).

Remark : The obstruction sets of graphs for n-depth tree-width \leq k are computable from each pair n, k because we have monadic second-order characterizations of these classes and bounds on the tree-widths of the obstruction sets. The same holds for the property "tree-depth \leq k".

In the hierarchy:

$\{\bullet\} <_{c} T_{2} <_{c} \dots <_{c} T_{n} <_{c} \dots < Paths <_{c} Trees <_{c} Grids$

each level T_n encodes the sets of graphs of bounded n-depth tree-width.

Proofs to be done :

1) T_n ≤ Paths

Trees of height n can be encoded as sequences over [n] and decoded by MS-transductions.

1 2 333 2 33 2 2 33 encodes the tree :

2) $T_n < T_{n+1}$

One cannot define by an MS-transduction all trees of height n+1 from all trees of height n.

The (technical) proof uses an analysis of MS definable relations on trees and some counting arguments.

Case n = 2.

Trees of height 2 correspond (via MS transductions) to sets (without relations).

If a k-copying MS-transduction with p parameters transforms sets into trees, these trees have less than $k.2^{p}$ internal nodes.

We cannot get all trees of height 3 from sets by a single MS-transduction.

3) Hence, we cannot have $T_n \equiv$ Paths

"Dichotomy arguments" :

1) Let *C* be a set of bounded pathwidth (i.e., $C \leq Paths$): *Either* : it contains all paths as minors, then $C \equiv Paths$ *Or* : (Excluded Path Thm) twd_n (*C*) is bounded and $C \leq T_n$ for some n

2) Let C be a set of n-depth tree-width ≤ k (C ≤ T_n): *Either*: for all m, there is G in C s.t., for each n-depth tree-dec. U of width k of G, the tree U contains T(n,m) (T(n,m) = the m-ary complete tree of height n) and then T_n ≤ C (because n-depth tree-decompositions of width k are definable by MS transductions)
Or: for some m, every G in C has an n-depth tree-dec. U of width k, s.t. U does not contain T(n,m). By contracting some edges of U, one gets an (n-1)-depth tree-dec. of G of width m.(k+1), hence C ≤ T_{n-1}. Open question: What about the hierarchy based for

MS – transduction ?

Theorem (B.C. & Oum, 2007) :

There exists an MS - transduction (using *even cardinality set predicates*) that transforms every set of undirected graphs of unbounded rank-width into the set of all square grids.

(Uses *vertex-minors* instead of minors)

We need a result corresponding to Graph Minors 1 about "linear rank-width" and excluding a forest as a *vertex-minor*.

We need also something like "n-depth rank-width" and constructions by MS tranductions of appropriate rank-decompositions.

9. Graph classes with decidable *MS theories* (or *MS satisfiability problems*)

Theorem (Seese 1991): If a set of graphs has a decidable MS_2 -satisfiability problem, it has bounded tree-width.

Theorem (B.C.-Oum 2007): If a set of graphs has a decidable C_2MS satisfiability problem, it has bounded clique-width.

Answering a question by Seese: If a set of graphs has a decidable MS satisfiability problem, is it the image of a set of trees under an MS transduction, equivalently, has it bounded clique-width?

 $MS_2 = MS$ logic *with* edge quantifications ; $C_2MS = MS$ logic with the even cardinality set predicate. A set C has a decidable *L*-satisfiability problem if one can decide whether any given formula in *L* is satisfied by some graph in *C*

Proof of the result on MS_2 -satisfiability and tree-width :

- A) If a set of graphs C has unbounded tree-width, the set of its minors includes
 all k x k -grids (Robertson & Seymour)
- B) If a set of graphs contains all k x k -grids, its MS₂ satisfiability problem is undecidable
- C) If C has decidable MS_2 -satisfiability problem, so has Minors(C),

because $C \longrightarrow Minors(C)$ is an $MS_{2,2}$ transduction.

Hence, if *C* has unbounded tree-width and a decidable MS_2 -satisfiability problem, we have a contradiction for the decidability of the MS_2 -satisfiability problem of *Minors*(*C*).

Proof of the result on C_2MS -satisfiability and clique-width :

D) Equivalence between the cases of all (directed and undirected) graphs and bipartite undirected graphs (with an encoding of directed graphs as labelled bipartite undirected ones; cf. page 15).

A') If a set of bipartite graphs *C* has unbounded clique-width, the set of its *vertex-minors* contains all " S_k " graphs.

C') If C has a decidable C₂MS-satisfiability problem, so has Vertex-Minors(C), because $C \longrightarrow Vertex-Minors(C)$ is a C₂MS-transduction.

E) An MS-transduction transforms S_k into the kxk-grid.

Hence A' + B + C' + E gives the result for bipartite undirected graphs. The general result follows with the encoding D.

Definitions and facts

Local complementation of G at vertex v

G * v = G with edge-complementation of $G[n_G(v)]$,

the subgraph induced by the neighbours of v

Local equivalence (\approx_{loc}) = transitive closure of local complementation (at all vertices)

Vertex-minor relation :

 $H \leq_{VM} G : \Leftrightarrow H$ is an induced subgraph of some G' $\approx_{loc} G$.

Proposition (B.C.-Oum, 2004) : The mapping that associates with G its locally equivalent graphs is a C_2MS -transduction.

The even cardinality set predicate is necessary :

Consider G * X for $X \subseteq Y$:

u is linked to v in G * X

 \Leftrightarrow Card(X) is even

G Y

(G * X = composition of local complementations at all vertices from X)

Definition of S_k , bipartite : A = {1,...,(k+1)(k-1)}, B = {1,...,k(k-1)} From S_k to $Grid_{k \times k}$ by an MS transduction

The orderings of A and B:x, y are consecutive \Leftrightarrow Card(n_G(x) Δ n_G(y)) = 2.

One recognizes the edges from $i \in B$ to $i \in A$, and from $i \in B$ to $i+k-1 \in A$ (thick edges on the left drawing).

One creates edges (e.g. from $1 \in A$ to $2 \in A$, from $2 \in A$ to $3 \in A$ etc...and similarly for B, and from $1 \in B$ to $4 \in A$, etc...) one deletes others (from $4 \in B$ to $6 \in A$ etc...), and vertices like 7,8 in A, to get a grid containing $Grid_{kxk}$

10. A few open questions

Question 1 : What should be the clique-width or rank-width of hypergraphs (or relational structures) ?

Question 2 : Is it true that the decidability of the MS- (and not of the C_2MS -) satisfiability problem for a set of graphs implies bounded clique-width, as conjectured by Seese ?

More important :

Question **3** : What about Question 3 for sets of hypergraphs or relational structures ?