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1 Introdution
Formal language theory studies sets of �nite and in�nite words and terms (usu-ally alled trees) that are �nitely desribed by means of grammars, automata,or logial formulas. It also investigates transformations of words and terms ina similar perspetive. Its sope now extends to desriptions of sets of graphs,hypergraphs, partial orders, and related ombinatorial strutures, and to thatof transformations of these objets, whih we will all, as for words and terms,transdutions. Universal algebra and logi are fundamental for developpingthis extension, and this artile ontributes to showing why.
Algebras, equational and reognizable sets
Context-free languages an be haraterized as least solutions of systems ofreursive equations, while regular languages an be haraterized as union oflasses of �nite ongruenes on the free monoid. Both haraterizations arebased on the algebrai struture on words assoiated with onatenation. Asobserved by Mezei and Wright in [1℄ the two notions of least solution of asystem of reursive equations and of a ongruene with �nitely many lassesare meaningful in every algebra, not only in the monoid of �nite words andin the algebra of �nite terms. In every algebra, they yield two families ofsets, the family of equational sets and the family of reognizable sets. Thesenotions generalize those of ontext-free languages and of regular languages,respetively.The advantage of this algebrai approah, espeially for desribing sets ofgraphs, is that it depends neither on rewriting rules nor on automata. Thisis essential beause graph rewriting rules are ompliated to de�ne and tostudy, and graph automata satisfying good losure and deidability propertiesdo not exist, exept for very partiular lasses of graphs. By ontrast, thefamilies of reognizable and equational sets of any algebra satisfy useful losureproperties: the family of reognizable sets is losed under union, intersetion,and di�erene, and the intersetion of an equational set with a reognizableone is equational.A lass of graphs is made into an algebra by equipping it with graph operations.These operations form the signature of the algebra. A graph operation linkingtwo graphs an be onsidered as a generalized onatenation. However, graphsan be onatenated in several ways, and di�erent operations are spei�ed interms of labellings of the verties. We will also use unary graph operations thatmanipulate labellings. In every algebra of graphs, we have thus equational setsand reognizable sets. Their de�nitions only use onepts of universal algebra
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and need not deal with the spei� ombinatorial properties of the graphsunder onsideration.In the above desription, we have written �graphs� for simpliity, but it equallyapplies to hypergraphs, partial orders, and atually all ombinatorial objetsrepresented by relational strutures with a �nite set of relations. For example,a graph G is represented by the relational struture whose domain is the set ofverties and that has a binary relation desribing the edges. (The multipliityof edges is lost in this representation. There exists another one for graphs withmultiple edges, see [2℄).Several signatures an be de�ned on the same lass of relational strutures.However, in many ases, �small� variations of the signature do not modify thelasses of equational and reognizable sets, a fat indiating the robustnessof the algebrai framework. We will say that two signatures are equivalent ifthe orresponding lasses of equational and reognizable sets are the same.One of the purposes of this artile is to investigate equivalenes of signatures.Another one is to relate these algebrai notions with monadi seond-orderlogi. We now explain the role of logi in this theory.
The role of logi
Logi is used for three purposes: �rst to speify the operations on relationalstrutures in the signatures, seond to de�ne reognizable sets of relationalstrutures, and third to speify transformations of relational strutures. Letus omment eah of these uses.The basi signature of operations, denoted by QF , onsists of disjoint union,of all unary operations that an be de�ned by quanti�er-free formulas (alledquanti�er-free operations), and of onstants denoting strutures with a singleelement. The edge omplement is an example of a quanti�er-free operation: theedge relation of the output graph is just the omplement of the edge relation ofthe input graph, hene the former is de�nable by a formula without quanti�ersin terms of the latter. Quanti�er-free operations an be ombined with disjointunion to form various kinds of graph onatenations.This de�nition generalizes and uni�es previously de�ned algebras, the algebraof graphs alled VR, and the algebra of hypergraphs alled HR. They havebeen de�ned in suh a way that their equational sets are the sets of graphsand hypergraphs de�ned by ertain ontext-free graph grammars, based re-spetively on vertex replaement and on hyperedge replaement (see [2℄ andother hapters of the same book on graph grammars). Many results proved in-dependently for these two algebras an now be proved as partiular instanesof more general results relative to QF .
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Monadi seond-order logi (MSO) is the fundamental language for de�n-ing reognizable sets and transdutions of relational strutures. That MSOis useful is not too surprizing given that, for sets of words and terms, MSO-de�nability is equivalent to de�nability by �nite-state automata, and thatmany types of tree transdutions an also be desribed by MSO-formulas(see [3,4,5℄). A fundamental result says that every set of relational struturesthat is the set of �nite models of an MSO-formula is QF-reognizable (i.e., isreognizable with respet to the algebra of relational strutures de�ned by thesignatureQF). On the other hand, it is muh easier to hek that a property isde�nable by an MSO-formula than to onstrut a �nite ongruene saturatingthe orresponding set. In the ases of words and trees, �nite-state automatao�er suh a onvenient spei�ation language for reognizable sets, but theydo not work on graphs and, a fortiori, on relational strutures. Hene MSOtakes their plae in a natural way. Transduers whih de�ne transformationsof words or terms into words or terms are �nite-state automata with outputs.Hene, they annot be generalized to graphs on the basis of automata, and
MSO, again, o�ers a powerful and easy to use spei�ation language.Furthermore, there are quite lose onnetions between equational sets andreognizable sets of relational strutures, and MSO-transdutions: for exam-ple, a set is equational i� it is the image of a reognizable set of �nite termsunder an MSO-transdution, and it follows that the lass of equational setsis stable under MSO-transdutions. Further, we prove in this artile that theinverse image of a QF -reognizable set under an MSO-transdution is QF-reognizable.
The main results
We will only onsider �nite terms, graphs, hypergraphs, and relational stru-tures. Furthermore, we will onsider relational strutures only up to isomor-phism. There are several reasons for doing so. First, we have no use for dis-tinguishing isomorphi relational strutures. This is also a requirement forapplying logi sine logial formulas annot distinguish between isomorphistrutures. In order to derive algorithms from this theory as done in [6℄, weneed to use whenever possible �nite signatures and we do not want to introduein�nitely many onstants to desribe in�nitely many isomorphi strutures.Hene a term will not de�ne a single relational struture but the isomorphismlass of some relational struture.Our starting point is the signature QF of operations on relational struturesonsisting of disjoint union, quanti�er-free operations (there are ountablymany, the use of in�nite signatures for dealing with graphs, even �nite ones, isunavoidable), and onstants denoting relational strutures having a singleton
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domain.We prove in Setion 5 that the inverse image of a QF -reognizable set underan MSO-transdution isQF -reognizable. This result, of whih weak forms arealready known, on�rms the robustness of the formal framework assoiatinggraph operations and MSO.In Setion 6, we prove that the signature QF an be restrited to an equiva-lent subsignature. This �small� (although still ountably in�nite) signature isbased on quanti�er-free operations of three types: we an forget a relation R(i.e., delete all tuples in R without modifying the domain of the onsideredstruture), rename a relation R into S (where R and S have same arity; if
R and S are both present in the input struture then this operation mergesthem into a single relation), and we an add either a new relation T or tuplesto an existing relation T (roughly, given two relations R and S we onate-nate the tuples of R with those of S and add the resulting tuples to T ). If thesignature Σ ontains only relations of arity at most n then we an de�ne anequational set of Σ-strutures by a system of equations where the operationsonly use the relations of Σ and auxiliary relations of arity at most n − 1. Inthe ase of graphs, that is for n = 2, we obtain known results about the sig-nature VR (f. [7,8℄) where the auxiliary relations are unary, i.e., they enodevertex labels.In Setion 7, we develop a method for enlarging the signature QF to anequivalent one, and we apply this method to the fusion operation onsideredby Courelle and Makowsky in [9℄. This operation fuses all elements satisfyinga given unary relation. It is not quanti�er-free. Roughly speaking, we provethat adding it to QF yields an equivalent signature. This generalizes theresults of [9℄.In Setion 8, we onsider the algebra HR whose equational sets are thosede�ned by hyperedge replaement ontext-free graph grammars. This is an al-gebra of relational strutures with distinguished elements alled soures. Theoperations onsist of onstants for singleton strutures and parallel omposi-tion whih ombines two strutures with soures into the one obtained fromtheir disjoint union by fusing the soures with same label. One an replaea relational struture with soures by a purely relational one by introduing,for eah onstant c, a unary relation labc whih ontains as single element thevalue of c. However, if we do so, quanti�er-free de�nable operations on rela-tional strutures with soures are no longer quanti�er-free de�nable on theorresponding relational strutures without soures. We overome this di�-ulty by showing that nevertheless the operations of HR an be handled inthe general framework of purely relational strutures.These results ontribute to build a robust foundation for the extension of for-
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mal language theory to sets of graphs, hypergraphs, and relational strutures.Let us say a few words about the tools we use for establishing them. Themain one is the lassial notion of a logial type used, e.g., in [10,11,12,13℄.Given a �nite set Φ of formulas with n free variables (for instane, the set of
MSO-formulas of quanti�er height at most k, up to logial equivalene), wede�ne the Φ-type of an n-tuple of elements ā of a relational struture as theset of those formulas of Φ that are satis�ed by ā. There are thus �nitely manypossible Φ-types. If the formulas in Φ are quanti�er-free or if their quanti�a-tions are restrited to a �neighbourhood� of ā, then the Φ-type of ā enodesloal information assoiated with ā. Given a struture A, its Φ-annotation isthe struture MΦ(A) with same domain where, for eah Φ-type p, we have anew n-ary relation Tp ontaining all n-tuples of A with type p. The annotation
MΦ(A) provides information about A that is immediately available from therelations without the need to use formulas with quanti�ers. In the languageof database theory, this onstrution builds an extensional database out of anintensional one. In this artile, a typial use is the following: a transdution ofstrutures A, de�ned by MSO-formulas of quanti�er height at most k an bereplaed by a quanti�er-free transdution ating on the annotated strutures
MΦ(A) where Φ is the set of MSO-formulas of quanti�er height at most k.
Related works
This artile develops the algebrai and logial extension of formal languagetheory to sets of relational strutures intiated by Courelle and presentedin [14℄ (its algebrai bakground) and [2℄ (its appliation to graphs and hy-pergraphs, and its relationships with graph grammars). This theory also usesresults from [3,15,16℄. Setions 6 and 8 elaborate the de�nition given in [7℄ ofan algebra for relational strutures with onstants. Setion 7 generalizes thede�nition of fusion given in [9℄ and establishes new results. Closure proper-ties of the family of HR-reognizable sets of hypergraphs have been studiedin [17℄, and Setion 5 ontinues this work. The stability of the family of reog-nizable sets under modi�ations of signatures is studied in [8℄, and the notionof equivalene of signatures investigated in Setions 6, 7, and 8 extends thisstability requirement to also inlude the family of equational sets.
Summary of the artile
The artile is organized as follows. Setion 2 reviews algebras, equational andreognizable sets, and it introdues an extension of the notion of derived op-eration losely related to linear deterministi bottom-up tree transdutions.It also extends the notion of a homomorphism to that of a heteromorphism,
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making it possible to relate algebras of di�erent signatures. Setion 3 reviewsrelational strutures, monadi seond-order logi, monadi seond-order trans-dutions, and operations on relational strutures de�ned by quanti�er-freeformulas. Setion 4 introdues monadi types (sets of monadi seond-orderformulas of bounded quanti�er height) as a �rst form of type information,and establishes several tehnial results. Setion 5 establishes the preserva-tion of reognizability under inverse MSO-transdutions. Setion 6 shows theequivalene of the basi signature QF on relational strutures with a propersubsignature that generalizes the signature VR to relational strutures and,hene, to hypergraphs. Setion 7 takes the opposite diretion. Its objetiveis to extend QF by operations that are not quanti�er-free de�nable, but toobtain nevertheless an equivalent signature. A method for doing so is intro-dued and applied to the fusion operation. Setion 8 shows how the operationsde�ning the HR-equational and HR-reognizable sets an be studied in termsof relational strutures without onstants.

Notation, onventions, and general fats
In this artile we only onsider equational and reognizable sets of �nite stru-tures. The reason for this limitation is that the algebrai de�nitions of thesenotions are not well-suited to in�nite objets. In partiular, the reognizablesets of in�nite trees are not those de�ned by tree automata. However, our teh-nial onstrutions of transformations of strutures based on logial formulaswork for in�nite strutures as well. But their algebrai onsequenes are onlymeaningful in the �nite ase.
All proofs in this artile are e�etive. Hene every statement of the form �Forevery m,n, there exists an MSO-transdution suh that . . . � an be read as�There exists an algorithm that, given m,n, onstruts an MSO-transdutionsuh that . . . �.
Let us �x notation and introdue some onventions. The set N of naturalnumbers ontains 0. We set [k] := {1, . . . , k} and [0] := ∅. We denote by P(X)the power set of a set X. For an n-tuple ā = a1 . . . an, we sometimes alsowrite ā for the set {a1, . . . , an} of its omponents. In partiular, we sometimeswrite ā ⊆ A instead of ā ∈ An. The empty tuple is denoted by 〈〉. We willdenote by |x| both, the ardinality of a set x and the length of a word x. (Noambiguity will arise.)
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2 Equational and reognizable sets in arbitrary algebras
The notions of an equational set and a reognizable set are due to Mezei andWright [1℄. While they were originally de�ned for algebras over one sort, weadapt them to the many-sorted ase with in�nitely many sorts. We begin withde�nitions onerning suh algebras. We refer the reader to [14℄ for more aboutreognizable and equational sets.
2.1 Algebras
Let S be a set whose elements we all sorts. An S-signature is a set F offuntion symbols eah of whih has a type s1 × s2 × · · · × sn → s where
s1, . . . , sn, s ∈ S. We may have n = 0 ; in this ase the symbol is alled aonstant. We denote by T (F,X) the set of �nite well-formed terms built withfuntions from F and variables fromX. They will simply be alled terms in thefollowing. In the ase X = ∅, we simply write T (F ). Automata de�ning sets ofterms are usually alled tree automata, and multivalued mappings from termsto terms are alled tree transdutions.We will keep this standard terminology,although trees in the sense of graph theory do not oinide with terms.An F -algebra is an objet M = 〈(Ms)s∈S, (fM )f∈F 〉 where eah set Ms, alledthe domain of M of sort s, is nonempty and, for every symbol f ∈ F of type
s1 ×· · ·× sn → s, we have a total funtion fM : Ms1 ×· · ·×Msn

→Ms. Thesemappings are alled the operations of M . We assume that Ms ∩ Ms′ = ∅,for s 6= s′. We denote the set ⋃
{Ms | s ∈ S } also by M . We assume that thenotions of a homomorphism, subsignature, subalgebra, et. are well-known. See[14℄ or [8℄ for details.We an de�ne a anonial F -algebra (the free F -algebra) on the set of terms T (F )suh that, for every F -algebraM , there exists a unique homomorphism valM :

T (F ) → M . For t ∈ T (F )s, the image of t under valM is an element of Ms,alled the value of t in M . A term t with variables x1, . . . , xn of sort s1, . . . , snde�nes a funtion tM : Ms1 × · · · ×Msn
→ M whih is obtained by replaingall funtion symbols f in t by the orresponding operations fM of M . In thespeial ase that n = 0 we obtain tM = valM(t).A derived operation of the algebra M is an n-ary operation de�ned by a termin T (F, {x1, . . . , xn}) where eah variable xi ours at most one. Suh termsare alled linear. Let F and G be S-signatures and M an F -algebra. If N isa G-algebra with the same domains as M suh that eah operation of N is aderived operation of M then we say that N is a derived algebra, and that it isderived of M . We all G a derived signature of F . The signature of all derivedoperations of F is denoted by F der.
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Our notion of a derived operation is restrited to linear terms in order toguarantee that the lass of equational sets is not hanged by adding derivedoperations to a signature. The lass of reognizable sets stays the same evenif we add derived operations built from nonlinear terms.If G is a derived signature of F every term t ∈ T (G) an be translated into aterm δ(t) ∈ T (F ) suh that δ(t)N = tM , for all algebras M and N as above.The mapping δ is a tree transduer of a partiular type, namely a deterministi,bottom-up, linear tree transduer with a single state. By a regular set of termswe mean a subset K ⊆ T (F ), for some �nite signature F , that is de�ned bya �nite-state tree automaton. Generalizing the notion of a regular set we willde�ne below the notion of a reognizable set in an arbitrary algebra. It is aneasy exerise to show that a set of terms in T (F ) is regular if and only if it isreognizable in the free F -algebra T (F ).For de�nitions and basi results onerning tree automata and tree transdu-ers, we refer the reader to the books [18℄ or [19℄, and to the surveys [20℄ and [21℄.In the following we will only use �nite-state deterministi, bottom-up, lineartree transduers and we will all them simply tree transduers. Among thebasi fats we reall that the image of a regular set of terms under suh a treetransduer is again regular.Lemma 1 If C is a regular set of terms then so is δ(C), for every tree trans-duer δ.Let us stress that, by our de�nition, a tree transduer always is linear. Withoutthis ondition Lemma 1 would not hold.
2.2 Reognizable and equational sets
Let F be an S-signature. We say that an F -algebra M is loally �nite if eahdomain Ms is �nite. (Note that in universal algebra the term �loally �nite�has a di�erent meaning.)A ongruene on M is an equivalene relation ≈ on ⋃

{Ms | s ∈ S } suh thateah set Ms is a union of equivalene lasses and suh that ≈ is stable underall operations of M . It is said to be �nite if, for eah sort s, the restrition ≈sof ≈ to Ms is �nite, i.e., has �nitely many lasses. A ongruene saturates aset X ⊆M if X is a union of equivalene lasses.De�nition 2 Let M be an F -algebra and s ∈ S. A subset X ⊆ Ms is M -reognizable if it is saturated by a �nite ongruene on M . We denote the setof all M -reognizable subsets of Ms by Rec(M)s, and the union of the sets
Rec(M)s by Rec(M).
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An equivalent de�nition an be given in terms of homomorphisms. A subset
X ⊆ Ms is M -reognizable if and only if there exists a homomorphism h :
M → A into a loally �nite F -algebra A and a (�nite) subset Y ⊆ As suhthat X = h−1(Y ). The lass Rec(M)s forms a boolean algebra. We have
∅,Ms ∈ Rec(M)s, and X,Y ∈ Rec(M)s implies that X ∪ Y,X ∩ Y,X \ Y ∈
Rec(M)s (see [14℄).Note that in the de�nition of a ongruene onstants play no role. Hene,a set X is reognizable with respet to an F -algebra M if and only if it isreognizable with respet to the F−-redut of M where F− onsists of alloperations of F exept for the onstant symbols.De�nition 3 A subset L ⊆ Ms is M -equational if it is a omponent of theleast solution of a �nite system of reursive equations using as operations unionand the extension of the operations of F to subsets of M . We denote the lassof equational subsets of M by Equat(M), and by Equat(M)s the sublass ofthose inluded in Ms.For instane, the equational sets of a free monoid are exatly the ontext-freelanguages. Similarly, the equational subsets of graph algebras are exatly thosethat are ontext-free. See [2℄ for the relationship between graph grammars andequational sets. Instead of the above de�nition we will mainly use the followingharaterization of M -equational sets.Proposition 4 ([1,14℄) LetM be an F -algebra. A set L ⊆Ms isM -equationalif and only if there exist a regular set K ⊆ T (F )s suh that L = valM(K).Note that, by de�nition, if K ⊆ T (F )s is a regular set of terms then there isa �nite subsignature F0 ⊆ F with K ⊆ T (F0)s.Corollary 5 A set K ⊆ T (F )s is regular if and only if it is equational.In partiular, if F is a �nite signature that generates M , i.e., suh that ev-ery element of M is the value of a term in T (F ), then every reognizableset is equational. This ondition is satis�ed for the usual algebras of �nitelygenerated monoids, but not for the algebras of graphs that we will onsider.See [14℄ for a thorough treatment of the basi results about reognizable andequational sets.In ertain ases, for instane when onsidering graphs, there is a anonialhoie for the domains Ms, s ∈ S, while there are several possible signa-tures F . To simplify terminology and notation we will speak in suh asesof F -equational and F -reognizable sets instead of introduing a separatename MF for the struture obtained from the signature F and using the term�MF -equational� and �MF -reognizable�. Similarly we will write Equat(F ) and
Rec(F ) instead of, respetively, Equat(MF ) and Rec(MF ).
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2.3 Finite-state derived operations and homomorphisms
We will need some extensions of the lassial notions of a derived operationand a homomorphism that are losely related to tree transduers.De�nition 6 LetM be an F -algebra. A mapping α : M → X fromM into anarbitrary set X is M -omputable if the sets As := α(Ms) ⊆ X, for s ∈ S, are�nite and pairwise disjoint, and there exists an F -algebra A with domains As,for eah s, suh that α : M → A is a homomorphism. In other words, the latterondition means that, for every f ∈ F of arity n and all a1, . . . , an ∈ M ofappropriate sorts, the value α(fM(ā)) an be omputed from α(a1), . . . , α(an).De�nition 7 Let M be an F -algebra and α : M → A be M -omputable. An
n-ary mapping g : Ms1×· · ·×Msn

→Ms, n ≥ 1, is a �nite-state derived oper-ation (based on α) if, for eah ā ∈ An, there is an n-ary derived operation t[ā]of M suh that we have
g(x1, . . . , xn) = t[α(x1), . . . , α(xn)]M(x1, . . . , xn) ,for all elements x1, . . . , xn ∈M of sorts, respetively, s1, . . . , sn.Example 8 Let X be a set and F the signature onsisting of one binary op-eration · and onstant symbols ε and a, for every a ∈ X. Let M be the freemonoid over X, that is, the F -algebra with domain X∗ where ·M is onatena-tion, εM the empty word, and aM := a, for a ∈ X. Fix some element a ∈ X.We de�ne a binary operation ⊛ on X∗ by
u⊛ v :=




uv if neither u nor v ontains an ourrene of a,
a otherwise.

We laim that ⊛ is a �nite-state derived operation. We de�ne an F -algebra Non [2] by setting
i ·N k :=





2 if i = k = 2 ,

1 otherwise ,
εN := 2 , aN := 1 , and bN := 2 , for b 6= a .

Let α : M → N be the homomorphism
α(u) :=





1 if u ontains an ourrene of a,
2 otherwise.
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Then we an de�ne ⊛ by the terms
t[1, 1](x, y) := a , t[1, 2](x, y) := a ,

t[2, 1](x, y) := a , t[2, 2](x, y) := x · y .

If M is an F -algebra and G a set of �nite-state derived operations we obtaina G-algebra N with the same sorts and domains as M . We all G a signatureof �nite-state derived operations, and we all N a �nite-state derived alge-bra of M . If the operations of G are all based on the same M -omputablemapping α then we say that G and N are based on α.For eah M -omputable mapping α, we denote by F der
α the signature of all�nite-state derived operations based on α. If F is ountable then so is F der

αsine we require that the sets As are �nite. Clearly, F der
α ontains F der beausethe operations t[ā] in the above de�nition may atually not depend on ā. Notethat the operations of F der

α depend on M via α, whereas those of F der do not:they are de�ned in a purely syntati way without referene to any algebra.Remark 9 Let F be a �nite signature, M an F -algebra, and G a signatureof �nite-state derived operations based on some funtion α : M → A. Let
N be the assoiated (F ∪ G)-algebra. For every t ∈ T (F ∪ G), there exists aterm δ(t) ∈ T (F ) with tN = δ(t)M . This mapping δ an be de�ned by a treetransduer.We will see below that adding �nite-state derived operations does not hangethe notions of an equational or a reognizable set. Hene, when we want toompare algebras with respet to suh sets we need a kind of homomorphismthat is invariant under this operation. Furthermore, we will need to relatealgebras with di�erent signatures.De�nition 10 Let M be an F -algebra with set of sorts S and N a G-algebrawith set of sorts S ′.(a) A heteromorphism h : M → N is a olletion of mappings onsisting of
hsort : S → S ′ and hs : Ms → Nhsort(s), for eah s ∈ S, suh that, for every f ∈
F of type s1 × · · · × sn → s, there exists a linear term tf ∈ T (G, {x1, . . . , xn})suh that

hs(fM(b1, . . . , bn)) = tfN (hs1(b1), . . . , hsn
(bn)) ,for all b1, . . . , bn ∈M of sorts s1, . . . , sn.(b) Let α : M → A be an M -omputable mapping. We will say that a olle-tion h as above is a �nite-state heteromorphism based on α if, for every f ∈ Fof type s1 × · · · × sn → s, there exist linear terms tf [ā] ∈ T (G, {x1, . . . , xn}),
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for ā ∈ An, suh that
hs(fM(b1, . . . , bn)) = tf [α(b1), . . . , α(bn)]N (hs1(b1), . . . , hsn

(bn)) ,for all b1, . . . , bn ∈M of sorts s1, . . . , sn.In the following we will write in both ases h instead of hsort or hs, withoutrisk of ambiguity.Remark 11 An important speial ase of a (�nite-state) heteromorphism on-sists of a funtion h : M → N from an F -algebra M to a G-algebra N suhthat there exists a set G′ of (�nite-state) derived operations of N that turns
h : M → N into a homomorphism from M to the G′-algebra N .Example 12 Let M be the free monoid as in the previous example.(a) The funtion h : u 7→ ũ that maps every word to its mirror image is aheteromorphism. Sine ũv = ṽũ we an hoose the term t·(x, y) := y · x.(b) An example of a �nite-state heteromorphism is the funtion

g(u) :=




ũ if u ontains no ourrene of a,
an if u ontains n > 0 ourrenes of a.

If we again hoose α : M → [2] to be the homomorphism with
α(u) :=





1 if u ontains an ourrene of a,
2 otherwise,then we an de�ne g by the terms

tg[1, 1](x, y) := x · y , tg[1, 2](x, y) := x ,

tg[2, 1](x, y) := y , tg[2, 2](x, y) := y · x .Remark 13 Let h : M → N be a �nite-state heteromorphism. For everyterm t ∈ T (F ), there exists a term δ(t) ∈ T (F ) suh that h(tM) = δ(t)N . Ifthe signature F of M is �nite then this mapping δ an be de�ned by a treetransduer.Lemma 14 Let h : M → N be a �nite-state heteromorphism based on αbetween an F -algebra M and a G-algebra N .(a) L ∈ Rec(N) implies h−1(L) ∈ Rec(M).(b) L ∈ Equat(M) implies h(L) ∈ Equat(N).
13



PROOF. (a) Let L ∈ Rec(N) and ≈ be a �nite G-ongruene saturating L.We de�ne a relation ≡ on M by setting
x ≡ y : iff x and y have the same sort,

h(x) ≈ h(y) , and α(x) = α(y) .

It is lear that ≡ is an equivalene relation. For eah sort s, it has at most
|Nh(s)/≈| · |As| lasses. If x ≡ y then h(x) ∈ L implies h(y) ∈ L sine h(x) ≈
h(y) and ≈ saturates L. Consequently, ≡ saturates h−1(L).It remains to prove that ≡ is a ongruene. Let f ∈ F be of arity n and let
x̄, ȳ ∈Mn with xi ≡ yi, for all i. By the de�nition of ≡, we have α(xi) = α(yi),and sine α is a homomorphism it follows that α(fM(x̄)) = α(fM(ȳ)).It remains to prove that h(fM(x̄)) ≈ h(fM(ȳ)). We have

h(fM(x̄)) = tf [α(x1), . . . , α(xn)]N(h(x1), . . . , h(xn))

= tf [α(y1), . . . , α(yn)]N (h(x1), . . . , h(xn))(sine α(xi) = α(yi))
≈ tf [α(y1), . . . , α(yn)]N (h(y1), . . . , h(yn))(sine h(xi) ≈ h(yi))
= h(fM (ȳ)) ,whih ompletes the proof.(b) Eah set L ∈ Equat(M) an be written L = valM(K), for some regular setof terms K ⊆ T (F ) (see Proposition 4). We have remarked that there existsa tree transduer δ assoiated with h suh that

valN(δ(t)) = h(valM(t)) , for all t ∈ T (F ) .Hene h(L) = valN (δ(K)). Sine, by Lemma 1, tree transduers preserve reg-ularity it follows that h(L) is N -equational. 2

De�nition 15 Let F and G be S-signatures for some set of sorts S and
M = (Ms)s∈S a family of domains. Let MF and MG be algebras with thesame family of domains M and signatures F and G, respetively. We say that
MF and MG are equivalent if

Equat(MF ) = Equat(MG) and Rec(MF ) = Rec(MG) .IfMF andMG are understood from the ontext we will simply say that F and Gare equivalent signatures.
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Remark 16 For F ⊆ G we obviously always have
Equat(F ) ⊆ Equat(G) and Rec(G) ⊆ Rec(F ) .Hene, when testing for equivalene we only need to hek the onverse inlu-sions.Consider an F -algebra M and let G be a signature of �nite-state derivedoperations of F that are all based on the same M -omputable mapping α (f.De�nition 7). It follows from the next lemma that F ∪G is equivalent to F .Lemma 17 Let M be an F -algebra. For every M -omputable funtion α :

M → A, the signature F der
α is equivalent to F .

PROOF. If ≈ is a �nite F -ongruene on M then the equivalene relationde�ned by
x ≡ y : iff x and y are of the same sort, α(x) = α(y), and x ≈ yis a �nite F der

α -ongruene. (The proof is the same as in Lemma 14 (a).) Hene,if ≈ witnesses the F -reognizability of some set L then ≡ witnesses the F der
α -reognizability of L. It follows that Rec(F der

α ) = Rec(F ).Suppose that L is F der
α -equational. Then we have L = valM(K) for some reg-ular subset K ⊆ T (F der
α ). We have noted that there exists a tree transduer δsuh that

valM(δ(t)) = valM ′(t) , for all t ∈ T (F der
α ) ,whereM ′ is the F der

α -algebra with same domains asM . Hene, L = valM(δ(K))and sine tree transduers preserve regularity it follows that L is F -equational.Consequently, we have Equat(F der
α ) = Equat(F ). 2

3 Relational strutures and monadi seond-order logi
A relational signature is a �nite set Σ = {R,S, T, . . . } of relation symbols eahof whih is given with an arity ar(R) ≥ 1. We denote by STR[Σ] the set of all�nite Σ-strutures A = 〈A, (RA)R∈Σ〉 where RA ⊆ Aar(R). The set A is alledthe domain of A. The arity of Σ is the maximal arity of a symbol in Σ. Wedenote it by ar(Σ). The arity of a Σ-struture A is the arity of its signature Σ.Intuitively, a Σ-struture A an be seen as a direted hypergraph where A isthe set of verties and, for every tuple ā ∈ R, we have a hyperedge with label Rand sequene of verties ā.
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For a relational Σ-struture A and a set X ⊆ A, we denote by A[X] thesubstruture of A indued by X. This is the struture with domain X andrelations
RA[X] = RA ∩Xar(R) , for R ∈ Σ .

A graph G is de�ned as an {edg}-struture G = 〈VG, edgG〉 where VG is theset of verties of G and edgG ⊆ VG × VG is a binary relation representingthe direted edges. For undireted graphs, the relation edgG is symmetri. Inpartiular, graphs are always simple, i.e., without parallel edges.A term t ∈ T (F ) where F is a �nite signature of arity at most k an be seenas a direted labelled tree. We enode suh a tree by a relational struture ofthe form S(t) := 〈N, (suci)1≤i≤k, rt, (labf )f∈F 〉 where
• N is the set of nodes,
• suci(x, y) holds i� y is the i-th suessor of x,
• rt(x) holds i� x is the root, and
• labf (x) is true i� the node x has label f .We denote by ∆(F ) the signature of this struture.We reall that monadi seond-order logi extends �rst-order logi by set vari-ables, quanti�ation over set variables, and new atomi formulas of the form
x ∈ X that express the membership of an element x in the set X. We willdenote by MSO[Σ,W ] the set of all MSO-formulas over the signature Σ withfree variables from W . Similarly, FO[Σ,W ] is the set of �rst-order formulasand QF[Σ,W ] denotes the set of quanti�er-free formulas. Frequently, we willomit the parameters Σ and W if their values are obvious from the ontext.The quanti�er height of a formula ϕ, either �rst-order or monadi seond-order, is the maximal number of nested quanti�ers in ϕ. We denote it by qh(ϕ).The quanti�er-free formulas are those of quanti�er height 0.A subset C ⊆ STR[Σ] is MSO-de�nable if there is some formula ϕ ∈ MSO[Σ, ∅]suh that

C = {A ∈ STR[Σ] | A |= ϕ } .

3.1 Transdutions of relational strutures
We will use logi for several purposes. First, we use formulae to de�ne trans-formations on strutures and seond, we label strutures by logial types thatenode properties of tuples. Let C and D be sets of strutures. A transdution
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g : C → D is a binary relation g : R ⊆ C × D that we onsider as a multi-valued partial mapping assoiating with ertain strutures in C one or morestrutures in D.An MSO-transdution is a transdution spei�ed by MSO-formulas. Given astruture A and a tuple of parameters W1, . . . ,Wn ⊆ A it onstruts a newstruture B whose domain is a subset of A × [k], for some k ≥ 1. Suh atransdution g has an assoiated bakwards translation, a mapping that ef-fetively transforms an MSO-formula ϕ over B (possibly with free variables)into a MSO-formula ϕg over A whose free variables orrespond to those of ϕ(k times as many atually) together with those for the parameters. The for-mula ϕg expresses in A the property of B de�ned by ϕ. We now give somedetails. See also [4,2℄.De�nition 18 Let Σ and Γ be two relational signatures and let W be a �niteset of set variables alled parameters.(a) A de�nition sheme (from Σ to Γ) is a tuple of formulas of the form
D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k)where k > 0,
Γ ⊠ k :=

{
(R, ı̄)

∣∣∣ R ∈ Γ, ı̄ ∈ [k]ar(R)
}
,

ϕ ∈ MSO[Σ,W ] ,

ψi ∈ MSO[Σ,W ∪ {x1}] , for i = 1, . . . , k ,and ϑw ∈ MSO[Σ,W ∪ {x1, . . . , xar(R)}] , for w = (R, ı̄) ∈ Γ ⊠ k .

(b) Let A ∈ STR[Σ] and let γ be a W -assignment in A. We say that D de�nesthe Γ-struture B in (A, γ) if(i) (A, γ) |= ϕ ,(ii) B =
{

(a, i) ∈ A× [k]
∣∣∣ (A, γ) |= ψi(a)

}
,(iii) for eah R ∈ Γ,

RB =
{

((a1, i1), . . . , (an, in)) ∈ Bn
∣∣∣ (A, γ) |= ϑR,̄ı(a1, . . . , an)

}
,where ı̄ = i1 . . . in and n = ar(R).(By (A, γ) |= ϑ(a1, . . . , an) we mean (A, γ′) |= ϑ where γ′ is the assignmentextending γ suh that γ′(xi) = ai, for all i ≤ n.) Note that we do not rede�neequality (in ontrast to, e.g., [10℄). Two elements of B are equal if they areequal as elements of A× [k].The struture B is uniquely determined by A, γ, and D whenever it is de�ned,i.e., whenever (A, γ) |= ϕ. Therefore, we an use funtional notation and we
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write B = D̂(A, γ). The relation
{ (

A, D̂(A, γ)
) ∣∣∣ γ is some W -assignment in A

}
⊆ STR[Σ] × STR[Γ]is alled the transdution de�ned by D.Let L be some fragment of MSO. A transdution g ⊆ STR[Σ] × STR[Γ]is an L-transdution if it is de�ned (up to isomorphisms) by some de�nitionsheme D onsisting of formulas from L. In the ase whereW = ∅, we say that

g is parameterless. (Note that parameterless transdutions are funtional.) Wewill refer to the integer k by saying that D is k-opying. If k = 1 we will all
D and D̂ nonopying. A nonopying de�nition sheme has the simple form
(ϕ, ψ, (ϑR)R∈Γ).The quanti�er height of a de�nition sheme is the maximal quanti�er heightof the formulas it onsists of. Sine, up to logial equivalene, there are only�nitely many MSO-formulas of a given quanti�er height k ∈ N, it follows thatthe number of MSO-transdutions (de�ned by shemes) of quanti�er height kis �nite.Note that sine logial equivalene is not deidable one annot e�etively seletrepresentatives of eah lass of logially equivalent formulas. However, one anreplae logial equivalene by a deidable �ner equivalene relation that stillhas only �nitely many lasses. A onstrution is given in [8℄.Example 19 As an example we reall from [9℄, Lemma 2.1, that if we havean MSO-de�nable equivalene relation ≈ on A ∈ STR[Σ] then there is an
MSO-transdution mapping A = 〈A, (RA)R∈Σ〉 to its quotient struture

A/≈ := 〈A/≈, (RA/≈)R∈Σ〉 ,where RA/≈ :=
{

([a1], . . . , [an])
∣∣∣ (a1, . . . , an) ∈ RA

} and [a] denotes the equiv-alene lass of a. Note that A/≈ an be de�ned from A with the help of any set
X ⊆ A ontaining exatly one representative of every ≈-lass. Therefore, wean write down a nonopying de�nition sheme with one parameter X wherethe formula ϕ states that X ontains one representative of every ≈-lass and
ψ(x) is the formula x ∈ X. We omit routine details.Let F and G be �nite signatures. By enoding terms as labelled trees we anonsider a mapping from T (F ) to T (G) as a transdution between relationalstrutures. Similarly, mappings from T (F ) to STR[Σ] an also be given bytransdutions.Every operation de�ned by a tree transduer an be represented by a param-eterless MSO-transdution (see [3,5℄). The fat that we only onsider lineartree transduers is here essential.
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On several oasions we will use transdutions that transform a struture intothe substruture indued by a de�nable subset X of its domain. If ψ(x) is aformula with a single free variable we denote by delψ the transdution thateliminates all elements satisfying ψ.
3.2 The fundamental property of MSO-transdutions
Every de�nition sheme D does not only de�ne an MSO-transdution betweenstrutures but it also gives rise to a translation of formulas. The followingproposition says that if B = D̂(A, γ) then all monadi seond-order de�nableproperties of B an be expressed by monadi seond-order formulas over A.The usefulness of MSO-transdutions is based on this fat.Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k) be a de�nition sheme with a set of param-etersW . Given a set V of set variables disjoint fromW we introdue new vari-ables X(i), for X ∈ V and i ∈ [k], and we set V (k) := {X(i) | X ∈ V, i ∈ [k] }.Let A ∈ STR[Σ] be a struture. For every mapping η : V (k) → P(A), we de�ne
ηk : V → P(A× [k]) by

ηk(X) := η(X(1)) × {1} ∪ · · · ∪ η(X(k)) × {k} .Let Y = {y1, . . . , yr} be a set of �rst-order variables. For a mapping µ : Y → Aand an r-tuple ı̄ = i1 . . . ir ∈ [k]r, we denote by µı̄ : Y → A× [k] the funtionwith
µı̄(yj) := (µ(yj), ij) .If k = 1 then we identify A× [1] with A and µ1...1 with µ.Proposition 20 ([22,17℄) Let D be a k-opying de�nition sheme from Σto Γ of quanti�er height m with set of parameters W . Let V be a �nite set ofset variables and Y = {y1, . . . , yr} a set of �rst-order variables.For every formula β ∈ MSO[Γ, V ∪ Y ] and all ı̄ ∈ [k]r, one an e�etivelyonstrut a formula βD

ı̄ ∈ MSO[Σ, V (k) ∪ Y ∪W ] of quanti�er height
qh(βD

ı̄ ) ≤ k · qh(β) +msuh that, for eah A ∈ STR[Σ] and all assignments γ : W → P(A), η :
V (k) → P(A), and µ : Y → A, we have

(A, η ∪ γ ∪ µ) |= βD
ı̄ iff D̂(A, γ) is de�ned, ηk ∪ µı̄ is a

(V ∪ Y )-assignment in D̂(A, γ), and
(
D̂(A, γ), ηk ∪ µı̄

)
|= β .
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PROOF. Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k). For every monadi seond-order formula β(y1, . . . , yr, X1, . . . , Xs) and all tuples ı̄ ∈ [k]r, we de�ne aformula β∗
ı̄ with �rst-order variables y1, . . . , yr and set variables X(i)

j , for
1 ≤ i ≤ k and 1 ≤ j ≤ s, by indution on β. W.l.o.g. we may assumethat β does not ontain universal quanti�ers and onjuntions. In the atomiase we set

(x = y)∗ij := x = y ,

(x ∈ X)∗i := x ∈ X(i) ,

(Rx̄)∗ı̄ := ϑR,̄ı(x̄) ,boolean operations remain unhanged
(¬β)∗ı̄ := ¬β∗

ı̄ ,

(β ∨ γ)∗ı̄ := β∗
ı̄ ∨ γ

∗
ı̄ ,and for quanti�ers we de�ne

(∃yr+1β)∗ı̄ :=
∨

j∈[k]

∃yr+1(ψj(yr+1) ∧ β
∗
ı̄j) ,

(∃Xβ)∗ı̄ := ∃X(1) · · · ∃X(k)β∗
ı̄ .Note that in the ase of a seond-order quanti�er ∃Xβ we do not need toadd the ondition that every x ∈ X(i) satis�es ψi sine set variables X areonly used in atomi formulas of the form y ∈ X and we require that every ysatis�es the orresponding ψi.To onlude the proof we an set βD
ı̄ := β∗

ı̄ ∧ϕ. The onstrution ensures that
qh(βD

ı̄ ) ≤ k · qh(β) +m. (We an slightly improve this bound to
qh(βD

ı̄ ) ≤ k · qh2(β) + qh1(β) +m,by distinguishing between the quanti�er heights qh1(β) and qh2(β) of �rst-order and seond-order quanti�ers.) 2

Note that, even if B = D̂(A, γ) is well-de�ned, the mapping ηk is not nees-sarily a V -assignment in B beause ηk(X) may not be a subset of the domainof B.We all βD
ı̄ the bakwards translation of β relative to the transdution D. If

g is the transdution de�ned by D then we also write βg instead of βD. For
k = 1 and r ≥ 1, we abbreviate βD

1...1 by βD. Similarly, we write βD insteadof βD
〈〉 .
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Proposition 21 ([22,17℄) (1) The inverse image of an MSO-de�nable lassof strutures under an MSO-transdution is MSO-de�nable. The domain ofan MSO-transdution is MSO-de�nable.(2) The omposition of two MSO-transdutions is an MSO-transdution.We prove a speial ase of the seond statement.Lemma 22 Let f : STR[Γ] → STR[∆] and g : STR[Σ] → STR[Γ] be MSO-transdutions of quanti�er height m and n, respetively, and suppose that g isnonopying.Then f ◦ g is an MSO-transdution of quanti�er height at most m + n. Fur-thermore, if both f and g are parameterless and nonopying then so is f ◦ g.
PROOF. Let D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈∆⊠k) be the de�nition sheme of f .We obtain a de�nition sheme of f ◦ g onsisting of

(
ϕg, ψg1 , . . . , ψ

g
k, (ϑgw)w∈∆⊠k

)
.By Proposition 20, the quanti�er height of these formulas is bounded bym+n.The seond laim also follows easily. 2

3.3 Operations on relational strutures
Let us introdue the basi operations on relational strutures that onstitutethe standard signature QF to whih we will ompare other signatures.
Disjoint union. The disjoint union A ⊕ B of two strutures A ∈ STR[Σ]and B ∈ STR[Γ] is the struture C ∈ STR[Σ ∪ Γ] whose domain C := A ·∪ Bis the disjoint union of A and B and, for eah relation R ∈ Σ ∪ Γ, we have
RC := RA∪RB where we set RA := ∅ for R ∈ Γ\Σ, and RB := ∅ for R ∈ Σ\Γ.(We are only interested in properties of strutures up to isomorphism. Henewe an freely replae strutures by isomorphi opies.)
Quanti�er-free operations. A quanti�er-free de�nition sheme is a pa-rameterless nonopying de�nition sheme D = (ϕ, ψ, (ϑR)R∈Γ) where ϕ = trueand the formulas ψ and ϑR, for R ∈ Γ, are quanti�er-free. The transdu-tion D̂ : STR[Σ] → STR[Γ] de�ned by suh a sheme is total and funtional.When onsidered to be part of a signature, we will all funtions of this form
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quanti�er-free operations. (We keep the term transdution for transforma-tions of strutures that are, typially, enodings relating di�erent lasses ofrelational strutures.)Note that sine we require ϕ = true not every parameterless nonopying def-inition sheme of quanti�er height 0 de�nes a quanti�er-free operation. Byinspeting the proof of Lemma 22, one easily sees that the omposition of twoquanti�er-free operations is again a quanti�er-free operation.Example 23 The edge omplement for simple, loop-free, undireted graphsan be de�ned as the quanti�er-free operation where
ϑedg(x1, x2) := x1 6=x2 ∧ ¬edg(x1, x2) .Another edge omplement ould be de�ned for graphs with loops by deleting

x1 6= x2 in the above formula.Remark 24 To shorten notation we will usually omit de�ning formulas ϑRof the form ϑR = Rx̄ (= Rx1 . . . xar(R)) that do not modify the relations R.If we have a quanti�er-free de�nition sheme of the formD = (true, ψ, (ϑR)R∈Σ)where Γ = Σ and ϑR is Rx1 . . . xar(R), for all R ∈ Σ, then we say that D̂ isa (quanti�er-free) domain restrition. In this ase we have D̂ = del¬ψ and
D̂(A) is the substruture of A indued by the set of elements satisfying ψ.If, on the other hand, D = (true, true, (ϑR)R∈Γ), then we all D̂ nondeleting.Then the struture D̂(A) has the same domain as A but its relations arerede�ned by the formulas ϑR. Other examples will be given in Setion 3.5below.Lemma 25 Every quanti�er-free operation is the omposition of a quanti�er-free domain restrition and a nondeleting quanti�er-free operation.
PROOF. For every quanti�er-free de�nition sheme D = (true, ψ, (ϑR)R∈Γ)from Σ to Γ we have D̂ = D̂′ ◦ del¬ψ where

del¬ψ := (true, ψ, (Rx̄)R∈Σ) and D′ := (true, true, (ϑR)R∈Γ) .

2

3.4 The many-sorted algebra of relational strutures
We de�ne an algebra STR of relational strutures as follows. Suppose that
Σ∞ is a �xed relational signature with ountably many symbols of eah arity.
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We assume that every �nite relational signature Σ is a subset of Σ∞. Weregard every �nite signature Σ ⊆ Σ∞ as a sort of STR. The orrespondingdomain (of sort Σ) is the set STR[Σ] of all �nite Σ-strutures.The operations onsist of the disjoint union ⊕ and all quanti�er-free opera-tions. Furthermore, we add onstant symbols for all singleton strutures, thatis, strutures whose domain ontains exatly one element. Note that every set
STR[Σ] ontains only �nitely many of them (up to isomorphism).This signature, whih we denote by QF , will be our referene signature forthe algebra STR. We will onstrut alternative equivalent signatures.If Σ ⊆ Γ we ould regard strutures A ∈ STR[Σ] as elements of STR[Γ] whereall relations R ∈ Γ \ Σ are empty. However we will distinguish A from itsexpansions, so the sets STR[Σ] are pairwise disjoint. The natural inlusion
i : STR[Σ] → STR[Γ] is a quanti�er-free operation. In partiular, i ∈ QF .The operation symbol ⊕ is overloaded. It atually represents ountably manybinary operations, one for eah pair of sorts.Aording to our general de�nitions we obtain the lasses Equat(STR) and
Rec(STR) of all QF -equational and QF -reognizable sets. Sine QF is ourstandard signature we will all suh sets simply equational and reognizable.Proposition 26 ([7,2℄) Let C ⊆ STR[Σ].(a) If C is MSO-de�nable then C ∈ Rec(STR)Σ.(b) If C ∈ Rec(STR)Σ and D ⊆ STR[Σ] is MSO-de�nable then C ∩ D ∈

Rec(STR)Σ.() If Σ ⊆ Γ and i : STR[Σ] → STR[Γ] is the inlusion map then we have
C ∈ Rec(STR)Σ i� i(C) ∈ Rec(STR)Γ.Proposition 27 ([7,2,16℄) Let C ⊆ STR[Σ]. The following statements areequivalent:(i) C ∈ Equat(STR)Σ.(ii) C = valSTR(K), for some K ∈ Rec(T (QF)Σ).(iii) C = τ(L), for some MSO-transdution τ : STR[∆(F )] → STR[Σ] andsome regular set of terms L ⊆ T (F ) (over an arbitrary �nite signature F ).Corollary 28 Let C ∈ Equat(STR)Σ.(a) If τ : STR[Σ] → STR[Γ] is an MSO-transdution then τ(C) ∈ Equat(STR)Γ.(b) If D ⊆ STR[Σ] is MSO-de�nable then C ∩D ∈ Equat(STR)Σ.() If Σ ⊆ Γ and i : STR[Σ] → STR[Γ] is the inlusion map then we have
C ∈ Equat(STR)Σ i� i(C) ∈ Equat(STR)Γ.
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PROOF. (a) If C ∈ Equat(STR)Σ then there exists a regular set of terms Land an MSO-transdution σ suh that C = σ(L). Hene, τ(C) = (τ ◦ σ)(L)and Proposition 21 implies that τ(C) ∈ Equat(STR)Γ.(b) If D is MSO-de�nable then the identity funtion idD : D → D is an
MSO-transdution. Sine C ∩D = idD(C) the laim follows from (a).() follows immediately from (a) sine i and its inverse are MSO-transdutions. 2

3.5 VR-operations on graphs
Let us onsider the speial ase of graphs. We reall the de�nitions of twoalgebras of graphs, alledVR and VRp, whih are onneted to ertain ontext-free graph grammars and to the graph omplexity measure alled lique width(see [2,23,6℄). We show that these algebras an be onsidered as subalgebrasof STR. In addition to the edge relation edg we �x a ountable set Π∞ of unaryrelation symbols that we will use as vertex labels. The algebra of graphs VRhas domains of the form STR[{edg}∪Π], for �nite Π ⊆ Π∞. The orrespondingstrutures are labelled graphs G = 〈VG, edgG, (PG)P∈Π〉 where a vertex v haslabel P i� it belongs to the set PG. Hene a vertex may have no, one, or severallabels.We de�ne a signature VR that, apart from the disjoint union ⊕ and onstantsymbols for the basi graphs with a single vertex, ontains the following par-tiular quanti�er-free operations. The mapping renP→Q hanges every label Pto Q, the operation fgtP (forget P ) deletes every label P , and addP,Q, for
P 6= Q, is de�ned by the quanti�er-free de�nition where

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧Qx2) .Hene addP,Q adds a new direted edge from every vertex labelled by P to eahvertex labelled by Q � unless there exists already one (we deal with simpledireted graphs, possibly with loops).A more restrited algebra of labelled graphs is VRp. A Π-graph is a struture
G = 〈VG, edgG, (PG)P∈Π〉 in STR[{edg}∪Π] suh that the unary relations forma partition of the domains. (The supersript p refers to this fat.) Hene everyvertex has one and only one label. The above de�ned operations, exept fgtP ,preserve this property. (Of ourse, we have to omit those onstant symbolswhih de�ne labelled graphs that are not Π-graphs.)For eah set Π, we denote by VRp

Π the signature
{P,Ploop,⊕, addP,Q, renP→Q | P,Q ∈ Π, P 6= Q } ,
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where P is a single vertex labelled by P , and Ploop is the same with an inidentloop. We obtain in this way the VRp
Π-algebra of Π-graphs whih was �rstintrodued in [15℄.

Remark 29 The algebra VR is obtained from STR by deleting ertain sorts,the orresponding domains, all operations involving them, and ertain unaryoperations between sorts kept in VR. For VRp, we additionally remove thosestrutures from the remaining domains where the relations of Π do not parti-tion the set of verties.
Every term t ∈ T (VRp

Π) de�nes a Π-graph, and every Π-graph is the value ofsome t ∈ T (VRp
Ψ), for a su�iently large set Ψ ⊇ Π. The lique width of Gis de�ned as the smallest ardinality of Ψ suh that G is the value of someterm in T (VRp

Ψ) (see [24,6℄). We reall that trees have lique width at most 3.This signature originates from ontext-free graph grammars de�ned by vertexreplaement (see [2,15℄).
To generate undireted graphs we an make the de�nition of addP,Q symmetriby setting

ϑedg(x1, x2) := edg(x1, x2) ∨ (Px1 ∧Qx2) ∨ (Px2 ∧Qx1) .

The notion of lique width of an undireted graph follows immediately. Everylique has lique width 2. We reall the following result from [2,16℄.
Proposition 30 A set of �nite graphs has bounded lique width if and only ifit is ontained in the image of a set of �nite trees under an MSO-transdution.
We have de�ned a many-sorted algebra VR of graphs. The notion of a VR-reognizable set of graphs follows from the general de�nitions. This notion isrobust as proved in [8℄ Theorem 4.5: a set of graphs is VR-reognizable i� it isreognizable w.r.t. VR+ (the signature onsisting of the operations from VRΠand all quanti�er-free operations) i� it QF -reognizable. We will establishfurther robustness results below.
Example 31 Reall that, for a �nite signature F , we denote by ∆ = ∆(F )the signature used to enode terms t ∈ T (F ) as labelled trees S(t) ∈ STR[∆].We show that the funtion STR[∆] × STR[∆] → STR[∆] that orresponds tothe mapping T (F ) × T (F ) → T (F ) : (t1, t2) 7→ f(t1, t2), for �xed f ∈ F , anbe expressed in terms of ⊕, some quanti�er-free operations, and one onstant.Let rt be a onstant symbol denoting a single element labelled by rt and noother relation. In addition to the relation of ∆ we will use unary relations
rt1 and rt2, and a onstant symbol rt. If t1, t2 ∈ T (F ) are represented by
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S(t1),S(t2) ∈ STR[∆] with disjoint domains then we have
S(f(t1, t2)) =

(
fgtrt1 ◦ fgtrt2 ◦ addrt,rt1,suc1 ◦ addrt,rt2,suc2

)

[
rt ⊕ renrt→rt1(S(t1)) ⊕ renrt→rt2(S(t2))

]
,where the operation addrt,rti,suci

adds all pairs (x, y) with rt(x) and rti(y) to therelation suci. This operation an be de�ned by the quanti�er-free transdutionwhere
ϑsuci

(x, y) := suci(x, y) ∨ (rt(x) ∧ rti(y)) .

4 Annotated strutures
A entral notion in many of our proofs is that of a type annotation whih we useto enode information about a tuple of elements of the onsidered struture.We de�ne �nite sets Φn of formulas by ertain syntati restritions suh thatall formulas in Φn have free variables among x1, . . . , xn. With every n-tuple āwe assoiate the set of those formulas in Φn that are satis�ed by ā. Suhsets are alled logial n-types (see, e.g., [13,12,11℄). The syntati restritionsde�ning Φn (we will onsider several variants) ensure that eah type is �niteand that there are �nitely many types of the onsidered form.We enrih a relational struture A by adding, for every n-type, a new n-aryrelation ontaining all tuples of that type. This operation is alled annotatingthe struture A. We will examine the relationship between annotations and
MSO-transdutions and their e�et on reognizability.
4.1 Monadi types
The monadi type of a tuple ā is just the set of all MSO-formulas of a givenmaximal quanti�er height satis�ed by ā. In partiular, sine it ontains allquanti�er-free formulas that hold for ā, suh a type ompletely desribes, upto isomorphism, the substruture indued by ā.De�nition 32 Let A be a Σ-struture and ā ∈ An a tuple, n ≥ 0. Themonadi n-type of quanti�er height k of ā is the set

tpk(ā/A) :=
{
ϕ(x̄) ∈ MSO[Σ, {x1, . . . , xn}]

∣∣∣ qh(ϕ) ≤ k, A |= ϕ(ā)
}
.

We denote by Sn,kM (Σ) the set of all suh monadi n-types realized in some
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Σ-struture 2 , and we write S≤m,k
M (Σ) :=

⋃
1≤n≤m S

n,k
M (Σ) for the union overall n with 1 ≤ n ≤ m. (We need the subsript M to distinguish monadi typesfrom other kinds of types whih we will introdue in Setion 7.)Types of quanti�er height 0 are also alled atomi or quanti�er free. Theyontain loal information about the given n-tuple. For the empty tuple ā = 〈〉,we use the abbreviation tpk(A) := tpk(〈〉/A).We will treat the monadi type of the empty tuple di�erently from the monadi

n-types with n > 0. For n > 0, we an introdue n-ary relations to label tuplesof the orresponding type whereas we do not allow relations of arity 0. Thisis the reason why we exlude the ase n = 0 in the union de�ning S≤m,k
M (Σ).A type tpk(A) ontains a �nite amount of global information onerning Awhih, aording to Lemma 45 below, is QF-omputable.As stated in the next lemma types are MSO-de�nable beause we only onsider�nite relational signatures. Furthermore, for �nite strutures we an e�etivelyompute the type tpk(ā/A) from ā and A.De�nition 33 Let p ∈ Sn,kM (Σ) be a monadi n-type. The Hintikka-formulaof p is de�ned by

ψp(x̄) :=
∧
p .(By onvention we do not distinguish between logially equivalent formulas sothat the above onjuntion is �nite, f. Setion 3.1.)It follows immediately from the de�nition that a type is de�ned by its Hintikka-formula.Lemma 34 For every monadi n-type p ∈ Sn,kM (Σ), we have qh(ψp) = k and

A |= ψp(ā) iff tpk(ā/A) = p ,for every struture A and eah tuple ā ∈ An.Finally, let us remark that quanti�er-free operations indue a map on the setof types.Lemma 35 For every quanti�er-free operation f : STR[Σ] → STR[Γ], thereexist mappings fnk : Sn,kM (Σ) → Sn,kM (Γ) suh that
tpk(ā/f(A)) = fnk (tpk(ā/A)) ,

2 The reader may worry about the fat that S
n,k
M (Σ) is not reursive (only reursivelyenumerable). Instead of S

n,k
M (Σ) we ould use the larger set of all sets of formulasover the signature Σ. This will not a�et our proofs.
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for every struture A ∈ STR[Σ] and eah n-tuple ā in f(A).
PROOF. For every formula ϕ(x̄) of quanti�er height at most k, we have

ϕ(x̄) ∈ tpk(ā/f(A)) iff A |= ϕf (ā) iff ϕf(x̄) ∈ tpk(ā/A) .Note that qh(ϕf) = qh(ϕ), by Proposition 20. Therefore, fnk an be de�nedby
fnk (p) := {ϕ | ϕf ∈ p } .

2

4.2 Monadi annotations
Sometimes it is useful to have all monadi information available via a singlerelation. In order to make the full monadi type aessible we add new re-lations Tp, for every type p. After adding all these relations Tp the originalrelations are super�uous, and we an delete them.De�nition 36 Let A be a Σ-struture, m > 0, and k ≥ 0. The monadiannotations of A are the strutures

Mm
k (A) :=

〈
A, (Tp)p∈S≤m,k

M
(Σ)

〉

with the same domain as A where, for eah monadi n-type p ∈ S≤m,k
M (Σ), weadd the n-ary relation

Tp := { ā ∈ An | tpk(ā/A) = p }of all tuples of type p. We denote the relational signature of Mm
k (A) by

Σm,k
M := {Tp | p ∈ S≤m,k

M (Σ) } .For m = ar(Σ), we simply write Mk(A) and Σk
M.De�nition 37 Let A be a struture. The rank of an n-tuple ā ∈ An is thesize of the set {a1, . . . , an}. An n-tuple is a loop if its rank is less than n.By A|m we denote the struture obtained from A by removing from all relationsevery tuple of rank greater than m. Let STRm[Σ] be the set of all strutures

A ∈ STR[Σ] suh that A|m = A.
28



Remark 38 If m ≥ ar(Σ) then we an reonstrut A from Mm
k (A). For m <

ar(Σ), we an only reover the atomi information about tuples of rank atmost m.Example 39 We onsider the following vertex labelled graph G ∈ STR[edg , P,Q]with domain {a, b, c, d} and labels P and Q.
a c

b d

Q

P P, QThe annotated struture M2
0(G) is the omplete graph where eah vertex xhas a unique label tp0(x/G) and every edge (x, y) is labelled by tp0(xy/G).For instane,

tp0(a) = {¬Px, Qx, ¬edg(x, x), . . . } ,

tp0(b) = {Px, ¬Qx, ¬edg(x, x), . . . } ,

tp0(c) = {¬Px, ¬Qx, edg(x, x), . . . } ,

tp0(d) = {Px, Qx, ¬edg(x, x), . . . } ,

tp0(ab) = {edg(x, y), edg(y, x), x 6= y, . . . } ∪ tp0(a) ∪ tp0(b)[y/x] ,

tp0(ac) = {edg(x, y), ¬edg(y, x), x 6= y, . . . } ∪ tp0(a) ∪ tp0(c)[y/x] .Note that every type ontains a lot of redundant formulas. For the purpose oflarity we have omitted in the above list all formulas that are logial onse-quenes of those shown. To improve readability we also have used the variables
x and y instead of x1 and x2. Finally, [y/x] denotes the substitution of y for x.The Hintikka-formula ψtp0(a)(x) of a is thus equivalent to

¬Px ∧Qx ∧ ¬edg(x, x) .

If we delete from M2
0(G) the vertex labels we obtain a symmetri labeled 2-struture as de�ned by Ehrenfeuht et al. [25℄. Our results show that equationaland reognizable sets of graphs an be de�ned in an algebrai framework basedon vertex and edge labeled omplete graphs that are quite lose to 2-strutures.Monadi annotations are ompatible with MSO-transdutions. First of all, theoperation Mm

k is itself an MSO-transdution.Lemma 40 Let Σ be a relational signature.(a) The mapping Mm
k : STR[Σ] → STR[Σm,k

M ] is a nonopying parameterless
MSO-transdution of quanti�er height k.
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(b) There exists a quanti�er-free nonopying parameterless transdution g :
STR[Σm,k

M ] → STRm[Σ] suh that
g(Mm

k (A)) = A|m , for all A ∈ STR[Σ] .() The restrition of Mm
k to STRm[Σ] is injetive. Its inverse (Mm

k )−1 :
STR[Σm,k

M ] → STRm[Σ] is an MSO-transdution.
PROOF. (a) We have already seen in Lemma 34 that one an de�ne therelation Tp by the formula ψp of quanti�er height k.(b) For n ≤ m, we an write an n-ary relation R ∈ Σ as

RA = { ā ∈ An | ā ∈ Tp for some p with Rx̄ ∈ p } .Hene, we obtain a de�nition sheme for g by setting
ϑR(x1, . . . , xn) :=

∨
{Tpx1 . . . xn | p ∈ Sn,kM (Σ), Rx1 . . . xn ∈ p } .For n > m, we need some notation to write down ϑR. With an n-tuple ā ofrank r we an assoiate a surjetive funtion σ : [n] → [r] suh that ai = ali� σ(i) = σ(l). Given suh a funtion σ we set µi(σ) := min σ−1(i), for i ∈ [r],and

χσ(x1, . . . , xn) :=
∧

i∈[r]

∧

k,l∈σ−1(i)

xk = xl .

Then we an de�ne R by
ϑR(x1, . . . , xn) :=

∨
{Tpxµ1(σ) . . . xµr(σ) ∧ χσ(x1, . . . , xn) |

1 ≤ r ≤ m, σ : [n] → [r] surjetive with
µ1(σ) < · · · < µr(σ) , and
p ∈ Sr,kM (Σ) with Rxσ(1) . . . xσ(n) ∈ p } .For example, if σ : [6] → [3] maps [6] to the sequene 1, 2, 2, 1, 2, 3 then theabove disjuntion inludes the formula

Tpx1x2x6 ∧ x1 =x4 ∧ x2 =x3 ∧ x2 =x5 ∧ x3 =x5if and only if we have Rx1x2x2x1x2x3 ∈ p.Note that the above disjuntions are �nite sine there are only �nitely manytypes in S≤m,k
M (Σ).() In light of (b) we only need to prove that the range of Mm

k is MSO-de�nable. Then we an restrit the transdution g of (b) appropriately. Let
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A ∈ STR[Σm,k
M ]. If A = Mm

k (B), for some B ∈ STRm[Σ], then we have
B = B|m = g(Mm

k (B)) = g(A) ,whih implies that A = Mm
k (g(A)). Conversely, if A = Mm

k (g(A)) then A isin the range of Mm
k . We an express that A = Mm

k (g(A)) by the formula
∧

p∈S≤m,k

M
(Σ)

∀x̄(Tpx̄↔ (ψp)
g(x̄))

where ψp is the Hintikka-formula for p and (ψp)
g its bakwards translationvia g. This formula an be used in the de�nition sheme of the transdution

(Mm
k )−1 : STR[Σm,k

M ] → STRm[Σ] to de�ne the domain. 2

Sine, by Corollary 28, QF -equational sets are losed under MSO-transdu-tions it follows immediately that Mm
k preserves equationality.Corollary 41 A set C ⊆ STRm[Σ] is QF-equational if and only if Mm

k (C)is QF-equational.Eah nonopying parameterless MSO-transdution of quanti�er height k fa-tors through Mm
k .Lemma 42 Let g : STR[Σ] → STR[Γ] be a nonopying parameterless MSO-transdution of quanti�er height k and m := ar(Γ). There exists a nonopyingparameterless quanti�er-free transdution f : STR[Σm,k

M ] → STR[Γ] suh that
g(A) = f

(
Mm

k (A)
)
, for all A ∈ STR[Σ] suh that g(A) is de�ned .

PROOF. Given a quanti�er-free de�nition sheme (ϕ, ψ, (ϑR)R∈Γ) of g, weonstrut a de�nition sheme (true, ψ′, (ϑ′
R)R∈Γ) for f by setting

ψ′ :=
∨

{Tpx1 | p |= ψ } and ϑ′
R :=

∨
{Tpx̄ | p |= ϑR } .(|= is the logial entailment relation.) 2

4.3 Operations on annotated strutures
It turns out that the mapping tpk : STR[Σ] → S0,k

M (Σ) is QF-omputable(f. 6). One part of the proof is given by the following (speial ase of a)theorem of Shelah [26℄ (see also the thorough study by Makowsky [27℄).
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Proposition 43 Let k,m, n ≥ 0. For every formula ϕ ∈ MSO[Σ∪Γ, {x1, . . . , xm+n}]of quanti�er height k, one an e�etively onstrut �nite sequenes of formulas
ψ1, . . . , ψl ∈ MSO[Σ, {x1, . . . , xm}]and ϑ1, . . . , ϑl ∈ MSO[Γ, {xm+1, . . . , xm+n}]of quanti�er height at most k suh that, for all strutures A ∈ STR[Σ] and

B ∈ STR[Γ], and all tuples ā ∈ Am and b̄ ∈ Bn, we have
A ⊕ B |= ϕ(ā, b̄) iff A |= ψi(ā) and B |= ϑi(b̄) for some 1 ≤ i ≤ l .Corollary 44 For all numbers k, n ∈ N and every set I ⊆ [n], there exists abinary funtion ⊕k,I suh that
tpk(c̄/A ⊕ B) = tpk(c̄|I / A) ⊕k,I tpk(c̄|[n]\I /B) ,for all strutures A and B and all tuples c̄ ∈ (A ∪B)n suh that c̄|I ⊆ A and

c̄|[n]\I ⊆ B. (By c̄|I we denote the subtuple of all omponents ci with i ∈ I.)Lemma 45 The funtion tpk : STR[Σ] → S0,k
M (Σ) is QF-omputable.

PROOF. It is su�ient to �nd operations on S0,k
M (Σ) suh that tpk : STR[Σ] →

S0,k
M (Σ) beomes a QF -homomorphism. For the disjoint union, we an use theoperation ⊕k,∅ introdued in Corollary 44. And, if g : STR[Σ] → STR[Γ] is aquanti�er-free operation then we have shown in Lemma 35 that

tpk(g(A)) = g0
k(tpk(A)) , for all strutures A .

2Lemma 46 For every m ∈ N, the mapping Mm
k : STR[Σ] → STR[Σm,k

M ] is a�nite-state heteromorphism based on tpk.
PROOF. We have to show that, for every operation f ∈ QF of arity 0 ≤ n ≤
2, there exist linear terms t[p1, . . . , pn] ∈ T (QF , {x1, . . . , xn}), for p1, . . . , pn ∈
S0,k

M (Σ), suh that
Mm

k (f(A1, . . . ,An)) =

t[tpk(A1), . . . , tpk(An)]
(
Mm

k (A1), . . . ,M
m
k (An)

)
,for all strutures A1, . . . ,An ∈ STR[Σ].First, we onsider a quanti�er-free operation f : STR[Σ] → STR[Γ]. Reallthe mappings f ik : Si,kM (Σ) → Si,kM (Γ) de�ned in Lemma 35. We have

Mm
k (f(A)) = g(Mm

k (A))
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where the de�nition sheme of the quanti�er-free operation g onsists of theformulas
ψ(x) :=

∨
{Tqx | q ∈ S1,k

M (Σ), ψ′ ∈ q } ,

ϑTp
(x̄) :=

∨
{Tqx̄ | q ∈ (f ik)

−1(p) } , for every p ∈ Si,kM (Γ) , 1 ≤ i ≤ m,

where ψ′ is the formula of the de�nition sheme for f that spei�es the domainof the output struture. Note that in this ase the term t[tpk(A)] = g(x1) doesnot depend on tpk(A).Seond, we onsider the ase where f = ⊕. We de�ne quanti�er-free operations
h0, h1, and g depending on tpk(A) and tpk(B) suh that

Mm
k (A ⊕ B) = g

(
h0(M

m
k (A)) ⊕ h1(M

m
k (B))

)
.

The operations h0 and h1 just add a new unary relation P /∈ Σ to their argu-ment suh that P = ∅ for h0 whereas, for h1, P ontains every element. Thesefuntions are only needed so we an tell the elements of the two struturesapart. The main work is done by g whih updates the type annotation. Reallfrom Corollary 44, that there exists a binary operation ⊕k,I on S≤m,k
M (Σ), for

n ≤ m and I ⊆ [n], suh that
tpk(c̄/A ⊕ B) = tpk(c̄|I/A) ⊕k,I tpk(c̄|[n]\I/B) ,

for all strutures A and B and all tuples c̄ ∈ (A ∪ B)n with c̄|I ⊆ A and
c̄|[n]\I ⊆ B. Hene, we an de�ne the de�nition sheme of g by the formulas

ψ(x) := true ,and ϑTp
(x̄) :=

∨ { ∧

i∈I

¬Pxi ∧
∧

i/∈I

Pxi ∧ Tqx̄|I ∧ Trx̄|[n]\I

∣∣∣∣

I ⊆ [n], I /∈ {∅, [n]}, q ⊕k,I r = p
}

∨
∨ { ∧

i∈[n]

¬Pxi ∧ Tqx̄
∣∣∣∣ q ⊕k,[n] tpk(B) = p

}

∨
∨ { ∧

i∈[n]

Pxi ∧ Trx̄
∣∣∣∣ tpk(A) ⊕k,∅ r = p

}
,

for p ∈ Sn,kM (Σ) . (In the ase where A and B have di�erent signatures theargument is adapted in the obvious way.)Finally, we onsider the ase where f is a onstant. Then the value of f is asingleton struture A. Consequently, its annotation Mm
k (A) is also a singletonstruture that an be denoted by a onstant. 2
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Reall that we write Mk(A) for Mar(Σ)
k (A). As usual we set

Mk(C) := {Mk(A) | A ∈ C } ,for lasses C ⊆ STR[Σ].Theorem 47 A set C ⊆ STR[Σ] is QF-reognizable if and only if Mk(C) is
QF-reognizable.
PROOF. (⇐) By Lemma 46, Mk is a �nite-state derived homomorphismbased on tpk. We have seen in Lemma 40 that Mk is injetive. Therefore,we have C = (Mk)

−1(Mk(C)) and, by Lemma 14, it follows that C is QF-reognizable.
(⇒) Suppose that C ⊆ STR[Σ] isQF -reognizable. Let≈ be aQF-ongruenewitnessing this fat.By Lemma 40 (), the range D := Mk(STR[Σ]) ⊆ STR[Σk

M] of Mk is MSO-de�nable and, therefore, QF -reognizable by Proposition 26. We denote theorresponding QF-ongruene by ≃.To show that Mk(C) is QF-reognizable we de�ne
A ≡ B : iff A ≃ B and A ≈ B .Clearly, ≡ is a �nite QF -ongruene.It remains to show that ≡ saturates Mk(C). Let A ∈ Mk(C), that is, A =

Mk(C), for some C ∈ C. If B ≡ A then A ≃ B implies that B = Mk(D),for some D ∈ STR[Σ]. We have seen in Lemma 40 (b) that there exists aleft-inverse g of Mk that is a quanti�er-free operation. Hene, A ≈ B implies
C = g(A) ≈ g(B) = D .Consequently, we have D ∈ C and B = Mk(D) ∈ Mk(C), as desired. 2

4.4 Annotating the leaves of a binary tree
We state some de�nitions and lemmas that we will use in Setion 6. Let F bea set of binary funtion symbols and C a set of onstants. As remarked at thebeginning of Setion 3 we an represented every term t ∈ T (F ∪ C) by a tree

S(t) :=
〈
N(t), suc1, suc2, rt, (laba)a∈F∪C

〉
∈ STR[∆(F ∪ C)] ,
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where N(t) is the set of nodes of t. Let ∆ := ∆(F ∪ C) be the orrespondingsignature. We denote the set of leaves by L(t) ⊆ N(t) and by ≤ the usuallinear left-right order on L(t).De�nition 48 Let t be a term, m > 0, and k ≥ 0. A tuple ā ∈ L(t)n isinreasing if a1 < · · · < an. The restrited monadi annotations of S(t) arethe ∆m,k
M -strutures
Rm
k (t) :=

〈
L(t), (Tp)p∈S≤m,k

M
(∆)

〉

with domain L(t) where, for eah monadi n-type p ∈ S≤m,k
M (∆), we add the

n-ary relation
Tp :=

{
ā ∈ L(t)n

∣∣∣ ā inreasing, tpk(ā/S(t)) = p
}
.Remark 49 There are formulae ϕ(x) and ψ(x, y) of quanti�er height qh(ϕ) =

1 and qh(ψ) = 5 suh that ϕ de�nes the set of leaves and ψ de�nes theordering <:
ϕ(x) := ¬∃y[suc1(x, y) ∨ suc2(x, y)] ,

ψ(x, y) := ∃z[∃u1(suc1(z, u1) ∧ u1 � x) ∧ ∃u2(suc2(z, u2) ∧ u2 � y)] ,where the tree ordering � is de�ned by
x � y : iff ∀Z[y ∈ Z ∧ ∀u∀v[v ∈ Z ∧ (suc1(u, v) ∨ suc2(u, v))

→ u ∈ Z]

→ x ∈ Z] .(x � y an be read as �x is an anestor of y�.) Hene, there exists a formula
ϑn(x1, . . . , xn) of quanti�er height 5 expressing that x̄ is an inreasing tuple ofleaves. It follows that, for k ≥ 5, we an tell from tpk(ā/S(t)) whether ā issuh a tuple. Consequently, we an obtain Rm

k (t) from Mm
k (S(t)) by

• deleting all nodes that are not leaves,
• removing all relations Tp suh that p 6|= ϑn.For t ∈ T (F ∪ C) and u ∈ N(t), we denote by t/u ∈ T (F ∪ C) the subtermof t rooted at the node u. Let ∗ be a new onstant symbol. We denote by
t \ u ∈ T (F ∪C ∪{∗}) the term obtained from t by replaing the subterm t/uby the onstant ∗. Hene, the unique ourrene of ∗ in t/u is u.Lemma 50 Let k ∈ N.(a) For every f ∈ F and all numbers 0 ≤ m ≤ n, there exists a mapping

⊙f
m,n : Sm,kM (∆) × Sn−m,kM (∆) → Sn,kM (∆)
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suh that we have
tpk

(
āb̄/S(f(t1, t2))

)
= tpk

(
ā/S(t1)

)
⊙f
m,n tpk

(
b̄/S(t2)

)
,for all t1, t2 ∈ T (F ∪C) and all inreasing tuples ā ∈ L(t1)

m and b̄ ∈ L(t2)
n−m.(b) For every f ∈ F and all numbers 0 ≤ m ≤ n, there exists a mapping

⊙̂
f
m,n : S0,k

M (∆) × Sm,kM (∆) × Sn−m,kM (∆) → Sn,kM (∆)suh that we have
tpk

(
āb̄/S(t)

)
= ⊙̂

f
m,n

(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
,for every t ∈ T (F ∪ C) suh that t/u = f(t1, t2) and all inreasing tuples

ā ∈ L(t1)
m and b̄ ∈ L(t2)

n−m.
PROOF. (a) We reall from the example after Proposition 30 that the map-ping 〈S(t1),S(t2)〉 7→ S(f(t1, t2)) is a QF -derived operation. Consequently,the result follows from Lemma 35 and Corollary 44.(b) The laim follows as in (a) sine we have

S(t) =
(
ren∗→f ◦ fgtrt1 ◦ fgtrt2 ◦ add∗,rt1,suc1 ◦ add∗,rt2,suc2

)

(
S(t \ u) ⊕ renrt→rt1(S(t1)) ⊕ renrt→rt2(S(t2))

)

2

5 Inverse MSO-transdutions preserve reognizability
In this setion we establish the following theorem whih is one of the mainresults of the artile.Theorem 51 If L ∈ Rec(STR)Γ and τ : STR[Σ] → STR[Γ] is an MSO-trans-dution then τ−1(L) ∈ Rec(STR)Σ.The speial ase where L is CMSO-de�nable (CMSO is the extension ofmonadi seond-order logi by ounting prediates whih ount the ardinal-ity of a set modulo a �xed integer) follows from existing results. It is knownthat every CMSO-de�nable set is reognizable [7℄ and the inverse image ofa CMSO-de�nable set under an MSO-transdution is CMSO-de�nable. Thease where L is a reognizable set of (simple) graphs of bounded tree width
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is a onsequene of a result by Lapoire [28℄ stating that suh sets are CMSO-de�nable if we allow quanti�ation over sets of edges (and not only on sets ofverties). It follows that L is also CMSO-de�nable by a result of [17℄ where itis shown that, in the ase of �nite graphs of bounded tree width, quanti�ersover sets of edges an be eliminated.On the other hand, in [8℄ it is shown that there are unountably many VR-reognizable sets of graphs. Hene, unountably many of them are not de�n-able in monadi-seond order logi or in its extensions like CMSO, beausethese languages are ountable. This shows that Theorem 51 annot be provedby redution to the speial ase of CMSO-de�nable sets.The proof is based on the fat that a k-opying MSO-transdution τ withparameters W1, . . . ,Wn an be written as τ = ̺ ◦ copyk ◦ γ where
• ̺ is a nonopying parameterless transdution,
• γ is a nonopying transdution guessing W1, . . . ,Wn, and
• copyk is a k-opying parameterless transdution onstruting the k-fold dis-joint union of its argument, with some additional annotations to tell apartthe di�erent opies.We will prove the theorem separately for these three speial ases.
5.1 Transdutions that repliate strutures
The simplest MSO-transdution we onsider is a parameterless k-opyingtransdution denoted by copyk. It transforms a struture A into the disjointunion of k opies of A, denoted by A1, . . . ,Ak, expanded by
• new binary relations Yi that enode the anonial isomorphisms A1 → Ai,
• new unary relations Pi that �mark� the element of the i-th opy Ai.De�nition 52 Let Υk := {Pi | 1 ≤ i ≤ k } ∪ {Yi | 1 < i ≤ k }. We assumethat Υk is disjoint from every other relational signature Σ,Γ,∆, . . . that wewill onsider. For eah relational signature Σ, we de�ne an operation

copyk : STR[Σ] → STR[Σ ∪ Υk]that maps a struture A = 〈A, (RA)R∈Σ〉 to the struture C = copyk(A) withdomain C = A× [k] and relations
RC :=

{
((a1, i), . . . , (aar(R), i))

∣∣∣ (a1, . . . , aar(R)) ∈ RA , i ∈ [k]
}
,

(Pi)C := A× {i} ,

(Yi)C :=
{

((a, 1), (a, i))
∣∣∣ a ∈ A

}
.
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It is lear that copyk is a parameterless k-opying MSO-transdution.Lemma 53 For every parameterless k-opying MSO-transdution τ : STR[Σ] →
STR[Γ], there exists a parameterless nonopying MSO-transdution ̺ : STR[Σ∪
Υk] → STR[Γ] suh that τ = ̺◦copyk and ̺(B) is unde�ned if the argument Bis not of the form copyk(A), for some A.
PROOF. Note that a struture C ∈ STR[Σ ∪ Υk] of the form copyk(A)satis�es the following onditions:(1) The sets (P1)C, . . . , (Pk)C form a partition of the domain.(2) For every R ∈ Σ and all tuples ā ∈ RC, there is some i with ā ⊆ (Pi)C.(3) Eah relation (Yi)C de�nes an isomorphism between fgtP1

(C[P1]) and
fgtPi

(C[Pi]).Conversely, every struture C ∈ STR[Σ ∪ Υk] satisfying these onditions isisomorphi to copyk(A) where A is the Σ-redut of C[P1]. The onjuntion of(1)�(3) an be expressed by a �rst-order formula χ.We denote the relativization of a formula α to the set Pi by α(Pi). Supposethat τ is de�ned by
D = (ϕ, ψ1, . . . , ψk, (ϑw)w∈Γ⊠k) .A de�nition sheme E = (ϕ′, ψ′, (ϑ′

R)R∈Γ) for ̺ an be de�ned as follows. Theformula ϕ′ has to express in C that there is some A with C = copyk(A) and
A |= ϕ. We an set

ϕ′ := χ ∧ ϕ(P1) .The formula ψ′ should de�ne the set of all elements (a, i) ∈ C suh that
A |= ψi(a). This an be done by de�ning

ψ′(x) :=
k∧

i=1

(Pix→ ψ
(Pi)
i (x)) .

Finally, we must onstrut formulas ϑ′
R, for R ∈ Γ. We use the relations Yi toobtain a opy of a given tuple that lies in the �rst opy P1. We have

((a1, i1), . . . , (an, in)) ∈ RD̂(A) iff A |= ϑR,i1...in(a1, . . . , an) .For �xed i1, . . . , in, we an express this by the formula
βi1...in(x̄) := ∃y1 · · · ∃yn

( n∧

k=1

Yikykxk ∧ ϑ
(P1)
R,i1...in

(ȳ)
)
.
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(If ik = 1 then instead of Y1ykxk we use the formula yk = xk∧P1xk.) Therefore,we an set
ϑ′
R(x̄) :=

∧

i1,...,in

( n∧

k=1

Pikxk → βi1...in(x̄)
)
.

2

Lemma 54 (a) For all strutures A,B ∈ STR[Σ] and every k, we have
copyk(A ⊕ B) = copyk(A) ⊕ copyk(B) .

(b) For every k and eah quanti�er-free operation f : STR[Σ] → STR[Γ] thereis a quanti�er-free operation f ′ : STR[Σ ∪ Υk] → STR[Γ ∪ Υk] suh that wehave
copyk(f(A)) = f ′(copyk(A)) , for every A ∈ STR[Σ] .

PROOF. (a) is lear. (b) Let D = (true, ψ, (ϑR)R∈Γ) be the de�nition shemeof f . We an de�ne a de�nition sheme
D′ =

(
true, ψ′, (ϑ′

R)R∈Γ, (ϑ
′
Pi

)1≤i≤k, (ϑ
′
Yi

)1<i≤k

)

of f ′ by
ψ′(x) := ψ(P1)(x) ∨ · · · ∨ ψ(Pk)(x) ,

ϑ′
R(x̄) := (ϑR)(P1)(x̄) ∨ · · · ∨ (ϑR)(Pk)(x̄) ,

ϑ′
Pi

(x) := Pix ,

ϑ′
Yi

(x, y) := Yixy ,where ϕ(Pi)(x̄) denotes the relativization of ϕ(x̄) to Pi written in suh a waythat the formula ϕ(Pi)(x̄) implies Pixl, for all l. 2

Proposition 55 Theorem 51 holds for τ = copyk.
PROOF. By Lemma 54, the mapping copyk is a derived heteromorphism forthe subsignature of QF obtained by removing all onstants. Therefore, theresult follows from Lemma 14 and the remark that reognizability does notdepend on the onstants in the signature. 2
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5.2 Parameterless nonopying transdutions
Proposition 56 Theorem 51 holds for parameterless nonopying MSO-trans-dutions.
PROOF. Let τ : STR[Σ] → STR[Γ] be a nonopying parameterless MSO-transdution of quanti�er height k with de�nition sheme (ϕ, ψ, (ϑR)R∈Γ). Sup-pose that L ∈ Rec(STR)Γ and let ≈ be a ongruene witnessing the reogniz-ability of L. Let m := ar(Γ). By Lemma 42, there is a quanti�er-free operation
f : STR[Σm,k

M ] → STR[Γ] suh that, if τ(A) is de�ned then τ(A) = f(Mm
k (A)).Consequently, we have

τ−1(L) = {A ∈ STR[Σ] | A |= ϕ } ∩ (Mm
k )−1(f−1(L)) .Clearly, ≈ also witnesses the reognizability of f−1(L). By Lemmas 46 and 14,it follows that (Mm

k )−1(f−1(L)) is also reognizable. Furthermore, by Proposi-tion 26 (a) the set {A ∈ STR[Σ] | A |= ϕ } is reognizable. Sine reognizablesets are losed under intersetion (f. the remark after De�nition 2) the resultfollows. 2

5.3 Handling parameters
Let Πm := {P1, . . . , Pm} be a set of unary relation symbols disjoint from theother signatures Σ,Γ,Υ et. that we will onsider. Let fgtΠm

: STR[Σ∪Πm] →
STR[Σ] be the quanti�er-free transdution that deletes all relations in Πm. Itsinverse is a nonopying MSO-transdution withm parameters that speify thevalues of the relations P1, . . . , Pm.Lemma 57 Every MSO-transdution τ : STR[Σ] → STR[Γ] with m param-eters an be fatorized as ̺ ◦ fgt−1

Πm
where ̺ : STR[Σ ∪ Πm] → STR[Γ] is aparameterless MSO-transdution.

PROOF. When we apply fgt−1
Πm

to a struture A we obtain all possible expan-sions of A by m unary relations P1, . . . , Pm ⊆ A. The transdution ̺ an simu-late τ by replaing the parameters by these relations. If B = (A, P̄ ) ∈ fgt−1
Πm

(A)is a struture suh that P̄ does not satisfy the �rst formula of the de�nitionsheme of τ then ̺(B) is unde�ned. 2

Proposition 58 If L ∈ Rec(STR)Σ∪Πm
then fgtΠm

(L) ∈ Rec(STR)Σ.
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PROOF. The following obvious fats will be used.
(1) For all strutures A0, A1, and C and every m, we have

A0 ⊕ A1 = fgtΠm
(C)if and only if there exist strutures B0 and B1 suh that

C = B0 ⊕ B1 , A0 = fgtΠm
(B0) , and A1 = fgtΠm

(B1) .

(2) For every quanti�er-free operation f : STR[Γ] → STR[∆] and eah m,there exists a quanti�er-free operation g : STR[Γ∪Πm] → STR[∆∪Πm] suhthat, for all strutures A and B, we have
f(A) = fgtΠm

(B)if and only if there exists a struture C with
B = g(C) and A = fgtΠm

(C) .

We apply a tehnique whih was used in [29℄ to prove that ertain operationson hypergraphs preserve reognizability. We �x m and we will write Π insteadof Πm. Let ≈ be a ongruene witnessing the reognizability of a set L ∈
Rec(STR)Σ∪Π. In order to show that fgtΠ(L) is reognizable we de�ne anequivalene relation on eah set STR[∆] by

A ≡ B : iff
{

[C]
∣∣∣ C ∈ STR[∆ ∪ Π], fgtΠ(C) = A

}

=
{

[C]
∣∣∣ C ∈ STR[∆ ∪ Π], fgtΠ(C) = B

}
,where [C] denotes the equivalene lass of C w.r.t. ≈.Sine ≈ is an equivalene relation with �nitely many lasses of eah sort sois ≡. Furthermore, ≡ saturates fgtΠ(L). If A = fgtΠ(C) with C ∈ L and B ≡ Athen, by de�nition, there is some struture D ≈ C suh that B = fgtΠ(D).Hene D ∈ L and B ∈ fgtΠ(L).It remains to verify that ≡ is a ongruene. Suppose that A0 ≡ B0 and

A1 ≡ B1. We want to prove that A0 ⊕ A1 ≡ B0 ⊕ B1.By symmetry, it is su�ient, for eah C ∈ fgt−1
Π (A0 ⊕ A1), to onstrut astruture D ∈ fgt−1

Π (B0 ⊕ B1) suh that D ≈ C. By (1), there are strutures
C0 ∈ fgt−1

Π (A0) and C1 ∈ fgt−1
Π (A1) suh that C = C0 ⊕ C1. By de�nitionof ≡, we an �nd strutures D0 ≈ C0 and D1 ≈ C1 suh that B0 = fgtΠ(D0)and B1 = fgtΠ(D1). Then fgtΠ(D0 ⊕ D1) = B0 ⊕ B1 and, sine ≈ is a QF-ongruene, we have C0 ⊕ C1 ≈ D0 ⊕ D1, as desired.
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Let f : STR[Γ] → STR[∆] be a quanti�er-free operation and suppose that
A ≡ B. We want to prove that f(A) ≡ f(B). Let C ∈ fgt−1

Π (f(A)). We haveto �nd a struture D ∈ fgt−1
Π (f(B)) suh that D ≈ C. By (2), there exists atransdution g and some struture C′ suh that C = g(C′) and A = fgtΠ(C′).By de�nition of ≡, we an �nd some struture D′ ≈ C′ with B = fgtΠ(D′).Hene D := g(D′) ≈ g(C′) = C and fgtΠ(D) = f(B). By symmetry, it followsthat f(A) ≡ f(B). 2

Proof of Theorem 51 By Lemmas 53 and 57, it follows that every k-opying
MSO-transdution τ : STR[Σ] → STR[Γ] with m parameters an be writtenas

τ = ̺ ◦ copyk ◦ fgt−1
Πmwhere ̺ : STR[Σ ∪ Πm ∪ Υk] → STR[Γ] is a parameterless nonopying MSO-transdution and copyk : STR[Σ ∪ Πm] → STR[Σ ∪ Πm ∪ Υk].Let L ∈ Rec(STR)Γ. Then

τ−1(L) = fgtΠm
(copy−1

k (̺−1(L))) .By Proposition 56, ̺−1(L) is reognizable. Thus, copy−1
k (̺−1(L)) is reogniz-able by Proposition 55. Finally, τ−1(L) ∈ Rec(STR)Σ, by Proposition 58. 2

6 A small signature for the algebra of relational strutures
Our basi signature for de�ning reognizable and equational sets of strutures(or hypergraphs) is QF . To show that this is a natural and robust hoie wepresent several other signatures that all turn out to be equivalent to QF . Wehave already seen in Lemma 14 that the larger signaturesQFder

α are equivalentto QF and in Setion 7 we will introdue more interesting examples of largersignatures. Before doing so let us try the opposite. In this setion we onsidera proper subsignature that is equivalent to QF .Let us �rst state some general fats that will serve as guidelines for provingour results. We laim that, in order to prove that a subsignature G ⊆ QFder
αis equivalent to QF , it su�es to prove the following two properties:(p1) If a subset L ⊆ STR[Σ] is the image τ(K) of a regular set K of terms(over any signature) under an MSO-transdution τ , then there exists areognizable subset K ′ ⊆ T (G) suh that L = valSTR(K ′).(p2) If a subset L ⊆ STR[Σ] is G-reognizable then it is QF -reognizable.
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Proposition 59 Let G ⊆ QFder
α .(a) If G satis�es (p1) then Equat(G) = Equat(QF).(b) If G satis�es (p2) then Rec(G) = Rec(QF).In partiular, any signature G ⊆ QFder

α satisfying (p1) and (p2) is equivalentto QF . Furthermore, all signatures H with G ⊆ Hder
β ⊆ QFder

α are equivalentto QF .
PROOF. Sine G ⊆ QFder

α and QF is equivalent to QFder
α we have

Rec(QF) = Rec(QFder
α ) ⊆ Rec(G)and Equat(G) ⊆ Equat(QFder

α ) = Equat(QF) .Therefore, if G satis�es (p2) then we have Rec(QF) = Rec(G).To prove (a), suppose that L ∈ Equat(QF). By Proposition 27 (iii), L is theimage of a regular set of terms under an MSO-transdution. Hene, (p1) andProposition 4 imply that L ∈ Equat(G).Finally, suppose that G ⊆ Hder
β ⊆ QFder

α . Then we have
Equat(QF) = Equat(G) ⊆ Equat(Hder

β ) ⊆ Equat(QFder
α ) = Equat(QF)and Rec(QF) = Rec(QFder

α ) ⊆ Rec(Hder
β ) ⊆ Rec(G) = Rec(QF) .Sine, by Lemma 14, H is equivalent to Hder
β , the result follows. 2

6.1 Strutures of small rank with relations of large arity
We de�ne a subsignature QF0 of QF by retaining from the unary operationspartiular operations that forget some relation (delete the orresponding hy-peredges), rename some relation (relabel the orresponding hyperedges), andbuild new relations from pairs of given relations of smaller arity (reate newhyperedges by onatenation of existing ones).De�nition 60 The unary operations of QF0 are the following ones:(1) The forget operation fgtΛ : STR[Σ] → STR[Σ \ Λ] deletes all R-hyper-edges, for R ∈ Λ ⊆ Σ.(2) For an arity-preserving map h : Σ → Γ between signatures, we havethe relabelling relabh : STR[Σ] → STR[Γ] that replaes every hyperedgelabel R by h(R).
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(3) Let R,S, T ∈ Σ, k := ar(R), l := ar(S), m := ar(T ), and suppose that
h : [m] → [k + l] is surjetive. The hyperedge addition addR,S,T,h has ade�ning formula ϑT (x̄) of the form
T x̄ ∨

(
Rxi1 . . . xik ∧ Sxik+1

. . . xik+l
∧

∧
{ xj = xj′ | h(j) = h(j′) }

)

where ij is the smallest element of h−1(j).Remark 61 This operation adds a T -hyperedge of rank m for eah pairof an R-hyperedge and an S-hyperedge (whih may have loops and om-mon verties). The resulting T -hyperedge may be a loop.We denote by QF0 the signature onsisting of the above operations, the disjointunion, and all onstants for singleton strutures. By QF0[Σ] we denote thesubsignature of all those operations that refer only to relations in Σ.In the proposition below we will make use of the following normal form of
MSO-transdutions.Lemma 62 Given a �nite signature F , a regular set of terms K ⊆ T (F ),and an MSO-transdution τ : STR[∆(F )] → STR[Σ], we an onstrut a�nite signature F ′, a regular set K ′ ⊆ T (F ′), and an MSO-transdution τ ′ :
STR[∆(F ′)] → STR[Σ] suh that τ(K) = τ ′(K ′) and F ′, K ′, and τ ′ have thefollowing additional properties:(1) F ′ ontains only onstants and binary funtion symbols.(2) τ ′ is nonopying and parameterless.(3) For every t′ ∈ K ′, the relational struture τ ′(t′) is de�ned and its domainonsists only of leaves of t′.
PROOF. In three steps, we transform F, τ,K into F ′, τ ′,K ′ with the aboveproperties. The same onstrution is used in the proof of Theorem 4.6 of [7℄.Hene we only sketh the di�erent steps.Step 1: Eliminating parameters. Suppose that the transdution τ uses m pa-rameters X1, . . . , Xm. We replae F by the signature F ′ := F ×{0, 1}m wherethe symbol (f, b̄) ∈ F ′ has the same arity as f . Every term t′ ∈ T (F ′) en-odes a pair (t, 〈P1, . . . , Pm〉) where t ∈ T (F ) is the projetion of t′ to the�rst omponent and the set Pi onsists of those nodes of t′ that are labelledby a pair (f, b̄) with bi = 1. Thus, every term in T (F ′) ontains an F -termand the values of the parameters X1, . . . , Xm. The set K ′

0 of all those termswhih enode a pair (t, P̄ ) for whih τ(t, P̄ ) is de�ned is regular. This is astandard onstrution, based on the result by Doner, Thather, and Wrightstating that a set of terms is regular if and only if the orresponding set ofstrutures enoding them is MSO-de�nable (see Chapter 3 of [19℄). It follows
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that the subset K ′ ⊆ K ′
0 of all terms enoding pairs (t, P̄ ) with t ∈ K is alsoregular.Step 2: Making τ nonopying and satisfy ondition (3). By the �rst step, wean assume that τ is parameterless. Suppose that it is k-opying for k ≥ 1.We inrease the arity of eah symbol in F by k (inluding onstants) and weadd a new onstant, say, ∗. Let F ′ be the resulting signature. We de�ne atransformation T (F ) → T (F ′) : t 7→ t∗ of terms by

c∗ := c(∗, . . . , ∗) ,

f∗(t1, . . . , tn) := f(t∗1, . . . , t
∗
n, ∗, . . . , ∗) ,where we add k times ∗ in eah ase. Sine ∗ is a tree transdution it follows byLemma 1 that the imageK∗ ⊆ T (F ′) ofK is regular. The nodes orrespondingto the new onstants ∗ are all leaves, and they o�er enough spae to de�nethe domain of the output struture, without the need to use several opiesof the term. Hene, we an onstrut a MSO-transdution τ ′ that is (stillparameterless and) nonopying suh that τ(t) = τ ′(t∗), for eah t ∈ K.Note that even if τ is nonopying we have to perform this transformation inorder to satisfy the seond part of ondition (3).Step 3: Removing non-binary funtion symbols. By the �rst two steps, wean assume that onditions (2) and (3) hold. We an satisfy ondition (1) asfollows. Let F ′ be the signature obtained from F by adding a new onstant ⊥and hanging the arity of all funtions symbols to 2. The operation T (F ) →

T (F ′) : t→ t⊥ with
c⊥ := c ,

f(t)⊥ := f(t⊥,⊥) ,

f(t1, t2)
⊥ := f(t⊥1 , t

⊥
2 ) ,

f(t1, . . . , tk)
⊥ := f(t⊥1 , f(t⊥2 , (. . . f(t⊥k−1, t

⊥
k ) . . . ))) , for k ≥ 3 ,

preserves regularity. In the same way as above it follows that the image of Kunder ⊥ is regular. 2

The following result strengthens the impliation (iii) ⇒ (ii) of Proposition 27.Reall the notion of rank introdued in De�nition 37.Proposition 63 Let K be a regular set of terms and τ an MSO-transdutionwith τ(K) ⊆ STR[Σ]. There exists a �nite set of relations Γ with ar(Γ) ≤
ar(Σ)−1 and a regular set M ⊆ T (QF0[Σ∪Γ]) suh that τ(K) = valSTR(M).
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PROOF. Suppose that K ⊆ T (F ∪ C), ∆ := ∆(F ∪ C), and τ : STR[∆] →
STR[Σ]. We assume thatK, τ , and F∪C satisfy onditions (1)�(3) of Lemma 62where C is a set of onstants and F a set of binary funtion symbols. Fur-thermore, we may assume that every struture in τ(K) ontains at least 2 el-ements. Let k be the quanti�er height of τ and set n := ar(Σ). Our aim isto onstrut a �nite relational signature Γ with ar(Γ) = n − 1 and a regularsubset M ⊆ T (QF0[Σ ∪ Γ]) suh that τ(K) = valSTR(M).1. Overview of the proof. The signature Γ will onsist of three disjoint opiesof ∆n−1,k

M . We de�ne a funtion κ : K → T (QF0[Σ ∪ Γ]der) suh that
valSTR(κ(t)) = τ(t) , for all t ∈ K .The mapping κ replaes every binary funtion symbol f at a node u of t bya binary derived operation of the form µu(x1 ⊕ x2) where µu is a ompositionof unary QF0[Γ]-operations. Similarly, it replaes a onstant c at a leaf u bya onstant γu ∈ QF0[Γ]. Let us denote the set of these terms µu and γu by Π.The de�nition of µu and γu will depend only on f , c, and tpk+3(u/S(t)). Thisimplies that Π is �nite and, by Lemma 34, there exist MSO-formulas ϕα(x),for α ∈ Π, suh that, for every node u of t,
µu or γu is equal to α iff S(t) |= ϕα(u) .Sine the required information is expressible in MSO it follows that the trans-formation κ an be performed by a tree transduer. Using the fat that K isregular we onlude that κ(K) is a regular subset of T (QF0[Γ]der). Further-more, we have
τ(K) = valSTR(κ(K)) = valSTR(M)where M is obtained from κ(K) by replaing eah derived operation by itsde�nition. By Lemma 14, it follows that M is a regular subset of T (QF0[Γ]).This ompletes the proof.2. De�nition of κ. It remains to de�ne κ. Let Γ := Γ0 ∪ Γ1 ∪ Γ2 where
Γ0 := ∆n−1,k

M and Γi := {T ip | Tp ∈ Γ0 } , for i ∈ {1, 2} .Let hi : Γ0 → Γi be the anonial bijetions Tp 7→ T ip. Note that these map-pings preserve arities. Reall that t/u denotes the subterm of t rooted at uand that Rm
k denotes the restrited monadi annotation (f. De�nition 48).The onstrution of κ will ensure that, for every t ∈ K,(1) for every node u of t, we have

fgtΓ
(
valSTR(κ(t/u))

)
= τ(t)[L(t) ∩D] ,where D denotes the domain of τ(t),
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(2) and, for every node u of t that is not the root,
fgtΣ

(
valSTR(κ(t)/u)

)
= relabhi(Rn−1

k (t/u)) ,where
i :=





1 if u is the left suessor of its parent,
2 if u is the right suessor of its parent.Condition (2) spei�es the values of the auxiliary relations in Γ at inner nodes uof t. We use the distint opies Γ1 and Γ2 of the signature to distinguishbetween left and right suessors.Note that κ(t) is obtained from t by replaing onstants by onstants andfuntion symbols by funtion symbols of the same arity. Hene, κ(t) and thave the same underlying trees and the same set of nodes.3. De�nition of γu. It is straightforward to de�ne the onstants γu suh thatondition (2) is satis�ed. If u does not belong to the domain of the stru-ture τ(t) then we set γu := ∅, where ∅ is a new onstant denoting the emptystruture (whih we also denote by ∅ without risk of ambiguity). This onstantis not in the signature QF0[Σ ∪ Γ] and we will eliminate it at the very laststage of our proof.Otherwise, let γu be the onstant that denotes the struture

τ(t)[u] ∪ relabhi(Rn−1
k (t/u))where i := 1 if u is a left suessor and i := 2 if u is a right suessor. Thisstruture onsists of the single element u, the inident Σ-hyperedges of rank 1of τ(t) (they are de�ned by τ(t)[u]) together with the Γ-hyperedge of arity 1that de�nes the (i-opy of the) monadi 1-type of u in S(t/u) (this is de�nedby relabhi(Rn−1

k (t/u))). It is the unique struture A ∈ STR[Σ ∪ Γ] suh that
fgtΓ(A) = τ(t)[u] and fgtΣ(A) = relabhi(Rn−1

k (t/u)) .Note that the struture S(t/u) onsists of a single node labelled by someonstant c. Hene, tpk(u/S(t/u)) an be omputed from c. The Σ-hyperedgesof rank 1 are determined by tpk(u/S(t)).4. De�nition of µu. To de�ne the mappings µu, we reall that, by Lemma 50,there are funtions ⊙f
m,n and ⊙̂

f
m,n suh that

• for all t1, t2 ∈ T (F ∪C) and all inreasing tuples ā ∈ L(t1)
m and b̄ ∈ L(t2)

n,we have
(∗) tpk

(
āb̄/S(f(t1, t2))

)
= tpk

(
ā/S(t1)

)
⊙f
m,n tpk

(
b̄/S(t2)

)
,
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• for every t ∈ T (F ∪ C) suh that t/u = f(t1, t2) and all inreasing tuples
ā ∈ L(t1)

m and b̄ ∈ L(t2)
n, we have

(∗∗) tpk
(
āb̄/S(t)

)
= ⊙̂

f
m,n

(
tpk(S(t \ u)), tpk(ā/S(t1)), tpk(b̄/S(t2))

)
.In order to satisfy ondition (2) we de�ne the operation µu suh that, for allterms t1 and t2,

relabhi

(
Rn−1
k (f(t1, t2))

)
= µu

(
relabh1(Rn−1

k (t1)) ⊕ relabh2(Rn−1
k (t2))

)
,where i is either 1 or 2 depending on whether u is a left suessor or a rightsuessor. (The ase where u is the root will be treated separately below.)Let ā ∈ L(t1)

m1 and b̄ ∈ L(t2)
m2 be inreasing withm1,m2 > 0 andm1+m2 ≤

n − 1. The operation µu has to ompute the type of āb̄ in S(f(t1, t2)) fromthe types tpk(ā/S(t1)) and tpk(b̄/S(t2)). This an be done with the help ofthe operation ⊙f
m1,m2

. Let ADDΓ be the omposition (in any order) of theoperations addT 1
p ,T

2
q ,Tr

where p ∈ Sm1,k
M (∆), q ∈ Sm2,k

M (∆) and r := p⊙f
m1,m2

q.Furthermore, µu also has to update the type of tuples ā ∈ L(tj)
m, j ∈ {1, 2}.Note that

tpk(ā/S(f(t1, t2))) = tpk(ā/S(t1)) ⊙
f
m,0 tpk(S(t2)) , for ā ∈ L(t1)

m,

tpk(ā/S(f(t1, t2))) = tpk(S(t1)) ⊙
f
0,m tpk(ā/S(t2)) , for ā ∈ L(t2)

m.Let g : Γ1 ∪ Γ2 → Γ be the mapping with
g(T 1

p ) := Tq with q := p⊙f
m,0 tpk(S(t2)) ,

g(T 2
p ) := Tq with q := tpk(S(t1)) ⊙

f
0,m p .We an de�ne

µu := relabhi ◦ relabg ◦ ADDΓ ◦ ADDΣ,where the term ADDΣ is de�ned below to satisfy ondition (1), and i is either
1 or 2 depending on whether u is a left suessor or a right suessor.Note that ADDΓ depends on f but not on tpk(u/S(t)). The mapping g de-pends on tpk(S(t1)) and tpk(S(t2)) and, hene, on tpk+3(u/S(t)). (Sine thetree ordering relation is expressed by an MSO-formula of quanti�er height 3(see Setion 4.4) it follows that tpk(S(t/u)) an be omputed from tpk+3(u/S(t))by relativization to the formula de�ning the nodes below u in t.)5. Satisfying ondition (1). The inomplete de�nitions of γu and µu givenabove result in a struture κ(t) ∈ STR[Γ ∪ Σ] with Γ-hyperedges of arity andrank at most n − 1 where the only Σ-hyperedges are those of τ(t) ∈ STR[Σ]
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that have rank 1. In order to omplete the de�nition of µu we have to de�nethe term ADDΣ whih adds the missing Σ-hyperedges.Suppose that ā ∈ L(t)r has rank s ≤ n. There exists a unique surjetive map
σ : [r] → [s] and a unique inreasing s-tuple b̄ suh that ai = bσ(i), for all
1 ≤ i ≤ r. We will denote this tuple by āσ := b̄.Let ϑU(x1, . . . , xr) be the formula of the de�nition sheme of τ that de�nesthe relation U ∈ Σ and set ϑσU(x1, . . . , xs) := ϑU(xσ(1), . . . , xσ(r)). We have

ā ∈ Uτ(t) iff S(t) |= ϑU(ā)

iff S(t) |= ϑσU(āσ)

iff tpk(ā
σ/S(t)) |= ϑσU .

Suppose that t/u = f(t1, t2). The operation ADDΣ will reate all Σ-hyper-edges ā with ā ∩ L(t1) 6= ∅ and ā ∩ L(t2) 6= ∅. Note that, for suh a tuple ā,we have āσ = c̄d̄ where c̄ is an inreasing tuple in L(t1) and d̄ is an inreasingtuple in L(t2).For eah U ∈ Σ and σ, we have to hoose pairs p, q of types suh that theoperation addT 1
p ,T

2
q ,U,σ adds the right tuples to U . Hene, the situation is sim-ilar to that of ADDΓ with the exeption that we are interested in the type

tpk(ā
σ/S(t)) and not in tpk(ā

σ/S(t/u)). We an ompute this type with thehelp of the operation ⊙̂
f
m1,m2

. Thus, we de�ne ADDΣ as the omposition (inany order) of all operations addT 1
p ,T

2
q ,U,σ where p ∈ Sm1,k

M (∆), q ∈ Sm2,k
M (∆),

m1,m2 > 0, m1 +m2 ≤ n− 1, σ : [ar(U)] → [m1 +m2] is surjetive, and
⊙̂
f
m1,m2

(
tpk(S(t \ u)), p, q

)
|= ϑσU .

Note that the de�nition of ADDΣ depends on tpk(S(t \ u)). Sine the treeordering an be de�ned by an MSO-formula of quanti�er height 3 (see Se-tion 4.4) it follows that tpk(S(t \ u)) an be omputed from tpk+3(u/S(t))(by relativizing all formulas to the set of those nodes that are not below u).6. Final steps. We have not yet de�ned µu when u is the root. In this ase weset µu := fgtΓ◦ADDΣ where ADDΣ is de�ned as above. After these operationsare performed all Σ-tuples are in the right plae. The relations in Γ are notneeded anymore and we remove them with fgtΓ.We have onstruted a regular set
K ′ := κ(K) ⊆ T

(
QF0[Σ ∪ Γ]der ∪ {∅}

)

with τ(K) = valSTR(K ′). It remains to remove the onstant ∅. Note that
f(∅) = ∅, for every quanti�er-free operation f , and A ⊕ ∅ = ∅ ⊕ A = A, for

49



every struture A. Using these equations we an eliminate all ourrenes of ∅in the terms of K ′. (Sine every struture in τ(K) is nonempty there is noterm in K ′ whih denotes the empty struture.) This is an easy task for a treetransduer. Hene K ′ an be replaed by a regular set K ′′ ⊆ T (QF0[Σ∪Γ]der).Finally, we transform K ′′ into a setM ⊆ T (QF0[Σ∪Γ]) as explained in part 1above. This ompletes the proof. 2

De�nition 64 We denote by QF0[Σ,Γ] the subsignature of QF0[Σ ∪ Γ] thatonsists of
• the operations fgtΛ, for Λ ⊆ Γ,
• only those relabellings relabh where h is the identity on Σ,
• the operations addR,S,T,h with R,S ∈ Γ and T ∈ Γ ∪ Σ, and
• all onstants.Let QFΣ

0 be the union of all signatures of the form QF0[Σ,Γ].Remark 65 Note that the proof of the preeding proposition uses only theoperations of QF0[Σ,Γ]. The set M we onstrut is a subset of T (QF0[Σ,Γ]).We have thus shown that we an onstrut every struture in STR[Σ] with thehelp of a set Γ of auxiliary symbols of arity ar(Γ) < ar(Σ).
6.2 The ase of graphs
As an example we apply the above result to graphs. Let Σ = {edg}. Sine edg isa binary relation every equational set of graphs an be de�ned by a systemof equations over a signature of the form QF0[edg ,Π] where Π ontains onlyunary symbols. We ompare suh signatures with the signature VR reviewedin Setion 3.5.The operations in QF0[edg ,Π] are the disjoint union, onstants, and the quan-ti�er-free operations:
• fgtΦ, for Φ ⊆ Π,
• relabh, for h : Π → Π, and
• addP,Q,edg ,h, with P,Q ∈ Π.The mapping fgtΦ, is the omposition of the mappings fgtP , for P ∈ Φ. Amapping relabh is a omposition of mappings renP→Q. Depending on h, themapping addP,Q,edg,h is either addP,Q or addQ,P . Hene, the signature QF

{edg}
0is, up to some details of writing, the one onsidered in Setion 3.5.We obtain Corollary 4.9 of [7℄ whih states that equational sets of graphs neednot be de�ned with operations that use relation symbols of arity more than 2
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or operations that label edges. Only verties must be labelled. More aboutthis in Setion 6.4.
6.3 The reognizable sets are also the same
Our objetive is now to establish the result that both signatures QFΣ

0 and QFlead to the same notion of reognizability for subsets of STR[Σ]. Reall Se-tion 4 where we de�ned monadi types tpk(ā/A) and monadi annotations
Mm

k (A). In partiular, k denotes the quanti�er height and m is the maxi-mal size of annotated tuples. We will make use of the following lemma whihfollows immediately from Lemma 35.Lemma 66 For every nondeleting quanti�er-free transdution f : STR[Σ] →
STR[Γ] and eah m > 0, there exists a mapping fm : Σ≤m,0

M → Γ≤m,0
M suhthat, for all strutures A ∈ STR[Σ] and all D ⊆ A, we have

Mm
0 (f(A)[D]) = relabfm(Mm

0 (A[D])) .

PROOF. Note that we have
f(A[D]) = f(A)[D] ,

Mm
0 (A[D]) = Mm

0 (A)[D] ,and relabfm(A[D]) = relabfm(A)[D] .Sine f is nondeleting the mapping Mm
0 (A) 7→ Mm

0 (f(A)) only manipulatesthe relations. For p ∈ Sn,0M (Σ) with n ≤ m, we an de�ne the relabelling by
fm(Tp) := Tfn

0
(p) ,where fn0 is the funtion from Lemma 35. 2Proposition 67 Every QFΣ

0 -reognizable set L ⊆ STR[Σ] is QF-reognizable.Before giving the proof let us state the following onsequene of Propositions63 and 67.Theorem 68 The signatures QFΣ
0 and QF yield the same equational setsand the same reognizable sets of strutures in STR[Σ].

Proof of Proposition 67 Suppose that L ⊆ STR[Σ] is QFΣ
0 -reognizableand let m := ar(Σ). There exists a �nite QFΣ

0 -ongruene saturating L. Wedenote the orresponding �nite equivalene relations on STR[Σ ∪ Γ] by ≃Γwhere Γ is a �nite relational signature with ar(Γ) < m.
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For a relational signature ∆, let β(∆) := ∆≤m−1,0
M . With eah quanti�er-freeoperation f : STR[∆] → STR[Σ] we assoiate the funtion f̂ : STR[∆] →

STR[Σ ∪ β(∆)] with
f̂(A) := f(A) ∪Mm−1

0 (A)[D]where D ⊆ A is the domain of f(A). Note that the union above is not adisjoint one. The domain of f̂(A) is that of f(A) and the relations are thoseof f(A) and those of Mn−1
0 (A)[D]. We assume that β(∆) is disjoint from Σso there is no onfusion. f̂ is obviously a quanti�er-free operation.For A,B ∈ STR[∆] we de�ne

A ≈ B : iff tpm(A) = tpm(B) ,and A ≡∆ B : iff A ≈ B and, for every quanti�er-free operation
f : STR[∆] → STR[Σ] , we have f̂(A) ≃β(∆) f̂(B) .We laim that ≡∆ is a �nite QF -ongruene, for all ∆, and that ≡Σ satu-rates L. Clearly,≡∆ is an equivalene relation. It is also �nite sine≈ and≃β(∆)are �nite and there are only �nitely many quanti�er-free operations STR[∆] →

STR[Σ] (beause ∆ and Σ are �nite).To see that ≡Σ saturates L assume that A ∈ L and A ≡Σ B. Set f := fgtβ(Σ).We have f̂(A) ≃β(Σ) f̂(B), whih implies that
A = f(f̂(A)) ≃∅ f(f̂(B)) = B .Sine ≃∅ saturates L it follows that B ∈ L.Next we hek that ≈ is a ongruene. In Corollary 44 we have shown this forthe disjoint union. It is easy to see for quanti�er-free domain restritions, andfor nondeleting quanti�er-free operations it an be derived from Lemma 35.It remains to verify that ≡∆ is a ongruene. Let g : STR[∆] → STR[∆′] be aquanti�er-free transdution and suppose that A ≡∆ B. Sine ≈ is a ongru-ene we have g(A) ≈ g(B). Let f : STR[∆′] → STR[Σ] be a quanti�er-freeoperation. By de�nition, we have
(f̂ ◦ g)(A) = (f ◦ g)(A) ∪Mn−1

0 (g(A))[D] ,and (f ◦ g)∧(A) = (f ◦ g)(A) ∪Mn−1
0 (A)[D] ,where D is the domain of the struture (f ◦ g)(A). Therefore, it follows fromLemma 66 that there is some funtion h : Σ ∪ β(∆) → Σ ∪ β(∆′) suh that

(f̂ ◦ g)(A) = relabh((f ◦ g)∧(A))
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and h is the identity on Σ. Sine relabh ∈ QFΣ
0 and

(f ◦ g)∧(A) ≃β(∆) (f ◦ g)∧(B)we have
f̂(g(A)) = relabh((f ◦ g)∧(A))

≃β(∆′) relabh((f ◦ g)∧(B)) = f̂(g(B)) ,whih implies that g(A) ≡∆ g(B).It remains to onsider the ase of disjoint union. Suppose that A0 ≡∆ B0 and
A1 ≡∆ B1. We have to prove that A0⊕A1 ≡∆ B0⊕B1. We already know that
A0 ⊕A1 ≈ B0 ⊕B1. Let f : STR[∆] → STR[Σ] be a quanti�er-free operationsuh that f(A0 ⊕ A1) ∈ STR[Σ].Claim 69 Let β′(∆) be a disjoint opy of β(∆) and let h be the relabellingmapping R ∈ β(∆) to R′ ∈ β′(∆). There exists a QF0[Σ, β(∆)∪β′(∆)]-derivedoperation g suh that

f̂(A ⊕ B) = g(f̂(A) ⊕ h(f̂(B))) , for all strutures A and B .

Assuming the laim to be true we ontinue the proof as follows. Sine A0 ≡∆

B0 and A1 ≡∆ B1 we have
f̂(A0) ≃β(∆) f̂(B0) and h(f̂(A1)) ≃β′(∆) h(f̂(B1)) .As g is a QF0[Σ, β(∆) ∪ β′(∆)]-derived operation it follows that
f̂(A0) ⊕ h(f̂(A1)) ≃β(∆)∪β′(∆) f̂(B0) ⊕ h(f̂(B1)) ,and f̂(A0 ⊕ A1) = g(f̂(A0) ⊕ h(f̂(A1)))

≃β(∆) g(f̂(B0) ⊕ h(f̂(B1)))

= f̂(B0 ⊕ B1) .This ompletes the main proof.
Proof of the laim. To de�ne g let us onsider the ation of f̂ on A⊕B. Sine
f̂ is quanti�er-free it adds tuples ā ⊆ A to a relation R if and only if we have
ā ∈ Rf̂(A). The same holds for tuples b̄ ⊆ B. Therefore, we have

f̂(A ⊕ B)[A] = f̂(A) and f̂(A ⊕ B)[B] = f̂(B) ,and the desired operation g only needs to add those tuples c̄ to relations Rthat ontain elements of both A and B. Sine f̂ is quanti�er-free we an tell
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whether suh a tuple c̄ should be added to R by looking at the quanti�er-freetypes
tp0(c̄|A/A ⊕ B) = tp0(c̄|A/A) and tp0(c̄|B/A ⊕ B) = tp0(c̄|B/B) .(By c̄|A we denote the subtuple of c̄ ontained in A.) This information isavailable in Mn−1

0 (A) and Mn−1
0 (B). Hene, g an be written as g = relabk ◦

CREATE where k is the anonial projetion β(∆) ∪ β′(∆) → β(∆) and
CREATE is a omposition of operations of the form addR,S,T,h with R ∈ β(∆),
S ∈ β′(∆), and T ∈ Σ ∪ β(∆) ∪ β′(∆). This ompletes the proof of thelaim. 2

6.4 Optimality
These results prove that when dealing with equational or reognizable sets ofhypergraphs of rank at most n, auxiliary relation symbols (like the labels fromsets Π for dealing with graphs) an be limited to be of arity at most n− 1.The next example shows that, for equational sets, this bound is optimal. Wede�ne a struture of rank 3 that annot be de�ned without auxiliary symbolsof arity 2.Example 70 Let R be a ternary relation symbol and Π a set of unary predi-ates as in Setion 3.5. Consider the signature

FΠ := {⊕, renP→Q, fgtΛ, addN,P,Q,P | N,P,Q ∈ Π, Λ ⊆ Π }where ⊕, renP→Q, fgtΛ, and P are the usual VR-operations of Setion 3.5 and
addN,P,Q is the quanti�er-free operation de�ned by the formula

ϑR(x, y, z) := Rxyz ∨ (Nx ∧ Py ∧Qz) .Every struture A ∈ STR[R] is of the form A = valSTR(t), for some t ∈ T (FΠ),provided Π is large enough (say, |Π| = |A|). Let An ∈ STR[R] be the struturewith domain A = [n] and relation
R := { (a, b, c) ∈ [n]3 | a < b < c } ,and denote the set of all strutures An by C. There exists an MSO-transdution τsuh that C = τ(K), where K is the set of all terms of the form gn(c), n ∈ N,for some unary funtion symbol g and a onstant c. Sine K is regular it fol-lows by Proposition 27 that C is equational. We laim that C * val(T (FΠ)),for any �nite set Π.Fix a �nite set Π and set n := 2|Π|. We will prove that A2n+1 /∈ val(T (FΠ)).Suppose that there exists a term t ∈ T (FΠ) with value val(t) = A2n+1. Then
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t = f(t1 ⊕ t2) where f is a omposition of unary operations that has to add allneessary hyperedges between B1 := val(t1) and B2 := val(t2).For a, b ∈ val(t1), we de�ne
a ∼ b : iff for all P ∈ Π, a ∈ PB1

⇔ b ∈ PB1
.If f adds the tuple (a, b, c) to R, for a ∼ b in B1 and c ∈ B2, then it mustalso add the tuple (b, a, c). This is not possible. Therefore, eah ∼-lass of B1ontains only one element and we have

|B1| = |B1/∼| ≤ 2|Π| = n .By symmetry, it follows that |B2| ≤ n in ontradition to |B1 ∪B2| = 2n+ 1.
7 Rih signatures with operations based on loal information
7.1 The general framework
After investigating small signatures we will now look at the opposite problemof de�ning signatures that are as rih as possible while still being equivalentto QF . Let F be a signature equivalent to QF . We are interested in �ndinga set G of new operations on STR[Σ] that satisfy the following onditions:(1) Every (F ∪ G)-equational subset of STR[Σ] is F -equational.(2) Every F -reognizable subset of STR[Σ] is (F ∪ G)-reognizable.Lemma 71 If G satis�es (1) and (2) then F ∪ G is equivalent to QF .
PROOF. Sine F ⊆ F ∪ G, we have

Rec(F ∪ G) ⊆ Rec(F) and Equat(F) ⊆ Equat(F ∪ G) .By (2), it follows that Rec(F ∪ G) = Rec(F) = Rec(QF), while (1) impiesthat Equat(F ∪ G) = Equat(F) = Equat(QF). 2

Our approah is as follows. Suppose that, for eah signature Σ, we have de�nedan injetive mapping
∧ : STR[Σ] → STR[Σ̂] : A 7→ Âfrom Σ-strutures to Σ̂-strutures, for some signature Σ̂. Natural onditionsimplying both (1) and (2) are the following ones.
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(h) The family of funtions ∧ : STR[Σ] → STR[Σ̂] forms a �nite-state hetero-morphism from the (F ∪ G)-algebra STR to the QF -algebra STR.(m) The mapping ∧ has a left-inverse Â 7→ A that is an MSO-transdution.Furthermore, for every Σ, there is an MSO-formula de�ning the imageDΣ :=
(STR[Σ])∧ ⊆ STR[Σ̂] of STR[Σ] under ∧.Remark 72 By De�nition 10, to verify (h) we have to �nd

• a (F ∪ G)-omputable mapping α : STR → A, and
• for every n-ary operation f ∈ F ∪ G, QF-terms tf [ā], for ā ∈ An, that�emulate� f .Note that the seond step an be performed independently for every operation f .Below we will sometimes split it into two or more parts eah dealing only witha subset of F ∪ G.Lemma 73 Let C ⊆ STR[Σ] be a set of strutures and Ĉ its image under ∧.If (h) and (m) hold then the following onditions are equivalent:(i) C is QF-equational.(ii) Ĉ is QF-equational.(iii) C is (F ∪ G)-equational.In partiular, (h) and (m) imply (1).
PROOF. (iii) ⇒ (ii) follows from Lemma 14 and (h), and (ii) ⇒ (i) followsfrom Corollary 28 (a) and (m).For (i) ⇒ (iii), suppose that C is QF -equational. Sine F is equivalent to QFit is also F -equational. Finally, F ⊆ F ∪ G implies that C is (F ∪ G)-equational. 2Lemma 74 Let C ⊆ STR[Σ] be a set of strutures and Ĉ its image under ∧.If (h) and (m) hold then the following onditions are equivalent:(i) C is QF-reognizable.(ii) Ĉ is QF-reognizable.(iii) C is (F ∪ G)-reognizable.In partiular, (h) and (m) imply (2).
PROOF. (i) ⇒ (ii) Sine Ĉ = DΣ ∩ (∧)−1(C) this diretion follows from(m), Proposition 26 (b), and Theorem 51.(ii) ⇒ (iii) follows from Lemma 14 and (h).
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(iii) ⇒ (i) Suppose that C is (F ∪G)-reognizable. Sine F ⊆ F ∪G it is also
F -reognizable. By assumption, F is equivalent to QF whih implies that C is
QF -reognizable. 2

Example 75 (a) We an apply the above mahinery to the mapping Â :=
Mm

k (A). Condition (m) follows from Lemma 40, and in Lemma 46 we proved (h)for the ase that G = ∅ and F = QF . It follows that a lass C is QF-equationalor QF-reognizable if and only if its annotated version Mm
k (C) is. Hene, ourframework provides an alternative proof of Corollary 41 and Theorem 47.(b) It is not easy to �nd nontrivial signatures G that satisfy ondition (h)for the annotation Mm

k . We give an example of a simple operation that, for
k > 0, violates ondition (h). Consider the square operation G 7→ G2 where
G2 is the graph with the same verties as G and edge relation

edgG2 := { (x, y) | (x, y) ∈ edgG or (x, z), (z, y) ∈ edgG for some z } .The mapping M1(G) 7→ G2 is a quanti�er-free operation. To satisfy (h) wehave to lift it to a map M1(G) 7→ M1(G
2). But this annot be done. We have

G2 |= ∃z(edg(x, z) ∧ edg(z, y))i� G |= ∃z
[(

edg(x, z) ∨ ∃u(edg(x, u) ∧ edg(u, z))
)

∧
(
edg(z, y) ∨ ∃u(edg(z, u) ∧ edg(u, y))

)]
.By looking only at tp1(xy/G) we annot deide whether this formula holdsin G.() We give a last ounterexample onsisting of an operation de�ned by a veryweak form of quanti�ation that violates ondition (1). Let P,Q,R be unaryrelations and suppose that our signature ontains the operations g and h where

h(x) := (relabR 7→Q ◦ relabQ7→P ◦ addQ,R,edg)(x⊕ R)

is a derived QF
{edg}
2 -operation, and g labels every vertex a by Q that hasa neighbor labelled Q while the other relations remain unhanged. The term

tmn := gnhm(Q) desribes a path of length m where the last n+ 1 verties arelabelled by Q and the remaining ones are labelled by P .
P −→ · · · −→ P −→ Q −→ · · · −→ QWe laim that the funtion val mapping a term tmn to its value is not an

MSO-transdution. Note that the set
T := { val(tmn) | m ≤ n } ,
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whih onsists of all �nite paths where all verties are labelled by Q, is MSO-de�nable and, hene, reognizable. If val were an MSO-transdution then theset
val−1(T ) ∩ { tmn | m,n ∈ N } = { tmn | m ≤ n }

would be reognizable as well. But, using pumping arguments, one an easilysee that this is not the ase.
7.2 Fusion and loal types
Our main appliation of the approah desribed in the previous setion on-erns the fusion operation that merges all elements of a struture satisfying agiven quanti�er-free formula into a single element. We will show that one anaugment the signature QF0 of Setion 6.1 by this operation without hang-ing the notions of reognizability and equationality. Let us �rst introdue theappropriate operation A 7→ Â on strutures. Similarly to the operation Mm

kof Setion 4.2, we use a labelling by a ertain kind of types but with a morerestrited form of quanti�ation.De�nition 76 (a) Let n ∈ N. A formula ϕ(x1, . . . , xn) is monadially exis-tential, m.e. for short, if
ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm)or ϕ = ∃y1ψ1 ,

where eah ψi is either the Hintikka-formula (f. De�nition 33) of a quanti�er-free 1-type with free variable yi, or it is of the form yi = xk, for some k. (Notethat we do not require every variable xi to appear in ϕ.)(b) Let A be a struture and ā ∈ An, for n ∈ N. The loal n-type of ā is theset
ltp(ā/A) := {ϕ(x̄) | ϕ is m.e., A |= ϕ(ā) } .

The set of all loal n-types realized in some Σ-struture is denoted by SnL(Σ) andwe set S∗
L(Σ) :=

⋃
1≤n≤ar(Σ) S

n
L(Σ). As usual, we abbreviate ltp(〈〉/A) by ltp(A).Note that ltp(A) is inluded in all loal n-types with n ≥ 0.Example 77 Suppose that Σ = {R,P} where R is 4-ary and P is unary. The
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following formula is m.e.
ϕ(x1, x2) = ∃y1∃y2∃y3∃y4

(
Ry1y2y3y4 ∧ (Py1 ∧ ¬Ry1y1y1y1)

∧ y2 = x1 ∧ y3 = x1

∧ (¬Py4 ∧ ¬Ry4y4y4y4)
)
.

Remark 78 Note that the loal type ltp(ā/A) of a tuple uniquely determinesits quanti�er-free type tp0(ā/A) sine we have
Rxi1 . . . xim ∈ tp0(ā/A)i� ∃y1 . . . ∃ym(Rȳ ∧ y1 = xi1 ∧ · · · ∧ ym = xim) ∈ ltp(ā/A) .

As for monadi types we an annotate a struture with loal types. Thisannotation is an FO-transdution whih satis�es ondition (m).De�nition 79 Let A be a Σ-struture. The loal annotation of A is the stru-ture
L(A) :=

〈
A, (Tp)p∈S∗

L
(Σ)

〉

with the same domain as A where, for eah loal n-type p ∈ S∗
L(Σ), 1 ≤ n ≤

ar(Σ), we add an n-ary relation
Tp := { ā ∈ An | ltp(ā/A) = p } .We denote the signature of L(A) by ΣL.The following lemma is the analogue of Lemma 40.Lemma 80 Let Σ be a relational signature.(a) The mapping L : STR[Σ] → STR[ΣL] is an injetive FO-transdution ofquanti�er height ar(Σ).(b) The funtion L has a left-inverse that is a quanti�er-free FO-transdution.() L satis�es ondition (m).

PROOF. (a) We an de�ne the relation Tp by the formula
∧
p ∧

∧
{¬ϕ | ϕ is m.e., ϕ /∈ p } .This formula has quanti�er height qh(ψp) = ar(Σ).
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(b) Conversely, we an write an n-ary relation R ∈ Σ as
RA = { ā ∈ An | ā ∈ Tp for some p with

∃ȳ(Rȳ ∧ y1 = x1 ∧ · · · ∧ yn = xn) ∈ p } .Sine S∗
L(Σ) is �nite this de�nition is equivalent to a �nite disjuntion ofatomi formulas.() Having proved (b) it remains to show that L(STR[Σ]) is MSO-de�nable.By omposing the transdutions of (a) and (b) we an onstrut a �rst-orderformula ϕ suh that A |= ϕ if and only if A = L(B), for some struture B. 2

We have seen in Theorem 68 that the signature F := QF0 is equivalent toQF .Using the methods of Setion 7.1 we extend it in two steps to a larger signaturethat is still equivalent toQF . First, we add all domain restritions delψ (f. theend of Setion 3.1). Let QF∗ be the resulting signature. We start by provingan analogue to Lemma 35 for loal types.Lemma 81 For every unary operation f ∈ QF∗ of type Σ → Γ, there existfuntions fn : SnL(Σ) → SnL(Γ), n ∈ N, suh that
ltp(ā/f(A)) = fn(ltp(ā/A)) ,for all strutures A and every n-tuple ā in f(A).

PROOF. Let g = f1
0 : S1,0

M (Σ) → S1,0
M (Γ) be the funtion from Lemma 35.If ψ is the Hintikka-formula of an atomi 1-type q we denote by g(ψ) theHintikka-formula of g(q), and, if ψ equals yi = xk, then we set g(ψ) := ψ.Let p ∈ SnL(Σ). For an m.e. formula of the form ϕ = ∃yψ(y) we have

∃yψ(y) ∈ fn(p) iff ∃yψ′(y) ∈ p for some ψ′ ∈ g−1(ψ) .

Consider an m.e. formula of the form
ϕ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm) .In order to de�ne fn(p) we onsider the following ases.(1) f = fgtΛ. If R ∈ Λ then ϕ /∈ fn(p). Otherwise, ϕ ∈ fn(p) i� there areformulas ψ′

i ∈ g−1(ψi), i ≤ m, suh that
∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′

1 ∧ · · · ∧ ψ′
m) ∈ p .
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(2) f = relabh. We set ϕ ∈ fn(p) i� there are a relation S ∈ h−1(R) andformulas ψ′
i ∈ g−1(ψi), i ≤ m, suh that

∃y1 · · · ∃ym(Sy1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .

(3) f = addS,T,U,h. If R 6= U then we de�ne ϕ ∈ fn(p) i� there are formulas
ψ′
i ∈ g−1(ψi), i ≤ m, suh that

∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .For R = U , we have ϕ ∈ fn(p) i� one of the following two ases holds.Case 1. There are formulas ψ′
i ∈ g−1(ψi), i ≤ m, suh that

∃y1 · · · ∃ym(Uy1 . . . ym ∧ ψ′
1 ∧ · · · ∧ ψ′

m) ∈ p .

Case 2. Otherwise, for all i, j with h(i) = h(j), we have either
• ψi = ψj, or
• ψi equals yi = xk and ψj is the Hintikka-formula of the type tp0(ak/f(A)) =

g
(
tp0(ak/A)

) (note that this type is determined by p), or
• vie versa.Furthermore, there are formulas ψ′′

1 , . . . , ψ
′′
k+l, where k := ar(S), l := ar(T ),suh that

∃y1 · · · ∃yk(Sy1 . . . yk ∧ ψ
′′
1 ∧ · · · ∧ ψ′′

k) ∈ pand ∃y1 · · · ∃yl(Ty1 . . . yl ∧ ψ
′′
k+1(y1) ∧ · · · ∧ ψ′′

k+l(yl)) ∈ p ,and, for all i, we either have
• ψi is a Hintikka-formula and ψ′′

h(i) ∈ g−1(ψi), or
• ψi equals yi =xj, for some j, and ψ′′

h(i) is yh(i) = xj.(4) f = delϑ. We have ϕ ∈ fn(p) i� ϕ ∈ p and ψi 6|= ϑ(yi), for all i ≤ m. 2

Example 82 Let us illustrate the ase f = addS,T,U,h. Suppose that the ar-ities of S, T , and U are 2, 3, and 7, respetively. Let h : [7] → [5] be thefuntion mapping 1, . . . , 7 to the sequene 1, 2, 3, 4, 4, 5, 5. We onsider a for-mula ϕ(x1, x2, x3) of the form
∃ȳ(Uȳ ∧ y1 = x1 ∧ ψ2(y2) ∧ y3 = x2 ∧ y4 = x3

∧ ψ5(y5) ∧ ψ6(y6) ∧ ψ7(y7)) .
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For ā ∈ A3, we have f(A) |= ϕ(ā) i� either
A |= ∃ȳ(Uȳ ∧ y1 = x1 ∧ ψ

′
2(y2) ∧ y3 = x2 ∧ y4 = x3

∧ ψ′
5(y5) ∧ ψ

′
6(y6) ∧ ψ

′
7(y7)) ,for some ψ′

i ∈ g−1(ψi), i ∈ {2, 5, 6, 7}, or ψ5 is the Hintikka-formula of
g(tp0(a3/A)), we have ψ′

6 = ψ7, and there are ψ′
i ∈ g−1(ψi), i ∈ {2, 6}, suhthat

A |= ∃y1∃y2(Sy1y2 ∧ y1 = x1 ∧ ψ
′
2(y2))

∧ ∃y1∃y2∃y3(Ty1y2y3 ∧ y1 = x2 ∧ y2 = x3 ∧ ψ
′
6(y3)) .

The next lemma is analogous to Corollary 44.Lemma 83 Let A and B be strutures and ā ∈ Ak, b̄ ∈ Bl with k, l ≥ 0.
ltp(āb̄/A ⊕ B) = ltp(ā/A) ∪ p ,where p is the type obtained from ltp(b̄/B) by replaing every variable xi by

xk+i.Corollary 84 Every operation f ∈ QF∗ satis�es ondition (h).
PROOF. We laim that the funtion L is a �nite-state heteromorphism basedon ltp. The proof is analogous to that of Lemma 46. For unary operations thelaim follows immediately from Lemma 81. It remains to onsider the disjointunion. Lemma 83 implies that there exist QF -terms t[p, q], for p, q ∈ S0

L(Σ),suh that
L(A ⊕ B) = t[ltp(A), ltp(B)]

(
L(A),L(B)

)
.

(Note that the loal type of a tuple ā determines the type of any permutationof ā. Therefore, we only need Lemma 83 for tuples āb̄ with ā ⊆ A and b̄ ⊆ B,not for arbitrary interleavings of elements of A and B.)From Lemmas 81 and 83 we an dedue that the loal 0-type of a strutureis QF∗-omputable (f. De�nition 6). Consequently, the L is a �nite-statederived operation based on ltp. 2

In the seond step we extend QF∗ by all fusion operations whih are de�nedas follows. Reall the de�nition of quotient strutures at the end of Setion 3.1.
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De�nition 85 Let A be a struture and ϕ(x) a quanti�er-free formula. Weset fuseϕ(A) := A/∼ where ∼ is the equivalene relation
a ∼ b : iff a = b or A |= ϕ(a) ∧ ϕ(b) .By Fuse we denote the signature onsisting of all operations of the form fuseϕ.We have seen that every operation of QF∗ satis�es (h). In order to do thesame for Fuse it therefore remains to prove (h) for fusion operations.Lemma 86 Let ϕ(x) be a quanti�er-free formula and g : A → fuseϕ(A) theanonial mapping. There exist funtions fn : SnL(Σ) → SnL(Σ), for n ∈ N,suh that
ltp

(
g(ā)/fuseϕ(A)

)
= fn(ltp(ā/A)) , for all ā ∈ An.

PROOF. Let p1, . . . , ps ∈ S1,0
M (Σ) be an enumeration of all quanti�er-free 1-types p with p |= ϕ that are realized in A. Let q ∈ S1,0

M (Σ) be the quanti�er-free
1-type with

Rx1 . . . x1 ∈ q iff Rx1 . . . x1 ∈ pi , for some i ≤ s .If b ∈ A is some element of type tp0(b/A) = pi then g(b) has the type
tp0(g(b)/fuseϕ(A)) = q .To simplify notation we de�ne a funtion f : S1,0

M (Σ) → S1,0
M (Σ) by

f(r) :=




q if r ∈ {p1, . . . , ps} ,

r otherwise .For Hintikka-formulas ψr we set f(ψr) := ψf(r), and for formulas ψ of the form
yi = xk we set f(ψ) := ψ.For m.e. formulas of the form ϑ = ∃yψ(y) we have

∃yψ(y) ∈ ltp(g(ā)/fuseϕ(A))i� ∃yψ′(y) ∈ ltp(ā/A) for some ψ′ ∈ f−1(ψ) .Let ϑ(x1, . . . , xn) = ∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ1 ∧ · · · ∧ ψm) be a m.e. formula.We have
ϑ ∈ ltp(g(ā)/fuseϕ(A))if and only if
∃y1 · · · ∃ym(Ry1 . . . ym ∧ ψ′

1 ∧ · · · ∧ ψ′
m) ∈ ltp(ā/A) ,
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for some formulas ψ′
i ∈ f−1(ψi), 1 ≤ i ≤ m. Sine the types p1, . . . , pr an bedetermined from ltp(ā/A) this gives the desired de�nition of fn. 2Corollary 87 The signature QF∗ ∪ Fuse satis�es ondition (h).

PROOF. For the operations of QF∗, we have already shown in Corollary 84that L is a �nite-state heteromorphism based on ltp. It remains to onsiderthe operations fuseϕ ∈ Fuse. The preeding lemma implies that there exists a
QF -term t suh that

L(fuseϕ(A)) = t
(
L(A)

)
.Together Lemmas 81, 83, and 86 show that the loal 0-type of a struture is

(QF∗ ∪ Fuse)-omputable. Hene, the laim follows. 2

By the results of the previous setion, we immediately obtain the followingtheorem whih is one of our main results.Theorem 88 The signatures QF and QF∗ ∪ Fuse are equivalent.Let us ompare this result with those of Courelle and Makowsky [9℄ who showthat the signature F onsisting of the disjoint union ⊕, of ertain restritedquanti�er-free operations, and of the operations fusePx satis�es the followingproperties. For every �nite subsignature F0 ⊆ F ,(1) the value mapping valSTR : T (F0)Σ → STR[Σ] is an MSO-transdution,(2) every F0-equational set is QF-equational, and(3) eah MSO-de�nable set of (hyper-)graphs ontained in valSTR(T (F0)Σ) is
F0-reognizable.The restritions imposed in [9℄ on quanti�er-free operations and relationalstrutures are the following ones:

• the sets PA form a partition of A,
• the only quanti�er-free operations allowed to modify the vertex labellingsare operations of the form renP→Q as desribed in Setion 6, and
• no quanti�er-free operation restrits the domain of its argument.In the present setion we were able to remove the �rst and third restrition byusing 1-types instead of vertex labels. Furthermore, we have shown that bothsignatures lead to the same notion of reognizability. Unfortunately, to do sowe had to modify the seond restrition by only allowing the quanti�er-freeoperations of QF∗. By the results of [9℄ and Theorem 88 we have

Equat(QF) = Equat(QF∗ ∪ Fuse) = Equat(QF ∪ Fuse) ,
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and Rec(QF) = Rec(QF∗ ∪ Fuse) ⊇ Rec(QF ∪ Fuse) .We urrently do not know whether the last inlusion an be strengthened toan equality.
7.3 Fusion and omplete loal types for graphs
For graphs � or more generally for strutures of arity at most 2 � we animprove the above result by showing that the signatures QF and QF ∪Fuseare equivalent. One would expet that this holds for arbitrary arities, but so farwe have neither been able to prove suh a statement, nor ould we onstruta ounterexample. For the remainder of this setion, we �x a signature Σ ofarity ar(Σ) ≤ 2.The reason why the above proof works only for QF∗ is the fat that, if weuse the labelling L then arbitrary quanti�er-free operations do not satisfyondition (h). For arity 2, we are able to modify the notion of a loal typesuh that all QF -operations satisfy (h). The basi idea is to replae in anm.e. formula ∃ȳ(Rȳ ∧ ψ1 ∧ · · · ∧ ψm) the atom Rȳ by the Hintikka-formulaof a quanti�er-free 2-type. Though, to simplify notation we will not use suhformulas but the quanti�er-free 2-types themselves.De�nition 89 Let A be a struture and a, b ∈ A. The omplete loal 2-typeof a pair ab in A is its quanti�er-free type

ctp(ab/A) := tp0(ab/A) .The omplete loal 1-type of a single element a in A is the set of all ompleteloal 2-types of pairs extending a
ctp(a/A) := { ctp(ac/A) | c ∈ A } .Finally, we will also need the omplete loal 0-type of the empty tuple 〈〉 whihis the set of all realized 1-types.
ctp(〈〉/A) := { ctp(a/A) | a ∈ A } .As usual, we abbreviate ctp(〈〉/A) by ctp(A). For 0 ≤ n ≤ 2, we denoteby SnC(Σ) the set of all possible omplete loal n-types and we set S∗

C(Σ) :=
S1

C(Σ) ∪ S2
C(Σ).Remark 90 Sine satis�ability is deidable for the 2-variable fragment of�rst-order logi it follows that the sets S0

C(Σ), S1
C(Σ), and S2

C(Σ) are deidable.As in the ase of the other types one an de�ne Hintikka formulas for ompleteloal types.
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Lemma 91 For every omplete loal n-type p ∈ SnC(Σ), 0 ≤ n ≤ 2, thereexists a �rst-order formula ψp(x̄) of quanti�er height 2 − n suh that
A |= ψp(ā) iff ctp(ā/A) = p ,for all strutures A and every tuple ā ∈ An.

PROOF. We de�ne ψp by reverse indution on n. The onstrution is anal-ogous to that of De�nition 33. For n = 2, we de�ne
ψp(x1, x2) :=

∧
p .For n = 1, we have to express the bak-and-forth property (f. [12,30℄). Theformula

ψp(x1) :=
∧

q∈p

∃x2ψq(x1, x2) ∧ ∀x2

∨

q∈p

ψq(x1, x2)

states that every type q ∈ p is realized and every realized type is ontainedin p. Similarly, for n = 0, we have
ψp :=

∧

q∈p

∃x1ψq(x1) ∧ ∀x1

∨

q∈p

ψq(x1) .

2Corollary 92 The 0-type ctp(A) is QF-omputable.
PROOF. The laim follows immediately from Lemmas 45 and 91 sine tp2(A) |=
ψctp(A). 2

We use Hintikka formulas to de�ne the logial onsequenes of a loal type.De�nition 93 For p ∈ SnC(Σ) and ϕ ∈ FO[Σ], we write p |= ϕ i� |= ψp → ϕ.Remark 94 It follows that p |= ϕ if and only if we have A |= ϕ(ā), for everystruture A and all tuples ā ⊆ A of type ctp(ā/A) = p.Following the usual lines of our approah we annotate strutures by types andwe show that these annotations satisfy onditions (m) and (h).De�nition 95 Let A be a Σ-struture with ar(Σ) ≤ 2. The omplete loalannotation of A is the struture
C(A) :=

〈
A, (Tp)p∈S∗

C
(Σ)

〉
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with the same domain as A where, for eah loal n-type p ∈ S∗
C(Σ), n ∈ {1, 2},we add the relation

Tp := { ā ∈ An | ctp(ā/A) = p } .We denote the signature of C(A) by ΣC.Lemma 96 Let Σ be a relational signature.(a) The mapping C : STR[Σ] → STR[ΣC] is an injetive FO-transdution ofquanti�er height 1.(b) C has a left-inverse that is a quanti�er-free transdution.() C satis�es ondition (m).
PROOF. (a) The formula ψp(x̄) from Lemma 91 an be used to de�ne therelation Tp. For p ∈ SnC(Σ), this formula has quanti�er height qh(ψp) = 2− n.(b) Conversely, we an write an n-ary relation R ∈ Σ as

RA = { ā ∈ An | ā ∈ Tp for some p with p |= Rx1 . . . xn } .Sine S∗
C(Σ) is �nite this de�nition is equivalent to a �nite disjuntion ofatomi formulas.() Finally, by omposing the transdutions of (a) and (b) we an onstrutan FO-formula that de�nes the set C(STR[Σ]). 2

It remains to hek ondition (h). We start by onsidering the operationsof QF .Lemma 97 Let τ : STR[Σ] → STR[Γ] be a quanti�er-free operation with
ar(Γ) ≤ 2. There exist funtions fn : SnC(Σ) → SnC(Γ), 0 ≤ n ≤ 2, suh that

ctp(ā/τ(A)) = fn(ctp(ā/A)) ,for all strutures A and every tuple ā in τ(A).
PROOF. We deompose τ = σ ◦ delϕ into a domain restrition and a non-deleting quanti�er-free operation (f. Lemma 25), and we deal with the twoases separately. For τ = delϕ and a, b ∈ delϕ(A), we have

ctp(ab/delϕ(A)) = ctp(ab/A) ,

ctp(a/delϕ(A)) =
{
p ∈ ctp(a/A)

∣∣∣ p |= ¬ϕ(x2)
}
,

ctp(〈〉/delϕ(A)) =
{
f1(p)

∣∣∣ p ∈ ctp(〈〉/A), p |= ¬ϕ(x1)
}
,
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where f1 in the last line is the funtion given by the seond equation.It remains to onsider the ase that τ = σ. By Lemma 35, there exists afuntion g suh that
tp0(ab/σ(A)) = g(tp0(ab/A)) .Hene, we an set f2 := g. The funtions f1 and f0 are de�ned by
ctp(a/σ(A)) = { g(p) | p ∈ ctp(a/A) } ,

ctp(〈〉/σ(A)) = { f1(p) | p ∈ ctp(〈〉/A) } .

2

We are interested in the fusion operation. It turns out that the annotation Can be used to treat an even stronger operation whih we all the gluing oftwo strutures.De�nition 98 A gluing funtion is a mapping
g : S1

C(Σ) × S1
C(Σ) → S2

C(Σ) ,suh that, for all types p, q ∈ S1
C(Σ) and every quanti�er-free formula ϕ(x)with one free variable, we have

ϕ(x1) ∈ g(p, q) iff p |= ϕ(x1) ,and ϕ(x2) ∈ g(p, q) iff q |= ϕ(x1) .

For suh a gluing funtion g and strutures A,B ∈ STR[Σ], we denote by
A ⊗g B the following struture. Its domain is the disjoint union A ·∪ B. Forunary relations P , we have

PA⊗gB := PA ∪ PB ,while binary relations R are de�ned by
RA⊗gB := RA ∪RB

∪
{

(a, b) ∈ A×B
∣∣∣ g

(
ctp(a/A), ctp(b/B)

)
|= Rx1x2

}

∪
{

(b, a) ∈ B × A
∣∣∣ g

(
ctp(a/A), ctp(b/B)

)
|= Rx2x1

}
.

Finally, we extend ⊗g to an operation STR[Σ] × STR[Γ] → STR[Σ ∪ Γ] onstrutures of di�erent signatures by de�ning A ⊗g B := A′ ⊗g B′ where A′ isthe (Σ∪Γ)-struture obtained from A by adding empty relations RA′ := ∅, forevery R ∈ Γ \ Σ, and B′ is de�ned analogously.
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By Glue we denote the signature onsisting of all operations of the form ⊗g.Remark 99 (a) Note that A ⊗g B = A ⊕ B if we have ¬Rx1x2,¬Rx2x1 ∈
g(p, q), for all p, q ∈ S1

C(Σ) and every binary relation symbol R.(b) The onditions on a gluing funtion g ensure that
ctp(ab/A ⊗g B) = g

(
ctp(a/A), ctp(b/B)

)
,for all strutures A and B and all elements a ∈ A and b ∈ B. For instane,we have

Rx1x2 ∈ ctp(ab/A ⊗g B) iff (a, b) ∈ RA⊗gB

iff g(ctp(a/A), ctp(b/B)) |= Rx1x2 ,and Px1 ∈ ctp(ab/A ⊗g B) iff a ∈ PA

iff ctp(a/A) |= Px1

iff g(ctp(a/A), ctp(b/B)) |= Px1 .Example 100 Cunningham [31℄ studies graph deompositions, alled splitdeomposition, that are based on the following operation (see also [23℄). Giventwo undireted, simple, loop-free graphs G and H in STR[{edg} ∪ Π] with la-belled verties as in Setion 3.5 and some relations P ∈ Π, one forms thegraph
G ⋄P H := delPx(G ⊗g H)where delPx deletes all verties labelled P and g is the gluing funtion suhthat
g(p1, p2) |= edg(x1, x2) iff pi |= ∃y(edg(x1, y) ∧ Py) for both i ,that is, ⊗g reates an edge (a, b) between a vertex a of G and a vertex b of Hif and only if both a and b have a neighbour labelled P . Atually, in [31℄ thisoperation is used only on graphs where P ontains a unique vertex.The next lemma is analogous to Corollary 44 and Lemma 83.Lemma 101 Let g be a gluing funtion. There exist funtions fn, 0 ≤ n ≤ 2,suh that
ctp(ā/A ⊗g B) = fn

(
ctp(ā|A / A), ctp(ā|B / B)

)
,

for all strutures A and B and every tuple ā ∈ (A ∪ B)n, where ā|X denotesthe subtuple of ā onsisting of all elements ai ∈ X.
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PROOF. We start with the ase n = 2. If a, b ∈ A then
ctp(ab/A ⊗g B) = ctp(ab/A) .The ase that a, b ∈ B is similar. If a ∈ A and b ∈ B then
ctp(ab/A ⊗g B) = g

(
ctp(a/A), ctp(b/B)

)and ctp(ba/A ⊗g B) = σg
(
ctp(a/A), ctp(b/B)

)
,where σ(p) interhanges the variables x1 and x2 in every formula of p. (Wehave proved the �rst equation in the remark above. The seond one followsfrom the fat that ctp(ba/A ⊗g B) = σ(ctp(ab/A ⊗g B)).)For a ∈ A, we have

ctp(a/A ⊗g B) = ctp(a/A) ∪
{
g(ctp(a/A), p)

∣∣∣ p ∈ ctp(B)
}
,and, for b ∈ B,

ctp(b/A ⊗g B) = ctp(b/B) ∪
{
σg(p, ctp(b/B))

∣∣∣ p ∈ ctp(A)
}
.Finally, for n = 0, we have

ctp(A ⊗g B) =
{
f1(p, ctp(B))

∣∣∣ p ∈ ctp(A)
}

∪
{
f1(ctp(A), p)

∣∣∣ p ∈ ctp(B)
}
.

2

Together with Corollary 92 it follows that ctp is (QF ∪ Glue)-omputable.Corollary 102 If we only onsider strutures of arity at most 2 then thesignature QF ∪ Glue satis�es ondition (h).
PROOF. We laim that the funtion C is a �nite-state heteromorphism basedon ctp. For quanti�er-free operations and the gluing operation ⊗g this followsfrom the preeding lemmas. For the disjoint union⊕, it is su�ient to note that
⊕ = ⊗g, for a suitable gluing funtion g (f. the Remark after De�nition 98).It remains to show that ctp is (QF ∪Glue)-omputable. We have already seenthat it is QF -omputable in Corollary 92. Hene, Lemma 101 implies that ctpis (QF ∪ Glue)-omputable. 2

By the results of Setion 7.1, it follows that, for strutures of arity at most 2,the signature QF ∪Glue is equivalent to QF , i.e., the orresponding subalge-bras of STR are equivalent.
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Corollary 103 For strutures of arity at most 2, the signatures QF ∪ Glueand QF are equivalent.The signature we are atually interested in is QF∪Glue∪Fuse. The followingtheorem, whih is one of our main results, states that it is equivalent to QF .Theorem 104 For strutures of arity at most 2, the signatures QF ∪Glue ∪
Fuse and QF are equivalent.
PROOF. By Corollary 103 and Lemma 17, it is su�ient to show that

QF ∪ Glue ∪ Fuse ⊆ (QF ∪ Glue)der .

We an express the operation fuseϕ as a derived (QF ∪ Glue)-operation asfollows. We add a new element c satisfying ϕ(x) to the given struture by asuitable gluing operation that reates an R-edge from some element a to c i�there exists an R-edge (a, b) ending in an element b satisfying ϕ(x). Then wedelete all elements satisfying ϕ(x) exept for c. Formally, we have
fuseϕ(x) = (fgtP ◦ delϑ)(x⊗g σ(c))

where
• c is a onstant denoting a singleton struture whose only element b satis-�es ϕ,
• σ reates a new unary relation P /∈ Σ and it adds all elements to it,
• g reates an R-edge between an element a and σ(c) i� there is some element bsatisfying ϕ suh that (a, b) ∈ R. That is,

g(p, q) := {Rx1x2 | p |= ∃y(Rx1y ∧ ψ(y)) for some ψ ∈ Ψ }

∪ {Rx2x1 | p |= ∃y(Ryx1 ∧ ψ(y)) for some ψ ∈ Ψ }

∪ {ψ(x1) | p |= ψ(x1) , ψ quanti�er free }
∪ {ψ(x2) | q |= ψ(x1) , ψ quanti�er free } ,

where q is the omplete loal 1-type of the single element of the stru-ture σ(c) and Ψ is the set of all Hintikka-formulas ψr, r ∈ S1
C(Σ), with

r |= ϕ,
• ϑ := ϕ∧¬Px1, i.e., delϑ deletes all elements satisfying ϕ exept for the newone whih is labelled by P , and
• fgtP deletes the auxiliary relation P again. 2
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8 Soures in hypergraphs are not neessary
Equipping graphs and hypergraphs with distinguished verties is useful forde�ning operations like series omposition or parallel omposition that gener-alize onatenation. These distinguished verties are alled soures. In termsof relational strutures suh distinguished elements an be de�ned as valuesof nullary symbols whih are also alled onstants. They have been de�nedin this way in the general logial and algebrai framework of [7℄ whih isfurther developed in [8℄. Constants an be eliminated if one replaes themby unary relations ontaining single elements. However, the quanti�er heightof the de�nition sheme of a given transdution usually inreases under thistransformation. Take for example the quanti�er-free de�nition

Rxy : iff Sxa ∧ Tybwhere a and b are onstants. If we enode a and b by unary relations Pa and Pb,this de�nition beomes
Rxy : iff ∃u∃v(Sxu ∧ Tyv ∧ Pau ∧ Pbv) ,whih is no longer quanti�er-free. Hene, after the transformation the signa-tureQF may ontain fewer operations. In this setion, we show that quanti�er-free operations using onstants an be emulated by quanti�er-free operationson relational strutures without them. We will prove that the signature ofquanti�er-free operations using onstants, denoted by QFc, is �equivalent� tothe signature QF on relational strutures without onstants (for the preisemeaning of �equivalent� f. Proposition 105 and Theorem 112).

8.1 Relational strutures with onstants
We reall de�nitions from [7,8℄. We �x a ountable set C∞ of onstant sym-bols. For a relational signature Σ and a �nite subset C ⊆ C∞, we denote by
STR[Σ, C] the set of all �nite strutures of the form

A =
〈
A, (RA)R∈Σ, (cA)c∈C

〉

where 〈A, (RA)R∈Σ〉 ∈ STR[Σ] and cA ∈ A, for every c ∈ C.By A[C] we denote the substruture of A indued by the set of all elementsthat are denoted by some onstant c ∈ C.We all quanti�er-free transdutions between strutures with onstants QFc-transdutions, for short (the supersript c indiates that we allow onstants).
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A de�nition sheme for suh a transdution STR[Σ, C] → STR[Γ, D] is of theform
D =

(
ϕ, ψ, (ϑR)R∈Γ, (κcd)c∈C,d∈D

)

where
• ϕ = true (f. Setion 3.3),
• ψ ∈ QF[Σ ∪ C, {x1}],
• ϑR ∈ QF[Σ ∪ C, {x1, . . . , xar(R)}], for R ∈ Γ, and
• κcd ∈ QF[Σ ∪ C, ∅], for eah c ∈ C and d ∈ D.As usual, the formula ψ de�nes the domain of the new struture and theformulas ϑR de�ne the new relations R. The new onstants are determinedby the formulas κcd. Given a struture A we de�ne the onstant d in the newstruture to denote that element cA suh that κcd holds in A.In order that a de�nition sheme de�nes a total mapping, the formulas κcdmust satisfy the following onditions, for every struture in A ∈ STR[Σ, C]and all d ∈ D :
• d denotes an element of the new struture, that is, A |=

∧
c∈C(κcd → ψ(c)) .

• d has some value, that is, A |=
∨
c∈C κcd .

• d is unique, that is, A |=
∧
c,c′∈C(κcd ∧ κc′d → c = c′) .These onditions are given by quanti�er-free formulas without free variables.Hene, they hold in a struture A ∈ STR[Σ, C] i� they hold in A[C]. It istherefore deidable whether they are valid in every struture beause we onlyneed to hek their validity in the �nitely many strutures of the form A[C].A de�nition sheme D as above de�nes a total mapping D̂ : STR[Σ, C] →

STR[Γ, D] where the domain and the relations of B := D̂(A) are de�ned inthe same way as for strutures without onstants and, additionally, we have
dB = cA whenever A |= κcd.We obtain thus an algebra STRc of strutures with onstants where eah pair
(Σ, C) is a sort. The operations are the QFc-transdutions and the disjointunion ⊕ whih we apply only to strutures with disjoint sets of onstants.(For strutures A ∈ STR[Σ, C] and B ∈ STR[Γ, D] with C ∩ D = ∅, thestruture A⊕B ∈ STR[Σ∪Γ, C ∪D] is well-de�ned). We denote by QF c theorresponding signature.We ould de�ne MSO-transdutions between strutures with onstants in thesame way as QFc-transdutions. But when we allow quanti�ers then the for-mulas κcd are not needed. Therefore, we hoose a simpler approah by reduingsuh transdutions to MSO-transdutions without onstants.
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Let ΠC := {Pc | c ∈ C } be a set of unary relations in bijetion with C anddisjoint from Σ. For A ∈ STR[Σ, C], we denote by AΠ ∈ STR[Σ ∪ ΠC ] thestruture with the same domain as A and the same Σ-relations. For everyonstant c ∈ C, we add a new unary relation Pc := {cA} to AΠ. Clearly, themapping
STR[Σ, C] → STR[Σ ∪ ΠC ] : A 7→ AΠis an injetive QFc-transdution. (We identify STR[Σ ∪ ΠC , ∅] and STR[Σ ∪

ΠC ].)We de�ne an MSO-transdution (of strutures with onstants) as a transdu-tion τ : STR[Σ, C] → STR[Γ, D] suh that the relation { (AΠ,BΠ) | B ∈
τ(A) } is an MSO-transdution. Routine arguments show that the omposi-tion of two MSO-transdutions is an MSO-transdution, also when they useonstants.We now reall from [7℄ the following result, formulated with the terminologyof the present artile. It is the analogue of Proposition 27 for strutures withonstants.Proposition 105 Let L ⊆ STR[Σ, C]. The following statements are equiva-lent:(i) L is the image of a regular set of terms under an MSO-transdution.(ii) L is QFc-equational.(iii) The set LΠ := {AΠ | A ∈ L } is QF-equational.
PROOF. The equivalene (i) ⇔ (ii) is proved in [7℄. Let us sketh the equiv-alene of (i) and (iii). With routine manipulations of MSO-transdutions onean show that (i) is equivalent to the statement
LΠ is the image of a regular set of �nite terms under an MSO-transdution.Hene, the equivalene (i) ⇔ (iii) follows from Proposition 27. 2

Our objetive is to obtain a similar haraterization of QF c-reognizabilityof L ⊆ STR[Σ, C] in terms of the QF -reognizability of LΠ. Theorem 112below arhives this goal. Following our general framework we will introduea onstrution on strutures that makes it possible to emulate the operationsof QF c in terms of QF-operations.
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8.2 A seond way of eliminating onstants
The basi idea is to replae a struture A by the struture Â obtained bydeleting all elements that are denoted by some onstant and by adding newrelations that memorize links with the deleted elements. For example, an edgefrom x (where x is not the value of any onstant) to cA will be represented bya new unary relation edg [∗c]. An essential fat is that A an be reonstrutedfrom Â and A[C]. (Note that, up to isomorphism, there are only �nitely manystrutures A[C] for A ∈ STR[Σ, C].)De�nition 106 (a) For every n-ary relation R ∈ Σ and eah word w ∈
(C∪{∗})n, we introdue a new relation symbol R[w] whose arity is the numberof symbols ∗ ourring in w. Let Σ(C) be the set of these symbols where weidentify R with R[∗ . . . ∗], hene Σ(C) ontains Σ.(b) For A = 〈A, (RA)R∈Σ, (cA)c∈C〉 ∈ STR[Σ, C], we de�ne a Σ(C)-struture
Â := 〈Â, (R

Â
)R∈Σ(C)〉 with domain Â := A \ { cA | c ∈ C } and the followingrelations. For w = w1∗w2 . . . wk∗wk+1 with w1, w2, . . . , wk+1 ∈ C∗, we have

R[w]
Â

:=
{

(a1, . . . , ak)
∣∣∣ w̃1a1w̃2 . . . w̃kakw̃k+1 ∈ RA

}
,where w̃i is the sequene of elements of A denoted by the onstants in wi ∈ C∗.Note that the substruture of A indued by Â is a substruture of Â. Thefollowing statements follow immediately from the de�nitions.Lemma 107 (1) The struture A an be reonstruted from Â and A[C].(2) The mapping ∧ : STR[Σ, C] → STR[Σ(C)] is a QFc-transdution.(3) For eah struture C ∈ STR[Σ, C] with C = C[C], there exists a (|C| + 1)-opying MSO-transdution of quanti�er height 0 that maps every nonemptystruture B ∈ STR[Σ(C)] to the unique struture A ∈ STR[Σ, C] suh that

A[C] = C and Â = B.De�nition 108 Let L ⊆ STR[Σ, C] and suppose that C ∈ STR[Σ, C] is astruture with C = C[C]. We denote by L⊲⊳C the set of strutures A ∈ L suhthat A[C] = C and A 6= C (so A ontains at least one element not denoted bya onstant).Proposition 109 A set L ⊆ STR[Σ, C] is QF c-equational i� (L ⊲⊳ C)∧ is
QF-equational for eah C.
PROOF. Let L be QFc-equational. Sine, for �xed C, the ondition A[C] ∼=
C is MSO-de�nable (even FO-de�nable) it follows by Proposition 105 and
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Corollary 28 (b) that eah set L⊲⊳C is QF c-equational. Hene, it is the imageof a regular set of terms under an MSO-transdution and so is (L ⊲⊳ C)∧, byProposition 105 and Lemma 107 (2).Conversely, sine L is a �nite union of sets L⊲⊳C and singletons {C}, it su�esto prove that eah L⊲⊳C is QFc-equational. This follows from Lemma 107 (3)by a similar argument as above. 2

We will improve Lemma 107 (2) in order to have statements like the aboveorollary relating QF - and QF c-reognizability. Let us �rst state an immedi-ate orollary of Lemma 107 (3) and Proposition 20.Corollary 110 Let C ∈ STR[Σ, C] be a struture suh that C = C[C]. For ev-ery formula ϕ(x1, . . . , xn) ∈ QF[Σ∪C], one an onstrut a formula ϕ̂(x1, . . . , xn) ∈
QF[Σ(C)], suh that we have

A |= ϕ(ā) iff Â |= ϕ̂(ā) ,for every struture A ∈ STR[Σ, C] with A[C] = C and all ā ∈ Ân.
PROOF. Let τ : STR[Σ(C)] → STR[Σ, C] be the transdution of Lemma 107 (3).We an set ϕ̂ := ϕτ . 2

Among the QF c-operations, it will be onvenient to single out partiular ones.If d ∈ C, we denote by fgtd the operation STR[Σ, C] → STR[Σ, C \ {d}] that�forgets� the onstant d. Nothing is hanged exept that some element of thedomain is no longer denoted by d.Proposition 111 The funtion ∧ : STR[Σ, C] → STR[Σ(C)] is a �nite-statederived heteromorphism based on the mapping A 7→ A[C].
PROOF. We reall that on STR[Σ, C] we use the disjoint union and the
QFc-transdutions as unary operations. We �rst observe that the mapping
A 7→ A[C] is QF c-omputable. This follows from the following obvious fats.(1) For all strutures A ∈ STR[Σ, C] and B ∈ STR[Γ, D] with C ∩ D = ∅,we have

(A ⊕ B)[C ∪D] = A[C] ⊕ B[D] .(2) For every QF c-operation f : STR[Σ, C] → STR[Γ, D], we have
f(A)[D] = f(A[C])[D] .
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(This is true beause Df(A) ⊆ CA.)Going bak to the main proof, we onsider the various operations. First it islear that
(A ⊕ B)∧ = Â ⊕ B̂ .

The ase of a QF c-operation f : STR[Σ, C] → STR[Γ, D] is more involved.Suppose that f is de�ned by the de�nition sheme
D = (ϕ, ψ, (ϑR)R∈Γ, (κcd)c∈C,d∈D) .

We onsider a struture A. Our objetive is to express f(A)∧ as t(Â) for some
QF -term t that may depend on A[C]. Let CA be the set of all elements of Adenoted by some onstant c ∈ C. We denote by N ⊆ CA the set of all elementsthat are not deleted by f (i.e., that satisfy ψ) but that are not denoted byany onstant d ∈ D in f(A). (Note that we an ompute N from A[C].) Theset CA is thus partitioned into Df(A), N , and the set of all elements deletedby the transdution f . The domain of f(A)∧ onsists of N and all elements of
Â = A \ CA that are not deleted by f . We distinguish several ases.(a) First, suppose that N = ∅. The domain of f(A)∧ is the set of elementsof Â that satisfy ψ in A. By Corollary 110, these are the elements that satisfy
ψ̂ in Â.Now we onsider a relation in Γ(D), say R[∗c∗dd∗] to take a representativeexample. We have

(x, y, z) ∈ R[∗c∗dd∗]f(A)∧i� (x, cf(A), y, df(A), df(A), z) ∈ Rf(A)i� A |= ϑR(x, c′, y, d′, d′, z) ∧ ψ(x) ∧ ψ(y) ∧ ψ(z) ∧ κc′c ∧ κd′d ,for some c′, d′ ∈ Ci� Â |= ϑ̂c′,d′ for some c′, d′ ∈ Ci� Â |= ϑ̂ :=
∨

c′,d′
ϑ̂c′,d′ ,

where ϑ̂c′,d′ is the formula assoiated with
ϑR(x, c′, y, d′, d′, z) ∧ ψ(x) ∧ ψ(y) ∧ ψ(z) ∧ κc′c ∧ κd′daording to Corollary 110.The formula ψ̂ whih de�nes the domain of f(A)∧ and the formulas ϑ̂ asabove yield a de�nition sheme for the transformation Â 7→ f(A)∧. Hene, t isa quanti�er-free operation.
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(b) Next, we onsider the ase that N 6= ∅ and f = fgtd. Then N = {d} andthere is no c ∈ C \ {d} suh that cA = dA. The domain of f(A)∧ is that of Âaugmented with dA. Hene we have f(A)∧ = t′(Â ⊕ D) where t′ and D arede�ned as follows.
D is a struture with the single element dA. The relations of D either are emptyor onsist solely of the tuple (dA, . . . , dA) depending on whether the orre-sponding relation ofA[C] ontains this tuple. For example, if (dA, bA, cA, dA, dA) ∈
RA, for b, c ∈ C, then we put the tuple (dA, dA, dA) ∈ R[∗bc∗∗]D. We also usea speial new unary relation symbol to �mark� dA, that is, to distinguish itfrom the elements of Â .Let us all a relation R[w] a d-relation if d ours in w. The mapping t′ is aquanti�er-free operation that performs the following transformations:(1) It preserves those relations of Â and D that are not d-relations.(2) It removes all d-relations (they are all in Â).(3) For every tuple in a d-relation, like (x, y, z) ∈ R[∗∗abdd∗d], it reates aorresponding tuple (x, y, dA, dA, z, dA) in the relation R[∗∗ab∗∗∗∗]. Themarking of dA is useful here.(4) Finally, it removes the �marking� unary relation.Hene, in this ase we an take for t the QF-term t′(x⊕ D).() For the general ase, we show that every QF c-operation an be expressedas the omposition of a bounded number of transformations of the above twoforms.Fix an enumeration a1, . . . , ak of N . (If it is empty ase (a) applies.) Let
E = {e1, . . . , ek} ⊆ C∞ be a set of onstants disjoint from C and D.Let g be the QFc-transdution that maps a struture C with C[C] = A[C]to the struture g(C) ∈ STR[Σ, D ∪ E] obtained from f(C) by assigning thevalue ai to the new onstant ei, for i ≤ k.The de�nition sheme of g an be onstruted by adding to D the formulas
κcei

:= true where, for eah i, c is some element of C suh that cA = ai. Thishoie an be made depending only on A[C]. The resulting QFc-transdution gis of the type onsidered in ase (a). Furthermore, for every struture B with
B[C] = A[C], we have

f(B) = (fgte1◦ · · · ◦ fgtek
)(g(B)) .Hene the general ase follows by ombining the onstrutions of (a) and (b). 2

The main result of this setion is the following theorem.
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Theorem 112 Let L ⊆ STR[Σ, C]. The following statements are equivalent:(i) L is QFc-reognizable.(ii) LΠ is QF-reognizable.(iii) (L ⊲⊳ C)∧ is QF-reognizable, for every C with C[C] = C.
PROOF. (ii) ⇔ (iii) Note that, by Lemma 107, for every C, the sets (L⊲⊳C)∧and (L ⊲⊳ C)Π are in bijetion by an MSO-transdution the inverse of whihis also an MSO-transdution. It follows from Theorem 51 that one is QF-reognizable if and only if the other is. Furthermore, the set {A | A = A[C] }is MSO-de�nable and hene reognizable. This proves (iii) ⇒ (ii) sine

LΠ = {A | A = A[C] or, Â ∈ (L ⊲⊳ C)∧, for some C }and a �nite union of reognizable sets is reognizable.For the other diretion, note that, if LΠ is QF -reognizable then so is (L⊲⊳C)Πbeause the onditions A[C] ∼= C and A ≇ C are MSO-de�nable.(iii) ⇒ (i) Suppose that (L⊲⊳C)∧ is QF -reognizable, for every C. Then L⊲⊳Cis the inverse image of (L⊲⊳C)∧ under the �nite-state derived homomorphism ∧(Proposition 111). Hene it is QF c-reognizable, by Lemma 14. It follows that
L is QF c-reognizable sine L is a �nite union of reognizable sets.(i) ⇒ (iii) We now assume that L is QF c-reognizable. Let ≈ be a �niteongruene saturating L. By replaing it if neessary by a �ner one, one anassume that A ≈ A′ implies that A[C] = A′[C] and the same relations from Σare nonempty in A and in A′. Hene this ongruene saturates eah set L⊲⊳C.Consider now the inverse mapping (∧)−1 : STR[Σ(C)] → STR[Σ, C]. For every
C ∈ STR[Σ, C] suh that C = C[C], one an onstrut a QF c-term t, usingboth the relations of Σ(C) (this set ontains Σ) and the onstants of C suhthat, for every struture A ∈ STR[Σ, C] ⊲⊳ C, we have A = t(Â ⊕ C).The e�et of applying t to Â⊕ C must be to replae a tuple like (x, y, u, v, w)in a relation R[∗∗ab∗∗c∗] by the tuple (x, y, aC, bC, u, v, cC, w) ∈ R. This anbe done by a QFc-transdution τ : STR[Σ(C)] → STR[Σ, C]. Hene, we anset t := τ(x).The restrition of the ongruene ≈ to the sets STR[Σ] is a QF -ongruenesine QF is a subsignature of QF c. It remains to hek that it saturates
(L ⊲⊳ C)∧. Consider a struture A ∈ (L ⊲⊳ C)∧, and suppose that A′ ≈ A.Let B ∈ L ⊲⊳ C be suh that A = B̂. Sine A′[C] = A[C] = A, A[C] ≇ C,and the same relations from Σ(C) our in A and A′, there exists a struture
B′ ∈ STR[Σ, C] ⊲⊳C suh that A′ = B̂′. Applying the term t de�ned above we
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obtain B = t(A⊕C) and B′ = t(A′⊕C). Hene B ≈ B′. But the ongruene ≈saturates L ⊲⊳ C. Hene B′ belongs to L ⊲⊳ C and A′ belongs to (L ⊲⊳ C)∧. Itfollows that eah set (L ⊲⊳ C)∧ is reognizable. 2

Some variants of the operations of QF c are onsidered in [8℄ where it is shownthat one an use the following generalization of disjoint union. If A and Bhave a ommon set of onstants C then their parallel omposition A // B isde�ned from their disjoint union by fusing those elements in A and in B thatare denoted by the same onstant. The results of this setion extend to theorresponding variant of QF c.
9 Conlusion
The main results we have established above (Theorem 51, Theorem 68, The-orems 88 and 104, and Theorem 112) tighten even more the relationshipsbetween reognizability for algebras of relational strutures, monadi seond-order transdutions, and operations on relational strutures de�ned in termsof logial formulas � quanti�er-free or with a limited form of quanti�ation. Wehave extended older results on the fusion operation and we gave new uniformproofs in a wider algebrai setting.Some questions remain open though. In partiular, a uniform treatment of thefusion operation for relational strutures would be desirable.Open Question 1 Are the signatures QF and QF ∪ Fuse equivalent?Let us mention some other possible future researh diretions.(1) Whih quanti�er-free operations on relational strutures preserve reog-nizability?(2) Is it true that, if a set of graphs of lique width at most k is VRΠ-reog-nizable, for some set Π of size at most k (or f(k), for some �xed funtion f),then it is reognizable?(3) Using the signature QFΣ

0 and its distintion between auxiliary relationsand those of Σ, one an de�ne a omplexity measure on relational struturesthat generalizes the notion of lique width: Given a struture A ∈ STR[Σ], let
w(A) be the minimal number n suh that there exists a signature Γ and a term
t ∈ T (QF0[Σ,Γ]) with A = valSTR(t) and ∑

R∈Γ ar(R) ≤ n. By Proposition 63,it follows that a set L ⊆ STR[Σ] is the image of a set of terms under an MSO-transdution if and only if w(L) is bounded.
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For the ase of the so-alled HR-operations and HR-reognizability, questionsrelated to (1) and (2) have been onsidered in [29,32℄. A measure similar to (3)but based on a di�erent signature is investigated in [10℄.
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