
Adding Virtualization Capabilities to Grid’5000

Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric

Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David

Margery, Nicolas Niclausse, Lucas Nussbaum, et al.

To cite this version:

Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel

Jeannot, et al.. Adding Virtualization Capabilities to Grid’5000. [Research Report] RR-8026,

2012, pp.18. <hal-00720910v1>

HAL Id: hal-00720910

https://hal.inria.fr/hal-00720910v1

Submitted on 26 Jul 2012 (v1), last revised 3 Jan 2012 (v2)

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-

entific research documents, whether they are pub-

lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la di↵usion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00720910v1

I
S

S
N

0
2

4
9

-
6

3
9

9
I
S

R
N

I
N

R
I
A

/
R

R
-
-
8

0
2

6
-
-
F

R
+

E
N

G

RESEARCH
REPORT
N° 8026
July 2012

Project-Team Algorille, Ascola,

Avalon, Mescal, Myriads,

Runtime

Adding Virtualization
Capabilities to Grid’5000
D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O.
Richard, C. Perez, F. Quesnel, C. Rohr, L. Sarzyniec

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Adding Virtualization Capabilities to
Grid’5000

D. Balouek⇤, A. Carpen Amarie⇤, G. Charrier⇤, F. Desprez⇤, E.
Jeannot⇤, E. Jeanvoine⇤, A. Lèbre†, D. Margery⇤, N. Niclausse⇤,
L. Nussbaum‡, O. Richard§, C. Perez⇤, F. Quesnel†, C. Rohr⇤,

L. Sarzyniec‡

Project-Team Algorille, Ascola, Avalon, Mescal, Myriads, Runtime

Research Report n° 8026 — July 2012 — 18 pages

Abstract: Almost ten years after its premises, the Grid’5000 testbed has become one of the most
complete testbed for designing or evaluating large-scale distributed systems. Initially dedicated to the
study of High Performance Computing, the infrastructure has evolved to address wider concerns related
to Desktop Computing, the Internet of Services and more recently the Cloud Computing paradigm.
This report present recent improvements of the Grid’5000 software and services stack to support large-scale
experiments using virtualization technologies as building blocks. Such contributions include the deployment
of customized software environments, the reservation of dedicated network domain and the possibility to
isolate them from the others, and the automation of experiments with a REST API. We illustrate the
interest of these contributions by describing three di↵erent use-cases of large-scale experiments on the
Grid’5000 testbed.

The first one leverages virtual machines to conduct larger experiments spread over 4000 peers. The

second one describes the deployment of 10000 KVM instances over 4 Grid’5000 sites. Finally, the last

use case introduces a one-click deployment tool to easily deploy major IaaS solutions. The conclusion

highlights some important challenges of Grid’5000 related to the use of OpenFlow and to the management

of applications dealing with tremendous amount of data.

Key-words: distributed systems, large-scale testbed, virtualization, cloud computing, experi-
ments

This report follows a keynote given by F. Desprez during Closer’2013 in Porto, Portugal.

⇤ INRIA, France, Email: FirstName.LastName@inria.fr

† Ecole des Mines de Nantes, France, Email: FirstName.LastName@mines-nantes.fr

‡ Université de Lorraine, France, Email: FirstName.LastName@univ-lorraine.fr

§ Université de Grenoble, France, Email: FirstName.LastName@imag.fr

FirstName.LastName@inria.fr
FirstName.LastName@mines-nantes.fr
FirstName.LastName@univ-lorraine.fr
FirstName.LastName@imag.fr

Ajout de fonctionnalités de virtualisation à
Grid’5000

Résumé : Dix ans environ après ses prémisses, la plate-forme Grid’5000
est devenue une des plates-formes les plus complètes utilisée pour la conception
et l’évaluation de systèmes distribués à grande échelle. Dédiée initialement au
calcul à haute performance, l’infrastructure a évolué pour supporter un ensemble
de problèmes plus vaste liés au calcul de type Desktop, l’internet des objets et
plus récemment l’informatique dans les nuages (aussi appelé Cloud Computing).

Ce rapport présente les améliorations récentes apportées au logiciels et pile
de services pour supporter les expérimentations à grande échelle utilisant les
technologies de virtualisation comme blocs de base. Nos contributions inclu-
ent le déploiement d’environnements logiciels customisés, la réservation de do-
maines réseaux dédiés et la possibilité de les isoler entre eux, et l’automatisation
des expérimentations grâce à une API REST. Nous illustrons l’intérêt de ces
contributions en décrivant trois expériences à large échelle sur la plate-forme
Grid’5000.

La première expérience utilise des machines virtuelles pour conduire des
expérimentations de grande taille sur 4000 pairs. La seconde expérience décrit
le déploiement de 10000 instances KVM sur 4 sites Grid’5000. Enfin le dernier
exemple présente un outil de déploiement simple pour déployer des solutions
de Cloud de type IaaS. La conclusion discute de prochains défis importants de
Grid’5000 liés à l’utilisation d’OpenFlow et à la gestion d’applications gérant
des grandes masses de données.

Mots-clés : Systèmes distribués, testbed à large échelle, virtualisation, infor-
matique en nuage, expérimentations

Adding Virtualization Capabilities to Grid’5000 3

1 Introduction

The evolution of technology allows larger and highly distributed systems to be
built, which provide new capabilities, in terms of applications as well as in terms
of infrastructures like peer-to-peer systems, Grids, and more recently (federa-
tions of) Cloud platforms. Such large scale distributed and parallel systems raise
specific research issues and computer science, as other sciences, needs instru-
ments to validate theoretical research results as well as software developments.
Although simulation and emulation are generally used to get a glance of the
behavior of new algorithms, they use over-simplified models in order to reduce
their execution time and thus cannot be accurate enough. Leveraging a scientific
instrument to perform actual experiments is a undeniable advantage. However
conducting experiments on real environments is still too often a challenge for
researchers, students, and practitioners: first, because of the unavailability of
dedicated resources but second also because of the inability to create controlled
experimental conditions, and to deal with the so large variability of software
requirements. Started in 2003 under the initiative of the French ministry of
Research, the Grid’5000 testbed is a scientific instrument for the study of large
scale parallel and distributed systems. With the aim of providing a highly re-
configurable, controllable and monitorable experimental platform [?], Grid’5000
was solid enough to attract more than 600 users and led to a large number of
research results and publications. Nowadays, Grid’5000 is internationally rec-
ognized and serves as a foundation for new scale platforms, e.g. FutureGrid [?]
in the USA. With almost ten years of background, several members of its scien-
tific or technical board are invited take part to di↵erent working groups, events
focusing on the design and the building of new experimental testbeds [?, ?] with
the ultimate objective of improving the quality of experiments.

The Grid’5000 instrument is continuously evolving toward providing more
flexibility, more control of both the electronic devices composing the infras-
tructure as well as of the experiments running over. The scientific and technical
boards carefully follow the major trends and the latest innovations of distributed
and parallel systems from both hardware and software point of views. This en-
ables to renew the infrastructure while ensuring the delivering of a testbed that
meets user-expectations. As an example, one of the most important change of
the last decade is the renewal of interest of virtualization technologies. The
“virtual machine” concept that enables to run any system over any other one
has radically changed the use of distributed systems, leading to new large-scale
platforms built upon shared data-centres and usually classified into the new
cloud-computing IaaS (Infrastructure-as-a-Service) paradigm. Indeed, in ad-
dition to abstract the complexity of IT systems, the use of virtualization is
motivated by the fact that physical resources are usually under-used and that
virtualization technologies enable to consolidate them and thus improve the
productivity of the whole platforms.

Considering that the current trend consists of ”virtualizing” all physical re-
sources, adding virtualization capabilities to Grid’5000 is obviously expected.
From the end-users point of view, the objective is twofold: first, it will enable to
leverage virtualization technologies to improve the quality of the experiments at
a larger scale. Second, it will enable to investigate new concerns related to the
management of virtualized infrastructures. Indeed, despite of the tremendous
progress in the virtualization area and the large number of companies providing

RR n° 8026

4 F. Desprez et al.

virtualized platforms for various users, several important issues remain to be
solved. Among them, Quality of Service (QoS), fault-tolerance, energy man-
agement, and scalability are major ones. Extending the Grid’5000 software and
services stack to investigate such concerns is important for the community. The
key progress, beyond the state of the art, is to provide the user with an infras-
tructure where each component can be virtualized. In addition to the system
virtualization capabilities provided by modern computers, Grid’5000 targets the
virtualization of active network equipments as well as storage facilities.

In this report, we describe the latest contributions of the Grid’5000 software
and services stack to make large-scale experiments involving low level virtual
technologies up to full IaaS software stacks. Grid’5000 is one the very few
platforms that allows to conduct such experiments between multi-sites and in
an isolated and reproductible manner.

The reminder of this report is structured as follows. In Section 2, we give
an overview of the Grid’5000 instrument. Section 3 describes the latest contri-
butions of the Grid’5000 software and service stack while Section 4 illustrates
the use of such contributions through discussing three use-cases. Other exper-
imental testbeds are introduced in Section 5. Finally, we discuss perspectives
and conclude this article in Section 6.

2 Grid’5000 Overview

In 2003, several teams working around parallel and distributed systems designed
a platform to support experiment-driven research in parallel and distributed
systems. This platform, called Grid’5000 [?] and opened to users since 2005,
was solid enough to attract a large number of users. It has led to a large
number of research results: 575 users per year, more than 700 research papers,
600 di↵erent experiments, 24 ANR projects and 10 European projects, 50 PhD,
and the creation of startup companies as well.

Grid’5000 is located mainly in France (see Figure 1), with one operational
site in Luxembourg and a second site, not implementing the complete stack, in
Porto Alegre, Brazil. Grid’5000 provides a testbed supporting experiments on
various types of distributed systems (high-performance computing, grids, peer-
to-peer systems, cloud computing, and others), on all layers of the software
stack. The core testbed currently comprises 10 sites. Grid’5000 is composed1

of 19 clusters, 1,171 nodes, and 7896 CPU cores, with various generations of
technology (Intel (60%), AMD (40%), CPUs from one to 12 cores, Myrinet,
Infiniband {S, D, Q}DR and 2 GPU clusters). A dedicated 10 Gbps backbone
network is provided by RENATER (the French National Research and Educa-
tion Network). In order to prevent Grid’5000 machines from being the source
of a distributed denial of service, connections from Grid’5000 to the Internet
are strictly limited to a list of whitelisted data and software sources, updated
on demand.

From the user point of view, Grid’5000 is a set of sites with the exact same
software environment. The driving idea is that users willing to face software
heterogeneity should add controlled heterogeneity themselves during their ex-
periments. Three basic workflows are supported when staging an experiment
on Grid’5000: a web interface-based workflow, an API-based workflow, and a

1on July 24th, 2012

Inria

Adding Virtualization Capabilities to Grid’5000 5

800 km

Bordeaux (154)
Grenoble (116)

Lille (100)

Luxembourg (22)

Lyon (79)

Nancy (236)

Reims (44)

Rennes (162)

Sophia (151)Toulouse (140)

Figure 1: Grid’5000 sites and their number of nodes.

shell-based workflow. These di↵er not only in the interfaces used but also in the
process they support.

The core steps identified to run an experiment are (1) finding and booking
suitable resources for the experiment and (2) deploying the experiment appara-
tus on the resources. Finding suitable resources can be approached in two ways:
either users browse a description of the available resources and then make a
booking, or they describe their needs to the system that will locate appropri-
ate resources. We believe both approaches should be supported, and therefore
a machine-readable description of Grid’5000 is available through the reference
API. It can be browsed by using a web interface or by running a program over
the API. At the same time, the resource scheduler on each site is fed with the
resource properties so that a user can ask for resources describing the required
properties (e.g., 25 nodes connected to the same switch with at least 8 cores and
32 GB of memory). Once matching resources are found, they can be reserved
either for exclusive access at a given time or for exclusive access when they
become available. In the latter case, a script is given at reservation time, as in
classical batch scheduling.

Several tools are provided to facilitate experiments. Most of them were origi-
nally developed specifically for Grid’5000. Grid’5000 users select and reserve re-
sources with the OAR batch scheduler [?, ?]. Users can install their own system
image on the nodes (without any virtualization layer) using Kadeploy [?]. Ex-
periments requiring network isolation can use KaVLAN to reconfigure switches
and isolate nodes from the test of the testbed. Several monitoring tools (re-
source usage on nodes with Ganglia, energy consumption) are also available.
All tools can be accessed by a REST API to ease the automation of experi-
ments using scripts. The tools used to support the experiments over Grid’5000

RR n° 8026

6 F. Desprez et al.

will be described in Section 3.
Di↵erent approaches to deploying the experimental apparatus are also sup-

ported. At the infrastructure level users either use the preconfigured environ-
ment on nodes, called the production environment, or they install their own
environment. An environment consists of a disk image to be copied on the node
and of the path in the disk image of the kernel to boot. This environment can
be prepared in advance by modifying and saving reference environments made
available to users, or a reference environment can be dynamically customized
after it is deployed on the resources. The approach chosen can a↵ect the re-
peatability of the results. Therefore, choices concerning the experiment testbed
environment are left to the experimenters.

Whatever approach used for the first two steps described here, access to
resources (sites and nodes) is done through SSH. Each site has its own NFS
server. This design decision was taken to ensure that resources of a particular
site can be used even when the link to other sites is undergoing maintenance.
In other words, the infrastructure does not depend on a single site to stay
operational—an important consideration because maintenance events become
frequent when 10 sites are operated.

3 A Software Stack to Support Experiments

This section describes four key Grid’5000 services that contribute to support
virtualization and Cloud experiments on Grid’5000. Kadeploy (Section 3.1) en-
ables users to deploy their software stacks of choice on the nodes. g5k-subnets

(Section 3.2) and KaVLAN (Section 3.3) provide two di↵erent ways to configure
the network (respectively by reserving IP address ranges, and by isolating an
experiment from the rest of the testbed using on-the-fly switches reconfigura-
tion). Finally, the Grid’5000 REST API (Section 3.4) uniformizes the access to
those services that facilitate the automated execution of experiments.

3.1 Providing Custom Experimental Environments with
Kadeploy

On most clusters, users do not have the option of changing the operating system
installed on nodes. This is a severe problem for experimentation, since experi-
menters often need to perform experiments in many di↵erent contexts in order
to extend the scope of an experimental result by verifying that it is not limited
to specific experimental conditions (specific kernel, library or compiler version,
configuration, etc.).

Grid’5000 enables the deployment of custom software stacks (including the
operating system) on bare hardware2. This allows users to perform experiments
without being bound to one particular Linux distribution or version, or even
operating system. Users could use their own modified Linux kernels to work on
live migration or memory deduplication techniques, or even install FreeBSD or
Solaris to evaluate the interest of process containers available on those operating
systems (such as FreeBSD Jails or OpenSolaris Zones) for Cloud computing.

While it is common for Cloud infrastructures to provide the ability to de-
ploy custom OS images in virtual machines, Grid’5000 provides this feature on

2This has been recently named as Hardware-as-a-Service.

Inria

Adding Virtualization Capabilities to Grid’5000 7

physical machines, which brings two advantages. First, it avoids the overhead
of the virtualization layer, which can be a problem when doing experiments
involving performance measurements. While the overhead is extremely low for
CPU-intensive workload, it can be much higher for IO-intensive workloads. Sec-
ond, it allows deployed environments to contain virtual machines themselves,
without requiring the use of nested virtualization (hypervisor inside a virtual
machine), which is not supported very well by today’s hypervisors.

On Grid’5000, the installation of custom OS images on nodes is implemented
using the Kadeploy [?] cluster provisioning system, which has been developed in
the context of the Grid’5000 project. Kadeploy achieves e�cient and scalable in-
stallation of system images using advanced mechanisms (adaptative tree-based
command execution thanks to TakTuk [?]; chain-based image broadcast [?]).
The deployment process is controlled by an automata to handle the unavoid-
able errors (due to unreliable protocols and hardware), and the corresponding
retry policies. Thanks to those features, the installation of a 1.5 GB image on
130 nodes takes less than 10 minutes. Additionally, instead of restricting de-
ployments to the system administrator, Kadeploy provides flexible permissions
management to allow users to start deployments on their own. This is used on
Grid’5000 to enable users to deploy their own deployment environments.

Grid’5000 users can provide their own deployment images, and install them
on nodes with no prior validation from the technical team. While minor prob-
lems have been encountered (e.g. a FreeBSD network driver that was disabling
– until the next reboot – the IPMI implementation sharing the Ethernet port
with the operating system), no major problem has been encountered due to this
policy. This is also an example of the security policy that is deployed throughout
Grid’5000. We focus on mitigating normal user errors, and on checking users be-
fore giving them access to the testbed, but we do not try much to fight malicious
actions from users since this would often limit the experimental capabilities of
the testbed at an unacceptable level.

3.2 Network Reservation with g5k-subnets

Virtual machines used during experiments must be accommodated on the
testbed’s network. While it is sometimes possible to limit experiments to purely
virtual networks (inside one physical machine, or spanning several physical ma-
chines using e.g. Open vSwitch), this would be a severe limitation. Additionally,
Grid’5000 is composed of several sites with routing between sites (Figure 1), and
di↵erent users can run concurrent experiments on the same Grid’5000 site.

Therefore, techniques to reserve address ranges or to isolate an experiment
from the rest of the testbed are needed. Grid’5000 provides two such solu-
tions: g5k-subnets (described in this section) extends Grid’5000 resource reser-
vation mechanism to allow users to reserve IP ranges for their virtual machines;
KaVLAN (presented in the next section) reconfigures network switches so that
an experiment is isolated from the rest of the testbed.

The whole 10/8 subnet (10.0.0.0�10.255.255.255) is dedicated to user virtual
machines on Grid’5000. The first half (10.0�10.127) is used for KaVLAN, while
the second half (10.128� 10.255) is used by g5k-subnets. Since Grid’5000 sites
are interconnected via L3 routing, the 10.128/9 network is divided into one /14
network per site (218 = 262144 IP addresses per site). This /14 network per site
is again divided, with the last /16 network (216 = 65536 IP addresses) dedicated

RR n° 8026

8 F. Desprez et al.

to attributing IP addresses over DHCP for machines in the 00:16:3E:XX:XX:XX
MAC range (which is the Xen reserved MAC range).

The last 3⇤216 = 196608 IP addresses are allocated through reservation with
g5k-subnets. g5k-subnets is integrated in the Resource Management System

used on Grid’5000, OAR [?]. Users can reserve a set of network IP addresses
(from /22 to a /16) at the same time as nodes: the following command reserves
two /22 ranges and 8 nodes:

oarsub -l slash 22=2+nodes=8 -I

Once a specific IP range has been allocated, users can retrieve it using a
command-line tool. Additional information, such as DNS servers, default gate-
way, broadcast address, etc. is made available through this tool.

It is worth noting that g5k-subnets only manages the reservation of IP ad-
dress ranges, not of MAC addresses. Since the available MAC address range
(47 bits, since one is used to indicate multicast frames) is much larger than the
available IP range (18 bits), choosing MAC addresses at random does not result
in significant chances of collision. This strategy is also used by several Cloud
software stacks.

Finally, g5k-subnets does not enforce the reservation. A malicious user could
steal IP addresses from a concurrent user. If a user requires stronger protection,
the use of KaVLAN is recommended.

3.3 Network Isolation with KaVLAN

In some cases, the reservation of IP ranges, as provided by g5k-subnets, is
not su�cient to satisfy the experimenters’ needs. Some experiments are either
too sensitive to external noise (coming from broadcasts, or from unsolicited
connections), or too disruptive (e.g. when using network discovery protocols
that rely on network broadcast). A typical example in experiments involving
virtualization is the installation of a DHCP server to serve IP addresses to virtual
machines. If not properly configured, it could start answering DHCP requests
from other nodes on the testbed. Such experiments cannot be performed on
the same network as other experiments, as they could compromise the testbed’s
infrastructure or other experiments, or be compromised themselves.

KaVLAN is a tool developed inside the Grid’5000 project that provides
controlled isolation of user experiments at the network level. KaVLAN isolates
experiments in their own 801.1q VLAN by reconfiguring the testbed’s switches
for the duration of the experiment. It can connect to switches using SNMP, SSH
and telnet, supports a number of di↵erent routers and switches (from Cisco, HP,
3com, Extreme Networks and Brocade), and can easily be extended to support
other products.

Several di↵erent types of VLANs are provided by KaVLAN to meet di↵erent
user needs (Figure 2):

• Local VLAN provides users with a fully isolated network that is only
accessible by connecting (generally using SSH) from a machine connected
to both the VLAN and the testbed’s network;

• Routed VLAN also provides users with a separate L2 network, but that
network can be reached from any node of the testbed since the network is
routed by the site’s router. It can typically be used to deploy a complex

Inria

Adding Virtualization Capabilities to Grid’5000 9

VLAN
type

Ethernet
isolation

IP
isolation

Multi-site
of

VLAN
local yes no no 3 per site
routed yes no no 3+3 per site
global yes no yes 1 per site

sit
e
A

sit
e
B

default VLAN

routing between
Grid’5000 sites

global VLANs

all nodes connected
at level 2, no routing

SSH gw

local, isolated VLAN

only accessible through
a SSH gateway connected

to both networks

routed VLAN

separate level 2 network,
reachable through routing

Figure 2: Types of VLAN provided by KaVLAN .

infrastructure including a DHCP server (e.g. a Cloud middleware) inside
the VLAN.

• Instead of providing isolation limited to one site (as with local and routed
VLAN), a Global VLAN provides a separate L2 network at the scale of
the testbed, using 802.1ad (Q-in-Q) on the testbed’s backbone network.
It is accessible from the default testbed’s network using routing.

KaVLAN is also used on Grid’5000 in order to provide temporary inter-
connections with other testbeds. For example, nodes can be removed from
Grid’5000, and integrated in another testbed, for the duration of an experi-
ment.

3.4 Providing a Unified Interface with a REST API

Some Grid’5000 services are traditionally used through command-line interfaces.
While this a good step towards enabling the automation of experiments through
scripting, it still has a few limitations:

• Developing user-friendly command-line interfaces is hard and time-
consuming.

• Ensuring consistency between several tools on the naming of parameters
or the formatting of outputs is hard, and even harder if backward com-
patibility must be supported.

RR n° 8026

10 F. Desprez et al.

• Several tools output large volumes of structured data. In that case, parsing
the output of a command in a script is inconvenient, as there is often a
need to handle error conditions at the same time.

• Running external commands from scripts is inconvenient, since those com-
mands often need to be executed on specific machines over SSH.

In order to overcome those limitations in Grid’5000, the focus has been put in
providing a consistent REST API that provides access to the various Grid’5000
services. The Grid’5000 API is composed of several more focused APIs:

Reference API: This API gives access to a detailed description of most el-
ements of the testbed, such as nodes (with their hardware description)
and network equipments and links. This API can be used by users to
find resources with specific characteristics (e.g. node with Intel Nehalem
architecture, and at least 24 GB or RAM), or to ensure that nodes are
still conforming to their description – a tool implementing this verifica-
tion runs on nodes at each boot. The detailed description is versionned as
at Grid’5000 scale the hardware evolves regularly as it is renewed. This
API gives access to all versions of the description to help tracability of
experiment results.

Monitoring API: This API provides the state of node (available for reser-
vation, used by a job currently running on the testbed, etc.). It can be
used by users, in combination with the Reference API, to find available
resources matching their needs.

Metrology API: This API provides a common interface to various sensors,
either software (e.g. Ganglia) or hardware (e.g. energy consumption).
Custom metrics can also be added. It is aimed at providing users with
the performance status of their nodes during their experiments.

Jobs API: While the OAR resource management system is traditionally used
through a command-line interface, this API provides a REST interface to
submit and manage jobs.

Deployments API: Similarly to the Jobs API, the Deployments API provides
a higher-level interface to Kadeploy.

Several interfaces have been developed on top of the Grid’5000 API. First, a
web interface enables users to perform most actions, including resource selection
(using the Reference API) and reservation (using the Jobs API). Command-line
tools have also been developed. For example, g5k-campaign aims at orches-
trating experiments startup. It is featured in Section 4.3 where it is used–with
custom engines–to deploy Cloud frameworks.

4 Grid’5000 and Virtualization Capabilities:
Use-Cases

This section presents three use-cases that leverage latest contributions and sys-
tem virtualization as building blocks. In the first one, virtualization is used as
a mean to temporary emulate a larger testbed composed of 4000 peers. In the

Inria

Adding Virtualization Capabilities to Grid’5000 11

second one, a set of scripts that enables the deployment of a significant num-
ber of VMs upon Grid’5000 is presented. Thanks to these scripts, end-users
may investigate particular concerns related to the management of large-scale
virtualized infrastructures at low-level. The last one deals with the automation
of IaaS deployment. Lot of Grid’5000 users want to investigate the impact of
the virtualization layer on a particular workload. Delivering a tool that relieves
end-users with the burden of deploying and configuring an IaaS system is a real
advantage. In such scenarios, Grid’5000 is seen as an IaaS platform where end-
users may provision VMs according to the needs of the applications. Although
adding virtualization capabilities to Grid’5000 is an on-going task targeting the
virtualization of all devices, we believe that these three use-cases are already
representative of a wide scope of experiments.

4.1 Testing the Scalability of Kadeploy by Deploying 4000
Virtual Machines

Large-scale testbeds are a rare resource. With its 1100+ nodes, Grid’5000 is
already one of the largest experimental testbeds. However, its size can still be
a limiting factor for some experiments. One example of such experiments is the
evaluation of the suitability of Kadeploy (presented in Section 3.1) to manage
Exascale clusters, which can be composed of thousands of compute nodes. On
Grid’5000, Kadeploy is installed using one separate installation per site, rather
than one global installation, which does not reflect the configuration expected
on Exascale clusters, with only one installation managing all the nodes.

We therefore performed a set of experiments on Grid’5000 to evaluate the
performance of Kadeploy when used to manage a 4000-nodes cluster [?]. In order
to create a level-2 network to accomodate all the virtual machines, we used
a global KaVLAN network spanning four sites with a diameter of 1000 km.
668 nodes where used during that experiment (out of 783 available with the
required capabilities). 635 were used to accomodate 3999 KVM virtual machines
(managed using custom-made scripts), while the remaining 33 nodes where used
to host the Kadeploy server, a DNS server, a DHCP server, and HTTP servers
used to serve the minimal system image used during the Kadeploy deployment.

The automated configuration of our 4000-nodes Kadeploy testbed took
40 minutes, decomposed in: 20 minutes to reserve and deploy 668 Grid’5000
nodes; 5 minutes to prepare all physical nodes; 15 minutes to instantiate the
4000 virtual machines. At this point, it was possible to perform Kadeploy de-
ployments over all the virtual machines. We performed a successful deployment
of 3838 virtual machines using a 430 MB-environment in 57 minutes.

While the success of this experiment demonstrates the ability of Kadeploy to
manage clusters of 4000 nodes as well as the adequacy of Grid’5000 to perform
large-scale experiments in virtualized environments, it also allowed us to identify
some bottlenecks in Kadeploy, which opened the path for future works.

4.2 Playing with VMs at Large-Scale

Live-migration of virtual machines is one of the key-point of virtualization tech-
nologies. Besides simplifying maintenance operations, it provides an undeniable
advantage to implement fine-grained scheduling policies such as consolidation
or load-balancing strategies.

RR n° 8026

12 F. Desprez et al.

However, manipulating VMs throughout a large-scale and highly-distributed
infrastructure as easy as traditional OSes handle processes on local nodes is still
facing several issues. Among the major ones, we can notice the implementation
of suited mechanisms to e�ciently schedule VMs and to ensure the access to
the VM images through di↵erent locations. Such mechanisms should assume to
be able to control, monitor, and communicate with both the host OSes and the
guest instances spread across the infrastructure at any time. If several works
have addressed these concerns, the real experiments are in most cases limited
to few nodes and there is a clear need to study such concerns at higher scales.
With this objective in mind, a set of scripts[?] have been designed over the
Grid’5000 software stack. They allow us to easily start a significant number of
KVM instances upon several sites of the testbed. These instances can then be
used at user convenience in order to investigate particular concerns such as, for
instance, the impact of migrating a large amount of VMs simultaneously or the
study of new proposals dealing with VM images management. Through the use
of a global VLAN (Section 3.3), the user may choose to virtualize all sites as a
unique one or not. This enables to avoid network domain issues when a VM is
migrated from one network to another one.

To deliver such a setup, the script goes through 3 logical steps:

Booking resources: Using the disco tool that provides multi-criteria and
multi-site search for available Grid’5000 resources, the first script is in
charge of finding the available nodes that support hardware virtualiza-
tion, booking them and requesting network resources (i.e. a /18 subnet
for the IPs and a global VLAN if need be). These resources are mandatory
to deal with IP assignment and routing within the infrastructure.

Deploying and configuring physical machines: This task consists of de-
ploying bare-metal hypervisors and installing the packages related to the
virtualization on the host machines. It is worth noting that during the
deployment phase, an additional option of Kadeploy enables to reboot
each physical machine inside a particular VLAN. The script is leveraging
this argument if the experiment involves several sites and a global VLAN
has been booked. At the end of the deployment, the global routing is con-
figured on each node and the network is isolated from the usual routing
policy (cf Section. 3.3).

Starting the virtual machines: The virtual instances are started simulta-
neously, using a hierarchical structure among the physical nodes. Each
virtual machine receives an IP address and a name leveraging g5k-subnets

and a round robin assignment policy. The correlation between name and
IP is stored in a dedicated file propagated on each physical node. This
allows us to identify and communicate with all the virtual machines. Fi-
nally, the name and the IP of each VM are configured by customizing the
related copy-on-write image before booting it.

The sequence diagram in Figure 3 illustrates these di↵erent steps.
Deploying such a large number of VM instances led to several concerns and

the use of additional scripts has been required. Leveraging Taktuk [?], these
scripts are used to propagate virtual machines images on each bare metal, to
communicate with all the virtual instances to check whether the VMs are up

Inria

Adding Virtualization Capabilities to Grid’5000 13

KaVLAN Kadeploy
Virtual
instances

G5k-
subnets

Run

Reserve

Physical
nodes

Deploy

Boot

OAR

Reserve
subnets

IP address
assignment

Reserve
VLAN

KaVLAN

Reboot
inside
VLAN

Figure 3: Sequence diagram of the infrastructure installation.

or not and to control the state of the whole system during the execution of
experiments.

Considering that physical machines must support hardware virtualization
to start KVM instances, the largest experiment that has been conducted up
to now involved 10240 KVM instances upon 512 nodes through 4 sites and 10
clusters. The whole setup is performed in less than 30 minutes with about 10
minutes spent on the deployment of the nodes, 5 minutes for the installation and
configuration of the required packages on the physical hosts, while 15 minutes are
dedicated to the booting of the virtual machines. The result of that work opens
doors to the manipulation of virtual machines over a distributed infrastructure
like traditional operating systems handle processes on a local node. This new
functionality is currently used to validate large scale algorithms in charge of
managing virtualized infrastructures such as [?].

4.3 Delivering Cloud Platforms in One-Click

Although Cloud Computing is gaining consensus from both scientific and in-
dustrial communities, its usage still faces some concerns that limit its adoption.
The impact of the virtualization technologies, the reliability of virtualized envi-
ronments and the lack of advanced provisioning technics are some examples of
such concerns.

They are at the core of a new research direction targeted by the Grid’5000
community, aiming at enabling experimental research at all levels of the Cloud
Computing stack. The first step towards investigating Infrastructure-as-a-
Service concerns within Grid’5000 was achieved through a set of “sky comput-
ing” tools [?]. Such tools enabled large-scale experiments that spanned across
Grid’5000 and FutureGrid [?], harnessing over 1500 cores for a federation of
several Nimbus Clouds [?]. These experiments showed that testbeds such as
Grid’5000 may play an essential role in providing researchers with configurable
Cloud platforms similar to commercially available Clouds.

However, the complexity of managing the deployment and tuning of large-
scale private Clouds emerged as a major drawback. Typically, users study spe-
cific Cloud components or carry out experiments involving applications running
in Cloud environments. A key requirement in this context is seamless access to

RR n° 8026

14 F. Desprez et al.

⌥ ⌅
1 deployment:
2 eng i n e :
3 name: opennebula
4 s i t e s :
5 r enne s :
6 nodes : 5
7 subnet : s l a s h 22=1
8 wa l l t ime : 2 : 0 0 : 0 0
9 opennebula :

10 c o n t r o l l e r u s e r : ”oneadmin”
11 c o n t r o l l e r g r o u p : ” c loud ”
12 hype r v i s o r : kvm
13 da t a s t o r e :
14 ONstore:
15 f i l e s y s t em : hdfs
16 vmimage:
17 t t y l i n u x :
18 path : /tmp/openNebulaImages/ t t y l i nux . img
19 da t a s t o r e : ”ONstore”⌃ ⇧

Figure 4: Configuration file for the OpenNebula g5k-campaign engine.

ready-to-use Cloud platforms, as well as full control of the deployment settings.
To address these needs, a one-click deployment tool for Infrastructure-as-a-
Service environments has been developed [?].

4.3.1 One-click IaaS Clouds with g5k-Campaign.

The deployment utility is designed to install and configure fully-functional Cloud
platforms over Grid’5000 in a fast and reliable manner. The current version of
the system supports two open-source IaaS Clouds, namely OpenNebula [?, ?]
and Nimbus [?, ?].

The deployment tool is built on top of g5k-campaign, a framework devised
for coordinating experiment workflows and launching repeatable experiments on
Grid’5000. G5k-campaign relies on extensible engines to describe experiments.
Such engines define the stages of an experiment: physical node reservations in
Grid’5000, environment deployment, configuration, and experiment execution.

To simplify user interaction with the Cloud deployment tools, the g5k-
campaign framework has been enhanced with a simple, yet powerful mechanism
to customize experiments. It relies on configuration files to specify user require-
ments in terms of reserved nodes and Cloud environment settings, which are
then transparently configured during the execution of the deployment engine.

A configuration file example is provided in Figure 4. It consists of several
YAML indented blocks that account for the various steps of the deployment
process. The deployment block includes Grid’5000 node reservation details,
such as the sites to be reserved and the number of nodes for each of them. The
opennebula block comprises configuration options for OpenNebula, ranging from
user information to VM storage mechanisms and APIs. Note that users can also
describe virtual machine images in the vmimage sub-block, to automate image
uploading into the OpenNebula system.

A wide range of Cloud-specific parameters can thus be managed by the
deployment tools, including hypervisor and virtualization settings, host nodes
configuration, installation of external packages, authentication settings, virtual
networks creation, configuration of the various storage mechanisms for VM im-

Inria

Adding Virtualization Capabilities to Grid’5000 15

OpenNebula
engine

Kadeploy
G5k-

subnets
OpenNebula

nodes
OAR

Run

Reserve

Installation results

OpenNebula
controller

Deploy

Send configuration

Get subnets

Parallel
Install

Parallel
Configure

Grid’5000
API

Reserve subnets

Parallel deploy

Figure 5: Sequence diagram of an OpenNebula engine execution.

ages and of the Cloud user interfaces.
The implementation of the Cloud deployment tools heavily relies on the

latest version of the Grid’5000 software stack introduced in Section 3. First,
to provide support for virtualization and full control over the environment, the
Cloud platforms are installed on standard environments deployed on the physical
machines through Kadeploy. The interaction with the Grid’5000 services is
implemented on top of the Grid’5000 API, which is in charge of managing the
node reservations and deployments, as well as of retrieving the available nodes
and reporting errors. Another essential building block is represented by the
g5k-subnets tool. It provides the virtual networks needed by the Cloud services
to equip VMs with appropriate IP addresses on each site.

4.3.2 Zoom on the OpenNebula deployment engine.

The engine is responsible for handling the installation process of the OpenNebula
environment, either from Debian packages or from specific source code archives.
It automatically carries out the deployment and configuration, with a particular
focus on storage mechanisms for virtual machines. Currently, the OpenNebula
engine supports ssh-based image propagation and shared storage based on NFS
(for single-site deployments) or HDFS [?] (for multi-site deployments), to enable
live migration and enhance scalability.

The OpenNebula engine can be executed by passing a configuration file,
such as the one given in Figure 4, to the g5k-campaign tool, which is in charge
of interpreting it and delivering the ready-to-use Cloud platform, as in the
following command:

g5k-campaign -C opennebulaMultisite.yml

The sequence diagram in Figure 5 describes the execution workflow of the
OpenNebula engine. First a node reservation is made for each site specified
in the configuration file through the Grid’5000 API. Along with the nodes,
the OAR system also reserves a range of virtual IPs corresponding to each
site. The next step is the parallel deployment of one or more environments
on the reserved nodes enabled by Kadeploy. Once the nodes are operational,
the OpenNebula engine retrieves the reserved IP ranges from each site and
then creates specific configuration settings for each node, according to their

RR n° 8026

16 F. Desprez et al.

role (e.g., the OpenNebula controller is assigned the list of host nodes). Finally,
OpenNebula is installed and configured on each node in parallel and the outcome
of these processes is returned to the engine. When the execution of the engine
is successfully completed, the user can access and perform experiments on the
deployed Cloud platform, for the duration of the Grid’5000 reservation defined
in the configuration file. These execution stages apply to both multi-site and
mono-site deployments, as their outcome is similar: a single Cloud comprising
one controller and a set of host nodes. The specificity of a multi-site Cloud is
that it will have access to several virtual networks, each of them corresponding
to a group of host nodes belonging to the same site.

The OpenNebula deployment engine is written in Ruby and the installa-
tion and configuration are done on each physical node by using the Chef [?]
configuration management framework. The Chef recipes are designed in a mod-
ular manner, to allow Cloud users to add or extend the current OpenNebula
configuration options. This tool was validated by installing OpenNebula on
80 physical nodes belonging to 3 Grid’5000 sites, on which we deployed 350 vir-
tual machines. The average time to deploy such a ready-to-use OpenNebula
Cloud is less than 20 minutes, with about 6 minutes spent on infrastructure
installation and configuration, while the rest is taken up by nodes reservation
and deployment. Moreover, subsequent re-deployments take only 5 minutes, as
the environments are already running and required packages are installed.

5 Related Work

Several experimental platforms exist over the world for di↵erent target sciences.
Around network and system research, Emulab [?] is a network testbed made

available to the international academic community since 2001. The original mo-
tivation is to provide a single site where users can deploy and execute replayable
networked experiments on dedicated hardware. The platform provides customiz-
able network and servers but it is not designed nor sized to host numerous and
large experiments related to virtualization, storage or power management. Pro-
togeni [?] is an USA national project that extends the concepts of Emulab. The
key concept is to build a federation of geographically distributed testbeds to pro-
vide users with a strongly heterogeneous infrastructure that will be suitable to a
larger variety of networked experiments on dedicated hardware. PlanetLab [?]
is a global research network that supports the development of new network
services (overlay networks) using virtualization. The topology of PlanetLab is
based on a large number (5̃00) sites with 2 or 3 nodes on each site. While it
provides a very interesting testbed from the point of view of the distribution
of the resources at a global scale for network-based experiments, experiments
running at the same time compete for machine-time and network links. There-
fore, experiences’ reproducibility is not guaranteed, and experiments involving
clusters or data centers are not possible. OneLab [?] provides an open federated
laboratory, built on PlanetLab Europe, which supports network research for the
Future Internet. Finally, FIT [?] from the 2010 French EQUIPEX call targets
the Future Internet of Things. It gathers three infrastructures, a cognitive radio
testbed, a set of embedded communicating object (ECO) testbeds, and a set of
wireless OneLab testbeds mostly designed for various network experiments.

Several Grid targeted platforms also exist along with Grid’5000. DAS-4 [?]

Inria

Adding Virtualization Capabilities to Grid’5000 17

is an experimental grid built in the Netherlands. It allows reproducible results
but the software stack cannot be configured. FutureGrid [?], which is part of
the NSF’s TeraGrid high-performance cyber infrastructure in the USA, provides
an architecture taking its inspiration from to the one developed in Grid’5000.
It targets researches on Grids and Clouds. It increases the capability of the
XSEDE to support innovative computer science research requiring access to
lower levels of the grid software stack, the networking software stack, and to
virtualization and workflow orchestration tools. There is also a large number
of production platforms (such as the GENCI supercomputers in France) that
are used for di↵erent areas of research. They are not mentioned here because
the software stack of their clusters cannot be adapted for low- level research
experiments or experiments using specific software stacks.

Finally, some platforms allow experiments on Clouds. Amazon EC2/S3 [?]
is a commercial Cloud (IaaS platform). While this platform is mainly made for
commercial and production applications, several computer science experiments
have recently performed on this platform. Google/IBM provided until October
2011 a Cloud running the Hadoop implementation of the MapReduce program-
ming interface. It could be used to test large-scale data application under this
protocol. BonFIRE [?] is a FP7 European project supported by the FIRE unit
(Future Internet Research and Experimentation) to build a testbed for Internet
of Services Experimentation. INRIA is a member of the BonFIRE consortium
and one of its 5 testbed providers, thus taking part in the construction of a
European-wide facility for experiment-driven research in Future Internet tech-
nologies. Finally, Open Cirrus [?, ?] targets experiments around Clouds on bare
hardware using distributed clusters available over the world. Led by private
companies, it allows multiple experiments using di↵erent services (physical re-
source allocation service, virtual machine resource allocation service, distributed
storage service, distributed computing frameworks). VLANs are used to isolate
experiments between each others.

6 Conclusions and Future Work

The ability to design and support experiments of large scale distributed algo-
rithms and software is now a mandatory aspect of computer science. When
it was started in 2003, the objective of the Grid’5000 project was to ensure
the availability of a scientific instrument for experiment-driven research in the
fields of large-scale parallel and distributed systems. It has since demonstrated
that its fundamental concepts and tools to support experiment-driven research
in parallel and distributed systems are solid enough attract a large number of
users and to stay pertinent even though the focus of research in these areas has
evolved in the past nine years. In the last years, Grid’5000 has had a structur-
ing e↵ect on research in parallel and distributed computing in France. Many
French ANR projects have been submitted by Grid’5000 users targeting this
platform as their validation instrument. Bridges have been set with produc-
tion grids. Several collaborations will also be set up with scientists of other
disciplines to help them port their applications at a higher scale, exploring new
algorithms and parallelization approaches, before using production grids or HPC
platforms. Moreover, this platform has been internationally recognized and it
serves as a foundation for new scale platforms such as FutureGrid in the US.

RR n° 8026

18 F. Desprez et al.

Hence, Grid’5000 has contributed to solve many challenges in the parallel and
distributed computing.

Through our experience in building a large scale and reconfigurable platform
and the evolution of researches towards virtualized infrastructures and Clouds,
we worked on new features and tools that allow such experiments to be deployed
over multiple sites. In this report, we gave an overview of these tools and the
way they can be used for di↵erent use cases. However the story is not over and
some work remains to be done around new functionnalities.

Whereas abstraction in programming languages enables to design and im-
plement complex IT systems through distributed infrastructures, system virtu-
alization has been mainly limited to one physical machine. With respect to the
current utilization of IT through networks in general and Internet in particular,
as well as the large amount of available data, the next steps consist in extend-
ing virtualization concepts to network and storage facilities. The OpenFlow [?]
standard that allows researchers to deploy routing and switching protocols over
networks will certainly ease the deployment of large scale network-based exper-
iments. Big Data is also a major research issues for several sciences as well as
business applications. Allowing the design of new middleware frameworks for
such applications will also require at least new hardware for our experimental
platforms (including large number of SSD drives). Finally, we learned that the
tools used for the deployment of large scale experiments involving several dif-
ferent software stacks need to be as simple as possible. Simplifying the use of
our platform for users is thus also one of our major tasks in the near future.

Acknowledgments

The Grid’5000 experimental testbed and all development actions are super-
vised and financed by the INRIA ALADDIN framework with support from
CNRS, RENATER, and several Universities as well as other funding bodies
(see https://www.grid5000.fr). Grid’5000 experiments are partially supported
by the INRIA large scale initiative Hemera. The IaaS deployment utility is a
particular action developed with the support of the EIT ICT Labs.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Grid'5000 Overview
	A Software Stack to Support Experiments
	Providing Custom Experimental Environments with Kadeploy
	Network Reservation with g5k-subnets
	Network Isolation with KaVLAN
	Providing a Unified Interface with a REST API

	Grid'5000 and Virtualization Capabilities: Use-Cases
	Testing the Scalability of Kadeploy by Deploying 4000 Virtual Machines
	Playing with VMs at Large-Scale
	Delivering Cloud Platforms in One-Click
	One-click IaaS Clouds with g5k-Campaign.
	Zoom on the OpenNebula deployment engine.

	Related Work
	Conclusions and Future Work

