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With object-oriented programming, classes and inheritance have sometimes been considered as a
definitive answer to the need for modularity and reusability in programming languages. However,
this view of object-oriented languages is often considered as too limited and many authors have
claimed that classes do not make appropriate modules. On the one hand, separate concerns are
generally distributed on a set of closely related classes, while on the other, a class implements sev-
eral unrelated concerns. The so-called expression problem stresses this limitation of the traditional
view on object-oriented programming, which makes it easy to add new classes but quite impossible
to add concerns to previously defined classes. Accordingly, recent research has yielded a lot of
proposals addressing these commonly agreed needs. These proposals are based on various notions,
e.g. virtual classes, higher-order hierarchies, nested inheritance, mixin layers or classboxes. All of
these proposals are very similar and significantly different, so comparing and evaluating them is
not easy, and selecting or designing the ‘best’ one is a challenge. Moreover, an entire research field
has emerged, i.e. aspect-oriented programming, dedicated to separation of crosscutting concerns.

In this paper, we propose two coupled notions of modules and class refinement which provide
the required modularity and reusability and represent a pretty good response to the expression
problem. However, the goal of this paper is not only to propose these new notions—they are actu-
ally close to previous propositions, though somewhat different—but also to base this proposal on
very simple and intuitive notions that already underlie object-oriented languages. Meta-modeling
is the key of our approach and we use it as a sound criterion to select a precise specification among
a large state space. We first propose a meta-model of classes and properties (i.e. methods and
attributes), which provides clear insight into inheritance, especially when multiple. The point is
that modules and module dependence are specified by a second meta-model which is isomorphic to
the first one. Finally, this proposal is not only based on conceptual and theoretical considerations.
Modules and class refinement are distinctive features of a new object-oriented language, Prm, and
they are intensively used in the organization of its libraries and tools.
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1. INTRODUCTION

Modularity and reusability are key requirements in the field of software engineering.
Object-oriented languages are generally understood as meeting these requirements
by providing two original features, namely the notion of class and the inheritance
mechanism. A class is both a data structure and a code unit. Classes are organized
in a specialization relationship which supports a powerful sharing mechanism, i.e.
inheritance—the newly defined subclass inherits all features defined in its super-
classes. Hence, in the most common understanding of object-oriented languages,
classes are modules—i.e. units of code which serve for both information hiding
and reuse—and inheritance is the main support to reusability and extendability.
Furthermore, from the very beginning of object-oriented programming, with the
Simula language [Birtwistle et al. 1973], this role of modules played by classes is
reinforced, in many languages, by class nesting.

However, this view of object-oriented languages is also criticized and some authors
have claimed that classes do not make suitable modules because classes and modules
have distinct roles—modules structure programs while classes describe and create
objects [Szyperski 1992]. From a more technical standpoint, a class is appropriate
for information hiding if it is a simple abstract data type such as a stack. If several
classes collaborate closely to implement a function, these classes are no longer
appropriate as units of information hiding [Ichisugi and Tanaka 2002]. Accordingly,
classes are considered as modules of too small scale [Smaragdakis and Batory 2002].
However, on the contrary, a class, or a set of classes, often involves several functions,
or concerns, which are reputed to cross-cut—this makes classes also inappropriate
as reuse units. The so-called expression problem [Findler and Flatt 1999; Torgersen
1994; Zenger and Odersky 2004] stresses the limitation of this traditional view on
object-oriented programming. A class or a set of classes express a set of concerns.
Object-oriented languages make it easy to add new classes or to add new concerns to
new subclasses. However, it is usually impossible to add new concerns to the original
set of classes. Altogether, there is a need for notions that would provide larger-scale
modularity, by grouping collaborative classes and separating cross-cutting concerns,
while improving reusability and extendability.

Accordingly, recent research has yielded a lot of proposals addressing these com-
monly agreed needs. Collaboration-based design [VanHilst and Notkin 1996] and
family polymorphism [Ernst 2001] have been proposed for grouping closely col-
laborating classes. Many other proposals are based on variations on modules
or class nesting, e.g. virtual classes [Madsen and Møller-Pedersen 1989], mixin
layers [Smaragdakis and Batory 1998; 2002], open classes [Clifton et al. 2000],
difference-based modules [Ichisugi and Tanaka 2002], classboxes [Bergel et al. 2003],
higher-order hierarchies [Ernst 2003], nested inheritance [Nystrom et al. 2004] and
multiple nested inheritance [Nystrom et al. 2006]. Moreover, an entire research
field has emerged, aspect-oriented programming (AOP), dedicated to separation of
cross-cutting concerns [Kiczales et al. 1997]. All of these proposals are very similar
but yet significantly different, so comparing them is not easy [Bergel et al. 2006]
and deciding which is the best is a challenge, if at all meaningful.

In this paper, we focus on two coupled notions of class refinement—a class can
be extended by adding/redefining methods and attributes and adding superclasses
September 5, 2007, to be submitted to ACM Trans. Program. Lang. Syst.
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while retaining its name—and module hierarchy—a module can refine1 classes im-
ported from its ‘super’-modules. The point is that the class refinement is deduced
from the module hierarchy and that classes and modules are strictly distinguished—
so, there is no nesting of classes or modules. One can see the proposed approach
either as an incremental class definition or as inheritance between class hierar-
chies. Altogether, modules and class refinement provide the required modularity
and reusability and pretty well address the expression problem.

It follows from class refinement that the inheritance mechanism is now supported
by both specialization and refinement. Hence, ‘multiple inheritance’ is ubiquitous
in all of these approaches since it always appears when class specialization and
module dependence are combined, even if both are single. Therefore, it is futile
to try to avoid it and our proposal stresses both multiple specialization2 in class
hierarchies and multiple dependence in the module hierarchy. On the contrary, most
of the aforementioned works are based on single inheritance class hierarchies or on
a degraded form of multiple inheritance, e.g. Java interface multiple subtyping,
mixins [Bracha and Cook 1990] or traits [Ducasse et al. 2005].

However, the goal of this paper is not only to propose these new notions—they
are actually close to some previous propositions, though somewhat different—but
to base this proposal on very simple and intuitive notions that already underlie
object-oriented languages. Meta-modeling is the key of our approach and an open
sesame to the selection of a precise specification among a large state space. Our
fundamental argument is that things are not names and metamodeling allows us
to get rid of names and their associated ambiguities, while usual considerations
on scope and extent are unable to simply take the specificity of object-oriented
programming into account. So we first propose a metamodel of classes and prop-
erties3, which provides clear insight into inheritance, especially when multiple, and
redefinition. This first metamodel provides an ontology of all related entities—what
is a property? what is common to a property and its redefinition in a subclass?
and conversely, what is a name? So, the metamodel precisely specifies the meaning
of basic operations on properties, namely definition, introduction, inheritance and
redefinition.

The keystone of our proposal is that modules and module dependence are speci-
fied by a second metamodel which is isomorphic to the first one. Module dependence
hierarchies are analogues of class specialization hierarchies, classes in modules are
analogous to properties in classes, and class refinement is analogous to property
redefinition. This very nice property yields a rather simple and intuitive formal
definition of our central couple of notions. Furthermore, this proposal is not only

1In this context, ‘refinement’ is preferred over ‘extension’ to avoid confusion with a common usage
of the term ‘class extension’ for denoting class specialization, as with the Java extends keyword.
See also [Smaragdakis and Batory 2002, note 1] and [Bergel et al. 2005, note 1].
2 In this paper, we carefully distinguish the specialization relationship, which supports inheritance,
from inheritance itself. Therefore, the terms ‘single’ or ‘multiple inheritance’, according to whether
a class can have more than one superclass, are improper—one should speak of single or multiple
specialization—but this metonymical usage is now so common that we cannot escape it.
3The object-oriented terminology is quite variable, according to authors and languages. We use
the term ‘property’ with the same meaning as ‘feature’ in Eiffel or ‘member’ in C++. Hence, it
denotes both methods (aka ‘routine’, ‘function member’) and attributes (aka ‘instance variable’,
‘field’, ‘slot’, ‘data member’).
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based on conceptual and theoretical considerations. Modules and class refinement
are distinctive features of a new object-oriented language, Prm4 [Privat 2006b],
and they are intensively used in the organization of its libraries and tools. The
modular architecture of its bootstrapped compiler Prmc has been designed to use
as a testbed for evaluating various object-oriented implementation techniques [Pri-
vat and Ducournau 2005], thus making it easy to replace a module by another one,
offering the same functionality with a different implementation.

Finally, in order to precisely fix our framework, this paper focuses on static typ-
ing languages. Besides the fact that static typing fully meets software engineering
requirements, the point with modules and refinement is to define static semantics,
which must be separately established for each module. On the contrary, dynamic
typing is generally less compatible with static analysis. Moreover, this is also a
technical constraint yielded by the metamodel—dynamic typing eliminates its de-
ciding effect on multiple inheritance. Dynamic loading is beyond the scope of this
paper, the adaptation of modules and class refinement to such a dynamic framework
remains to be investigated.

So, to conclude this introduction, the novelty of the present paper is threefold:
(i) a metamodel of classes and properties which clarifies the basic notions of object-
oriented programming and yields a sound analysis of multiple inheritance and its
associated conflicts; (ii) the specification of class refinement and module dependence
hierarchy in an isomorphic metamodel where multiple dependence between mod-
ules is analogous to multiple class specialization, and multiple class refinement and
combination of refinement and specialization are handled like multiple class spe-
cialization; and (iii) the application of the previous two points to a new language,
Prm, and to the architecture of its bootstrapped compiler.

Paper organization and plan

The article is organized as follows. Section 2 provides an intuitive presentation, on
a simple example, of modules and class refinement. The next three sections are
the core of the proposal. Section 3 presents the metamodel (i.e. an Uml model) of
classes and properties, and analyzes the meaning of class specialization and prop-
erty inheritance. The metamodel is formalized in a simple set-theoretical way.
Section 4 uses the metamodel to shed light on the somewhat well-known difficulties
of multiple inheritance, which involve the two distinct inheritance levels—and the
associated conflicts—which were previously identified in [Ducournau et al. 1995].
The specifications of the most commonly used object-oriented languages are com-
pared with the metamodel and some alternatives to multiple inheritance, e.g. mixins
or traits, are examined. Section 5 formalizes modules and module dependence in
a metamodel which is structurally isomorphic to that of classes and properties. In
this framework, class refinement appears as an exact analogue of property redefi-
nition. Section 6 presents a case study, by describing the Prm language and the
modular architecture of its bootstrapped compiler, Prmc. The implementation of
our proposal is outlined—a nice feature is that it does not entail any overhead at

4Prm stands for Programming with Refinement and Modules, which of course implies object-
oriented Programming with class Refinement and Modules. More information is available on the
Prm homepage: http://www.lirmm.fr/prm.
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run time. Section 7 surveys various related works. Finally, the last section con-
cludes the paper by presenting the current perspectives together with the known
limitations of our proposal.

2. MODULES AN CLASS REFINEMENT: PRINCIPLE AND EXAMPLE

2.1 Principle

One can present the refinement of a class c1 by a class c2 as an incremental class
definition in which the properties (attributes and methods) defined in c2 are added
or take the place of those of c1. Of course, this sentence also applies to specializa-
tion but, in contrast with specialization, once c1 has been refined by c2, the latter
takes the place of the former in all of its occurrences throughout the program, i.e.
all instances of c1 will be instances of c2. In practice, this means that c1 and c2

have the same name and, once c2 has been defined, throughout the program, this
name denotes c2. Intuitively, this is the only difference between refinement and
specialization. Such a mechanism is relatively common in languages with dynamic
typing. In object-oriented extensions of Lisp, like Clos [DeMichiel and Gabriel
1987; Steele 1990], this is mainly reserved to methods as they are defined across and
outside classes. In another Lisp-based object-oriented language, Yafool [Ducour-
nau 1991], incremental class definition was commonly used and object-oriented
modules were coupled with functional modules, à la Modula, of the underlying
Lisp dialect, namely LeLisp [Chailloux 1993]. All languages supporting a metaob-
ject protocol [Kiczales et al. 1991] should also be able to support refinement, even
though experiments show that these protocols are not always adapted to dynamic
class modifications.

More recently, different proposals have considered similar notions in a static typ-
ing framework. Now, class refinement is coupled with a notion of module, in its
simplest and quite traditional form, which makes static analysis relevant. These
proposals are based on various extensions of the object model called mixin ‘lay-
ers’ [Smaragdakis and Batory 1998; 2002], ‘difference-based’ modules [Ichisugi and
Tanaka 2002], ‘higher-order’ hierarchies [Ernst 2003], ‘nested’ inheritance [Nystrom
et al. 2004; Nystrom et al. 2006] or class ‘boxes’ [Bergel et al. 2005]. Our proposal
is within the scope of these approaches and our definition of these notions—similar
to these different proposals but not strictly equivalent—is the following.

A module is a class hierarchy, i.e. a set of classes ordered by specialization. It
is a reuse unit [Szyperski 1992] which can be separately compiled and then linked
to other modules to produce a final executable. On the contrary, classes are no
longer reuse units and there is no class nesting. A module depends on a set of other
modules (called supermodules) and can refine classes imported from them. The de-
pendence relation is acyclic, like class specialization. Our usage of ‘submodule’ and
‘supermodule’ is a pure matter of convenience, by analogy with ‘subclass’ and ‘su-
perclass’. In any case, a submodule is definitely not included in its supermodule—
there is no module nesting either. The class refinement order is then deduced from
the dependence order between the modules. Finally, we do not associate a notion
of visibility (or export) with modules, because this is not critical to the issue dealt
with here. Of course, this would be of practical use and a natural extension, in the
tradition of Modula-2 and -3 [Harbinson 1992]. However, the interaction between
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Fig. 1. Concrete Example
with Modules and Class Re-
finement. Each module is
depicted as a boxed UML-
like model. Both class spe-
cialization and module de-
pendence are explicit. In
contrast, class refinement
is implied by module de-
pendence, e.g. Computer

in module appliance re-
fines Computer in module
computer.
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refinement and visibility may not be straightforward and we prefer to postpone
this point for further work. As a first approximation, the reader may consider that
refinement only concerns visible, i.e. exported, entities.

Regarding class refinement, we identify four atomic mechanisms:

(1) adding a property, i.e. the definition of a newly introduced method or attribute;
(2) redefining (aka overriding) a property—this is more common for methods than

for attributes;
(3) adding a superclass, since we consider languages with multiple inheritance;
(4) generalizing a property, i.e. defining a property in superclasses of the class which

introduced it in the supermodules;

The latter presents another difference with specialization which just involves the
first three points.

A fifth mechanism might also be considered—namely unifying classes, i.e. as-
serting that two classes defined in different modules are the same by merging their
definitions. However, in the present paper, we shall only examine the first four
mechanisms, leaving class unification for further research.

Like specialization and inheritance, refinement is quite intuitive when the differ-
ent refinements are totally ordered—in an analogue of single inheritance. However,
it is not obvious how to extend this intuition to multiple refinement of one class or
to a combination of refinement and specialization, since their ordering does matter.
While dynamic languages can use the chronological ordering of class definitions, at
the risk of making the semantics depend on the control flow of each execution, this
is not possible when class refinement is computed at compile-time.

2.2 Example

This section presents an example of four modules (Fig. 1) to illustrate a concrete
application of the class refinement mechanism. The example is written in Prm [Pri-
vat 2006b]. The syntax has a simple straightforward style: class definitions start
with the class keyword and property definitions (attributes and methods) start
with the def keyword. Attribute names start with a @ character. As modules are
reuse units, each Prm source file is a module.
September 5, 2007, to be submitted to ACM Trans. Program. Lang. Syst.
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-a Computer Module

class Computer
def switch_on_off ...

end
class PC

inherit Computer
...

end

-b Appliance Module

import computer
class Appliance

def switch_on_off ...
end
class Computer

inherit Appliance
end
class Lamp

inherit Appliance
def switch_on_off ...

end
class ExpressoMaker

inherit Appliance
def switch_on_off ...

end

-c Hypergraph Module

class Hypergraph
def @nodes: Array[Vertex]
def @edges: Array[Edge]
def is_connected ...
def diameter ...

end
class Vertex

def @edges: Array[Edge]
...

end
class Edge

def @nodes: Array[Vertex]
...

end

-d Network Module

import hypergraph
import computer
class Computer

inherit Vertex
def @hostname: String
def switch_on_off ...

end

Fig. 2. Module Implementations of Figure 1

Computer Module. The first module models the workings of a computer (Fig.
2-a). It defines a Computer class, subclasses for different computer types and other
classes for devices.

Appliance Module. A programmer wants to generalize computer behavior with
other appliances like lamps or expresso makers without changing the computer mod-
ule. A new abstract class, Appliance, is created as an ancestor of Computer (adding a
superclass), and is specialized by two classes: Lamp and ExpressoMaker. Appliances
use electricity, and can be powered on and off: the switch on/off method defined
in the Computer class must be generalized in the Appliance class (property gener-
alization), and then specialized in both Lamp and ExpressoMaker subclasses. The
import keyword5 at the first line of the implementation (Fig. 2-b) declares that the
computer module is a supermodule. Hence, classes from the computer module are
imported and the Computer class is refined.

Hypergraph Module. This module models finite hypergraphs, i.e. a generalization
of graphs in which edges contain any number of vertices (Fig. 2-c). Methods of the
Hypergraph class implement two algorithms: is connected returning true iff there
is a path between any couple of vertices and diameter computing the maximal
distance between two vertices of the graph.

Network Module. Both computer and hypergraph modules are independent and
might be developed for different programs by different programmers. Class re-
finement allows programmers to easily create a derived module and to model

5The import keyword may seem improper for expressing the module dependence relationship,
but it is coherent with the metonymical use of the inherit keyword and common object-oriented
terminology (see also Note 2, page 3).
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8 · Roland Ducournau, Floréal Morandat and Jean Privat

PC

Device

Screen Keyboard

vendor

Mac

Appliance

Lamp ExpressoMaker

switch on/off

switch on/off switch on/off

VertexEdge

diameter

is_conneted

Hypergraph

Computer

hostname

switch on/off

Fig. 3. Final Class Model of the Program

networks—Fig. 2-d. On a network, every computer has an hostname. Hence, a
new attribute, hostname, is added to the Computer class (property addition). More-
over, complex networks, e.g. Internet, can be represented by hypergraphs with
computers as vertices. For this reason, a specialization relation is added between
Vertex class and Computer class (adding a superclass). When a computer is pow-
ered on, it becomes reachable on the network and unreachable when it is powered
off. Hence, in order to characterize the computer state on the network, the switch

on/off method is redefined (method redefinition). All of these modifications made
on the Computer class are naturally inherited by PCs and Macs.

Final Program. For programs which merge these four modules, each class is im-
ported (Fig. 3) and the final Computer class consists of the combination of the
Computer class declarations from the above modules as follows: Computer is a super-
class of PC and Mac (from computer), it is also a subclass of Vertex (from network)
and of Appliance (from appliance). It has a switch on/off method (the one de-
clared in network overrides that from computer) and a hostname attribute (from
network).

3. CLASS AND PROPERTY METAMODEL

In this section, we present a metamodel for classes and properties in object-oriented
languages. Here, we only consider properties which are described in a class but ded-
icated to its instances, and which depend on their dynamic types. Class properties,
i.e. properties which only concern the class itself, not its instances, are excluded
from the scope of the metamodel. Hence, we do not consider either static methods
and variables, the fact that a class may be abstract (aka deferred), or properties
which would be called non-virtual in C++ jargon—we only consider properties
which are concerned by late binding, hence tagged by the virtual keyword in
C++ when considering methods6. In Clos, however, we would also consider slots
declared with :allocation :class.

6‘Virtual’ comes from Simula and has several usages—virtual functions (Simula, C++) and vir-
tual multiple inheritance (C++). It can be understood as ‘redefinable’, in the sense of ‘redefinition’
in the present paper—hence, submitted to late binding and depending on the dynamic type of
some ‘receiver’.
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This metamodel is intended to be both intuitive and universal. It is likely very
close to the intuition of most programmers, when they think of object-oriented
concepts. It is universal in the sense that it is not dedicated to a specific language
and it is very close to the specifications of most statically typed object-oriented
languages, at least when they are used in a simple way. It can be considered as an
implicit metamodel of Java and Eiffel—in the latter case, with a limited use of
renaming—but it has never been explicitly described in any programming language
nor even in Uml [OMG 2004].

In the following, we successively present an Uml model which provides an in-
formal idea of the metamodel, then a more formal set-theoretical definition. The
analysis of multiple inheritance conflicts, and the comparison with existing lan-
guages will be tackled in Section 4.

3.1 The Uml model

3.1.1 Object-oriented meta-modeling of object-oriented languages. In an object-
oriented setting, metamodeling is a powerful tool which supports intuition and
serves as an operational semantics when some meta-object protocol is added. A
nice example is the analysis of classes, metaclasses and instantiation made in the
ObjVlisp model7 [Cointe 1987]. Meta-modeling some part of an object-oriented
programming language amounts to defining an object model—i.e. entities like classes,
associations, attributes, methods, etc.—for modeling the considered concepts of
the language8. To this basic specification, we add the following requirement for
unambiguity—actually, a metamodel should always be a specification of the mean-
ing of names in a program.

Requirement 3.1 (Context-dependent unambiguity). In the modeled program,
any occurrence of an identifier denoting a modeled entity must unambiguously
map to a single instance of the metamodel. Of course, this mapping is context-
dependent.

Accordingly, metamodeling allows to get rid of names when considering the modeled
entities. This will prove to be of great value, as most difficulties yielded by object-
oriented programming lie in the interpretation of names.

Conversely, following Occam’s Razor, meta-modeling should aim at minimality.
As a counter-example, the Clos reflective kernel includes, but is far larger than,
the ObjVlisp model. It may be necessary for fully implementing Clos, but it is
useless for conceptually modeling classes, superclasses and instantiation. Models
must remain partial.

3.1.2 Classes and properties. The metamodel consists of three main kinds of
entities: classes, local properties and global properties—Fig. 4. The former is of
course natural, but the two latter are key features of the model. When one wants

7We take ObjVlisp as an example because it focuses on its object—namely, classes and meta-
classes, in their purest form. Actually, the reflective kernel of ObjVlisp is also present in Clos
and in other works on reflection, e.g. [Forman and Danforth 1999]. In contrast, it is not compatible
with the Smalltalk reflective kernel [Goldberg and Robson 1983].
8Here, we adopt a very restrictive meaning of the term ‘metamodel’, which is much more general—
we only consider reflective object-oriented metamodels.
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Fig. 4. Metamodel of Classes and Properties

to metamodel properties, it follows from Requirement 3.1 that late binding (aka
message sending) implies the definition of exactly two categories of entities. Local
properties correspond to the attributes and methods as they are defined in a class,
independently of other possible definitions of the ‘same property’ in superclasses
or subclasses. Global properties are intended to model this ‘same property’ idea
in different related classes. They correspond to messages that the instances of a
class can answer—in the case of methods, the answer is the invocation of the cor-
responding local property of the dynamic type of the receiver. Each local property
belongs to a single global property and is defined in a single class. Global and
local properties should in turn be specialized into attributes and methods. In the
following, ‘property’ stands for both, though the main complication involves the
methods—indeed, attributes are usually quite simpler, though languages such as
Clos or Eiffel accept full attribute redefinition. A proper distinction between
attributes and methods may be not straightforward since it is sound to accept, as
in Eiffel, that a method without parameters can be redefined by an attribute.
However, there is no need to detail this here. Anyway, a partial but more intuitive
translation of our terminology is possible—global (resp. local) properties stand for
methods (resp. method implementations).

A class definition is a triplet consisting of the name of the class, the name of its
superclasses, presumably already defined, and a set of local property definitions.
The specialization relation supports an inheritance mechanism—i.e. classes inherit
the properties of their superclasses. When translated in terms of the metamodel,
this yields two-level inheritance. First of all, the new class inherits from its super-
classes all their global properties—this is global property inheritance. The subclass
knows all the global properties known by the superclasses. Then each local prop-
erty definition is processed. If the name9 of the local property is the same as that
of an inherited global property, the new local property is attached to the global

9The ‘name’ of properties is a convenient shorthand for more complex identifiers. Static over-
loading of C++, Java, C#, etc. forces, in these languages, to include the parameter types in the
identifier in order to unambiguously denote properties. This implies distinguishing short names
and long names. In the present framework, static overloading is formally defined by the fact that
a class knows two global properties with the same short name but different long names.
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property. If there is no such inherited global property, a new global property with
the same name is introduced in the class. We do not consider here the questionable
possibility of introducing a new global property with the same name as an inherited
one, as with the reintroduce keyword in TurboPascal.

Local property inheritance takes place at run-time—though most implementa-
tions statically precompile it. A call site x.foo(args) represents the invocation of
the global property named foo of the static type (say A) of the receiver x. The static
typing requirement appears here—in a dynamic typing framework, for instance in
Smalltalk, there is no way to distinguish different global properties with the same
name while satisfying Requirement 3.1. Static overloading can also slightly compli-
cate the point. If the name ‘foo’ is overloaded in A, i.e. if A knows several global
properties named foo, which differ by their parameter types or number, a single
one, i.e. the most specific according to formal and actual parameter types, must
be selected at compile-time. A conflict may occur when the most specific property
is not unique, e.g. when there is multiple inheritance between parameter types, or
with multiple contravariant parameters. Such conflicts can be easily solved by sim-
ply making actual parameter types more precise, i.e. paradoxically more general,
at the call site. Anyway, at run-time, this call site is interpreted as the invocation
of the single local property corresponding to both the single statically selected
global property, and the dynamic type of the value bound to x, i.e. the class which
has instantiated it. Therefore, when no such local property is defined in the con-
sidered class, a local property of the same global property must be inherited from
superclasses. Static typing ensures that such a local property exists.

3.1.3 Example. The Java example in Figure 5 defines seven entities of our
metamodel—two classes, A and B; three local properties, the method foo defined
in A and the methods foo and bar defined in B; two global properties, respectively
introduced as foo in A and as bar in B. The corresponding numbered instance di-
agram specifies the unambiguous mapping between the code and the instances of
the metamodel (Req. 3.1).

The instantiation of the metamodel proceeds as follows, as the code is read:

—A class is first created; it does not inherit any explicit global property—in practice,
it would inherit all global properties introduced in the hierarchy root, Object;

—a method named foo is defined in A: the corresponding local property (1) is
created and, since A does not know any global property with this name, a global
property (4) foo is introduced;

—B class is then created as a specialization of A; it then inherits all explicit global
properties from A, especially the global property foo;

—a method named foo is defined in B: the corresponding local property (2) is
created and attached to the global property (4) foo inherited from A—this is a
redefinition;

—a method named bar is defined: the corresponding local property (3) is created
and, since B does not know any global property named bar, then a global property
(5) bar is introduced;

—in the following code sequence, foo (resp. bar) is understood as the single global
property named foo (resp. bar) which is known by the static type A (resp. B) of
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class A {
1 public void foo()

{...}
}

class B extends A {
2 public void foo()

{...}
3 public void bar()

{...}
}

...

{...
A x
B y

4 x.foo()
5 y.bar()

...}

name=B
B : Class

name = foo

A:foo::A : LocalP

name = bar

B:bar::B : LocalP

name = bar

B:bar : GlobalP

name = foo

A:foo : GlobalP

name = foo

A:foo::B : LocalP

name=B
B : Class
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Fig. 5. A simple Java example and the corresponding instance diagram

the receiver x (resp. y); changing the static type of x from A to B would not change
the mapping but doing the converse for y would yield a static type error—A class
does not know any global property named bar.

—finally, at run-time, the invocation of foo will call the local property defined in
A or in B, according to the actual dynamic type of the value of x—this is late
binding, as usual.

Besides the formalization of basic object-oriented concepts which follows in the
next sections, the expected advantage of such a metamodel is that all program-
ming tools could get rid of names and their associated ambiguities and instead just
consider reified entities. Actually, these reified entities represent the ‘reality’—the
ontology—of object-oriented programs and names should remain at the human-
computer interface.

3.2 Notations and Formal Definitions

This section first defines a model in a static way—i.e. its components and their
relationships—then describes the protocols (i) for instantiating it, i.e. the incre-
mental process of class definition, and (ii) for late binding.

Notations. Let E, F and G be sets. 2E denotes the power set of E, |E| is
the size of E, and E ] F is the union of the disjoint sets E and F . Given a
function foo : E → F , the function foo−1 : F → 2E maps x ∈ F to the set
{y | foo(x) = y}. Function notations are extended to powersets and cartesian
products in the usual way: ∀G ⊆ E, foo(G) = {foo(x) | x ∈ G} and ∀R ⊆ E × E,
foo(R) = {(foo(x), foo(y)) | (x, y) ∈ R}. Finally, (E,≤) denotes the graph of a
binary relation ≤ on a set E. It is a poset (partially ordered set) iff ≤ is reflexive,
transitive and antisymmetric.
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Definition 3.2 (Class hierarchy). A model of a hierarchy, i.e. an instance of the
metamodel, is a tuple H = 〈XH,≺H, GH, LH, NH,nameH, globH, introH, def H〉,
where:

—XH is the set of classes;
—≺H is the class specialization relationship, which is transitive, antisymmetric

and antireflexive; �H (resp. ≺Hd ) denotes the reflexive closure (resp. transitive
reduction) of ≺H and (XH,�H) is a poset;

—GH and LH are the disjoint sets of global and local properties;
—NH is the set of identifiers (names) of classes and properties;
—nameH : XH ]GH ]LH → NH is the naming function of classes and properties;

its restriction to XH is injective;
—globH : LH → GH associates with each local property a global property;
—introH : GH → XH associates with a global property the class introducing it;
—def H : LH → XH associates with a local property the class where it is defined.

The notations are supplemented by the following set of equations and definitions
(1–9).

The sets XH, GH and LH correspond to the three classes in the metamodel,
whereas the total functions globH, introH and def H correspond to the three func-
tional associations—all six elements form the metamodel triangle. The ‘specializes’
association is represented by ≺H and all other associations, such as ‘knows’ and
‘redefines’, are not primitive. On the other hand, NH and nameH represent rela-
tionships between the metamodel and names which are used in the program text.
So far, the formalization is a straightforward translation of the Uml diagram in
Figure 4. The definition of a legal model is achieved by a set of constraints which
ensure that: (i) the triangular diagram commutes at the instance level, (ii) names
in the program text are unambiguous or can be disambiguated.

The metamodel is generic, as all its components are parametrized byH. However,
in the rest of Sections 3 and 4, parameter H will remain implicit for the sake of
readability. The reader must keep in mind that all components of the model H are
relative to it and that the parameter must be explicit when one deals with more
than one model, as in Section 5.2. All proofs are trivial and left to the reader.

3.2.1 Global Properties. Given a class c ∈ X, Gc denotes the set of global
properties of c. Global properties are either inherited from a superclass of c, or
introduced by c. Let G↑c and G+c be the two corresponding subsets. Hence, all
G+c are disjoint and

G+c
def= intro−1(c) , (1)

G↑c
def=

⋃
c≺d c′

Gc′ =
⊎

c≺c′

G+c′ , (2)

Gc
def= G↑c ]G+c =

⊎
c�c′

G+c′ , (3)

G =
⋃
c∈C

Gc =
⊎
c∈C

G+c . (4)

September 5, 2007, to be submitted to ACM Trans. Program. Lang. Syst.



14 · Roland Ducournau, Floréal Morandat and Jean Privat

The definitions and equations (1-3) formally define global property inheritance.
Names of newly introduced global properties are constrained:

Constraint 3.3. When a global property is introduced, its name must be unam-
biguous, hence (i) the restriction of name on G+c is injective and (ii) inherited and
introduced properties cannot have the same name:

name(G+c) ∩ name(G↑c) = ∅ .

Note that this constraint is actually implied by the constraints concerning local
properties (Section 3.2.2). It follows that the function gid : G → X ×N that maps
a global property g ∈ G to the pair

gid(g) def= (intro(g),name(g)) (5)

is injective. Besides this constraint, all 〈X,≺, G,name, intro〉 tuples that follow
Definition 3.2 are legal.

There is a global property conflict when a class knows two distinct global prop-
erties with the same name. Constraint 3.3 implies that such a conflict is always
caused by multiple inheritance:

Definition 3.4 (Global property conflict). Given a class c ∈ X and two dis-
tinct global properties g1, g2 ∈ G↑c, a global property conflict occurs between g1

and g2 when
name(g1) = name(g2) ∧ intro(g1) 6= intro(g2) .

Moreover, this implies that there are classes c′, c1, c2 ∈ X, such that:

(c � c′≺d c1, c2) ∧ (g1 ∈ Gc1\Gc2) ∧ (g2 ∈ Gc2\Gc1) .

When there is no global property conflict, for instance in a legal model in single
inheritance, the restriction of the function name : G → N to G↑c is injective.
Moreover, in the same condition, Constraint 3.3 implies that the restriction of
name to Gc is also injective. Therefore, in the context of a class c, the identifier
of a global property is unambiguous. Of course, name is not constrained to be
injective throughout its domain G—hence it must be disambiguated by the context,
i.e. the static type of the receiver. Multiple inheritance conflicts will be examined
in Section 4.

3.2.2 Local Properties. Given a class c, Lc denotes the set of local properties
defined in c and, conversely, the function def : L → C associates with each local
property the class where it is defined:

L =
⊎
c∈C

Lc with Lc
def= def −1(c) . (6)

The correspondence between local and global properties must be constrained in
order to close the metamodel triangle, i.e. to make the diagram commute. First,
the correspondence is based on property names:

Constraint 3.5. The function glob : L → G associates with each local property
a global property, such that both have the same name:

∀l ∈ L,name(glob(l)) = name(l) .
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Moreover, it does not make sense to define more than one local property for some
global property in the same class, hence:

Constraint 3.6. For all c ∈ X, the restriction of glob to Lc is injective. Equiva-
lently, for all g ∈ G, the restriction of def to glob−1(g) is injective.

Therefore, if there is no global property conflict, the restriction of name to Lc is
also injective. Thus determining the global property associated with a local one is
unambiguous in the context of some class c, at least when the name of the global
property is unambiguous, i.e. when there is no global property conflict:

∀l ∈ Lc,∀g ∈ Gc,name(l) = name(g) =⇒ glob(l) = g . (7)

Of course, glob and name are not injective over their whole domain L—hence local
property names must be disambiguated by the context, i.e. the enclosing class, at
compile-time, and local properties must be selected by the late binding mechanism
at run-time (see below).

A last constraint closes the triangle and achieves the definition of a legal model :

Constraint 3.7. The associated global properties must be known by the consid-
ered class and all global properties must have been introduced by a local property
definition:

∀c ∈ X, G+c ⊆ glob(Lc) ⊆ Gc .

If a property is considered as abstract (aka deferred) in its introduction class—i.e. if
it has no default implementation—an abstract local property must still be provided.

Definition 3.8 (Legal model). A legal model of a class hierarchy is a model
which satisfies all Constraints 3.3 to 3.7.

It follows from Constraint 3.6 that, in a legal model, the function lid : L → G×X
that maps a local property l ∈ L to the pair

lid(l) def= (glob(l), def (l)) (8)

is injective.
Finally, one can formally define property redefinition. A local property corre-

sponds to an inherited global property, or to the introduction of a new global
property. Let L↑c and L+c be the corresponding sets.

Lc = L↑c ] L+c with

{
L↑c

def= Lc ∩ glob−1(G↑c) ,

L+c
def= Lc ∩ glob−1(G+c) .

(9)

Moreover, glob is a one-to-one correspondence between L+c and G+c.

Definition 3.9 (Property redefinition). Property redefinition (aka overriding)
is defined as the relationship �H (or � for short) between a local property in L↑c
and the corresponding local properties in the superclasses of c:

l � l′
def⇐⇒ glob(l) = glob(l′) ∧ def (l) ≺ def (l′) .

This is a strict partial order and �d denotes its transitive reduction.
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3.2.3 Local property inheritance and method invocation. Local property inheri-
tance is a matter of selection of a single local property in a given global property,
according to the dynamic type of an object called the receiver. Though it applies
only to methods in most languages, it can also be used for attributes—and it is in-
deed used in some languages like Clos, Yafool or Eiffel. We only detail the case
concerning methods. Method invocation usually involves two distinct mechanisms,
namely late binding (aka message sending) and call to super, and implies some
auxiliary functions—loc, spec : G ×X → 2L, sel : G ×X → L, cs : G ×X → 2X

and supl : L → 2L—defined as follows. All functions loc, spec, sel and cs are partial
and only defined on g ∈ G and c ∈ X when g ∈ Gc.

Late binding. Given a class c ∈ C—the dynamic type of the receiver—and a
global property g ∈ Gc, late binding involves the selection of a local property of g
defined in the superclasses of c (including c), hence in the set

loc(g, c) def= {l ∈ glob−1(g) | c � def (l)} . (10)

Thus, the selection function sel must return a local property such that sel(g, c) ∈
loc(g, c). If c has a local definition for g—i.e. if Lc∩ loc(g, c) = {l}—then sel(g, c) =
l. On the contrary, c must inherit one from its superclasses—this constitutes the
second level of inheritance, namely local property inheritance. In single inheritance,
sel returns the most specific property, i.e. the single element in

spec(g, c) def= min
�

(loc(g, c)) , (11)

but its uniqueness is only ensured in single inheritance. In multiple inheritance, a
local property conflict may occur:

Definition 3.10 (Local property conflict). Given a class c ∈ X and a global
property g ∈ G↑c, a local property conflict occurs when |spec(g, c)| > 1. The conflict
set is defined as the set

cs(g, c) def= def −1(spec(g, c)) = min
�

(def −1(loc(g, c)))

which contains all superclasses of c which define a local property for g and are
minimal according to �.

We shall examine, in Section 4.2, the case of multiple inheritance, local property
conflicts and the reasons for this definition.

Call to super. Call to super allows a local property l to call another one, say
l′, which is redefined by l, i.e. l � l′. This can be ensured by another selection
function which selects an element in the set

supl(l) def= {l′′ | l � l′′} . (12)

Note that we keep the term ‘super’ used in Smalltalk and Java as it is the
most popular, but we take it with a slightly different meaning. It is here closer to
Eiffel Precursor. The point is that l and l′ belong to the same global property,
i.e. glob(l) = glob(l′), while Smalltalk and Java accept super.foo in method
bar. Usually, like late binding, call to super involves selection of the most specific
property, i.e. the single element in min�(supl(l)), which is the single local property
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l′ which satisfies l �d l′. However, the uniqueness of l′ is only ensured in single
inheritance, where it is alternatively determined by the uniqueness of c′ such that
def (l) ≺d c′—then l′ = sel(glob(l), c′).

We shall examine the case of multiple inheritance in Section 4.2.

3.2.4 Class Definition and Model Construction. The model is built by successive
class definitions.

Definition 3.11 (Class definition). A class definition is a triplet 〈classname,
supernames, localdef〉, where classname is the name of the newly defined class,
supernames is the set of names of its direct superclasses—they are presumed to be
already defined—and localdef is a set of local property definitions.

A local property definition involves a property name—in the general meaning, i.e.
including parameter types10 if static overloading is considered—and other data, e.g.
code, which are not needed here.

Let H be a legal class hierarchy, then a class definition in H will produce an-
other hierarchy H′. The operational semantics of the metamodel is given by the
meta-object protocol which determines how this class definition is processed. We
informally sketch this 4-step protocol as follows.

(i) Hierarchy update. A new class c with name classname is added to X—i.e.
X ′ = X ] {c}. For each name n ∈ supernames, a pair (c,name−1(n)) is added
to ≺d. Of course, the names of all considered classes are checked for correction—
existence and uniqueness. Moreover, supernames is a set—this means that is does
not make sense to inherit more than once from a given class—and it should also be
checked against transitivity edges, that should not be added to ≺d

11.
(ii) Global property inheritance. The protocol then proceeds to global property

inheritance. G↑c is computed (2) and global property conflicts are checked (Def.
3.4).

(iii) Local definitions. For each definition in localdef, a new local property is
created, with its corresponding name—this yields Lc. L↑c is determined by (9).
Then, G+c is constituted as the set of new global properties corresponding to each
local property in L+c = Lc\L↑c. Lc and G+c are then respectively added to L and
G—i.e. L′ = L]Lc and G′ = G]G+c. Here again, the names of all local properties
are checked for correction—existence and uniqueness. Ambiguities resulting from
global property conflicts are discussed in Section 4.1.

(iv) Local property inheritance. Finally, the protocol proceeds to local property
inheritance and checks conflicts for all inherited and not redefined properties, i.e.
G↑c\glob(L↑c). Conflicts are discussed in Section 4.2.

In the protocol, each occurrence of ‘new’ denotes the instantiation of a class in the
metamodel.

The metamodel is complete, in the sense that all components in Definition 3.2,
together with Constraints 3.3 to 3.7 and equations (1–9), are sufficient to charac-
terize a legal model as long as there is no global property conflict. All such legal

10At this stage, types can be considered as symbols but, in practice, recursive class definitions
should be considered.
11In both cases, this is contrary to C++ and Eiffel behavior.
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models could be generated by Definition 3.11—given a legal class hierarchy H, for
all c in X, 〈name(c), {name(c′) | c ≺d c′},name(Lc)〉 form a legal class definition.

4. MULTIPLE INHERITANCE

In multiple inheritance, conflicts are the main difficulty. They are usually expressed
in terms of name ambiguities. The metamodel yields a straightforward analysis in
terms of reified entities and distinguishes between two kinds of conflicts which
require totally different answers. The following analysis is mostly the same as
in [Ducournau et al. 1995], just enhanced with the metamodel.

4.1 Global Property Conflict

A global property conflict (in [Ducournau et al. 1995], it was called ‘name conflict’)
occurs when a class specializes two classes having distinct but homonymic global
properties (Def. 3.4). Figure 6 shows two global properties named department. The
first one specifies a department in a research laboratory. The other one specifies a
teaching department in a university. It is then expected that the common subclass
Teacher-Researcher inherits all the different global properties of its superclasses.
However, the name department is ambiguous in the subclass context. Anyway, this
situation is simply a naming problem. It must be solved and a systematic renaming
in the whole program would solve it. Different answers are possible:

Nothing, i.e. error. The language does not specify any answer to such a conflict
but it signals an ambiguity. This forces the programmer to rename at least one
of the two properties, but this must be done throughout the program and can be
error-prone or even impossible (unavailable source code).

Fully qualified names. This simply involves an alternative unambiguous fully qual-
ified syntax, which juxtaposes the property name with the name of a class in which
the property name is not ambiguous, for instance the class that introduces the global
property. In the example, Teacher:department would denote the global property
known as department in the class Teacher. Such a naming would be unambiguous
since, in a legal model, gid is injective (5). A similar solution is used for attributes
in C++ with the operator :: [Stroustrup 2000]12. Note that, with fully qualified
names, a global property conflict requires a solution only when the programmer
wants to use the ambiguous name, in a context where it is ambiguous. Hence, this
is a modular and lazy solution.

Local Renaming. Local renaming changes the designation of a property, both
global and local, in a class and its future subclasses. In the Teacher-Researcher class
of the example, one can rename department inherited from Teacher as dept-teach

and department inherited from Researcher as res-dept. Thus, department denotes,
in Researcher, the same global property as res-dept in Teacher-Researcher; con-
versely, in the class Teacher-Researcher, res-dept and teach-dept denote two dis-
tinct global properties. This solution is used in Eiffel [Meyer 1997]. Renaming

12In C++, attributes cannot be redefined—this would be static overloading, hence a new global
property. Therefore, a single local attribute corresponds to each global attribute and :: denotes
either the local or global one. For methods, :: corresponds to a static call—therefore, it denotes a
local property.
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Fig. 6. Global Property Conflict—the class diagram (a) depicts a conflict between the two prop-
erties named department introduced in two unrelated classes and the instance diagram (b) shows
the corresponding metamodel instantiation. All entities are tagged by unambiguous fully qualified
names and names are abbreviated.

here is required even when the programmer does not use the name in a context
where it is ambiguous—i.e. when redefining one of the conflicting properties or
calling it on a receiver typed by the considered class. Moreover, as class hierarchies
are not constrained to form lattices, the same conflicting properties can occur in
different subclasses, with possibly different renamings.

Unification, i.e. silence. Dynamic languages, like Clos, and C++ for functions
(not for attributes13), consider that if two global properties have the same name
then they are not distinct. Java has the same behaviour when a class imple-
ments two interfaces which introduce a global property with the same name and
signature14. Hence, the global property conflict is not recognized and the multiple
inheritance ambiguities are deferred to local property inheritance. So this solution
is very close to the first one—it does not allow the programmer to express his/her
intention of distinct global properties, unless there is global renaming. In Figure 6,
the two departments represent distinct concepts. If the programmer’s intention was
a single concept, then he/she should have defined a common superclass introducing
a single global property for this concept. However, silence adds an extra flaw—i.e.
the programmer may remain unaware of the problem or might misunderstand it.

As a provisional conclusion, global property conflicts represent a very superficial
problem. They could easily be solved in any programming language at the expense
of a cosmetic modification—namely, qualifying or renaming—and they should not
be an obstacle to the use of multiple inheritance. Both solutions need a slight adap-
tation of the metamodel. This is straightforward in the case of full qualification—all

13This dissymetry between methods and attributes represents one of the most striking flaws of
the language specifications.
14Java provides a fully qualified syntax for classes, not for properties.
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names in the class definition—more generally in the program text—may be simple
or fully qualified. An analogous syntax is available in all languages where name-
spaces are explicit, e.g. packages in Java or CommonLisp. This is less simple for
local renaming—the function nameH is no longer global and must take two param-
eters, the property and the class. Moreover, renaming clauses must be integrated
in Definition 3.11.

On the contrary, when languages deal with global property conflicts by signaling
an error or unifying conflicting properties, the situation may have no solution. A
global renaming would be the only way out, but it might be impossible if the
source code of the conflicting classes is not available, or if the conflicting classes are
contractually used by other people.

4.2 Local Property Conflict

4.2.1 Conflict definition. A local property conflict (in [Ducournau et al. 1995],
it was called ‘value conflict’) occurs when a class inherits two local properties from
the same global property, with none of them more specific than the other according
to � (Def. 3.10). Figure 7-a illustrates this situation with two classes, Rectangle
and Rhombus, redefining the method area whose global property was introduced into
a common superclass, Quadrilateral. In the common subclass Square, none is most
specific—which one must be selected? Figure 7-c depicts the model of the example,
restricted to the concerned property. Let g be the area global property introduced
in Quadrilateral—Q:area for short—and c be the Square class, abbreviated in S in
the diagram. Then,

loc(g, c) = {Q:area::Q, Q:area::Rh, Q:area::Re},
spec(g, c) = {Q:area::Rh, Q:area::Re},

cs(g, c) = {Rh, Re}.

The conflict vanishes if one removes the definition of one of the two conflicting
local properties, say Q:area::Rh, though Rhombus still inherits a local property from
Quadrilateral (Fig. 7-b). However, some languages, e.g. Eiffel, consider that
there is still a conflict in Square, between the property defined in Rectangle and the
property inherited by Rhombus, unless the latter is abstract. Therefore, it is impor-
tant to understand why we choose this conflict definition. Apart from redefinition,
specialization is inherently monotonic—i.e. in the definition of A, what is true for
an instance of A is also true for an instance of any subclass of A. This goes back
to Aristotelian syllogistic—see for instance [Rayside and Campbell 2000b; 2000a;
Rayside and Kontogiannis 2001; Ducournau 2002b]. On the contrary, property re-
definition entails non-monotonicity, in the sense of nonmonotonic (aka defeasible)
inheritance theories, e.g. [Touretzky 1986; Horty 1994]. A local property is a default
value for the instances of the class which defines it. For all instances of a subclass
A′, the redefining property overrides (or masks) the redefined one. So property
redefinition must be understood following the masking rule:

Requirement 4.1 (Masking rule). Let g be a global property, l a local property
of g defined in class A. Then, l implements g for all instances of A, unless otherwise
stated, i.e. unless the considered object is an instance of a subclass of A which
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Fig. 7. Local Property Conflict—the class diagram (a) depicts a conflict between the two local
properties area redefining the same property in two unrelated classes and the instance diagram (c)
shows the corresponding metamodel instantiation. In contrast, there is no conflict in class dia-
gram (b).

redefines g. So, if A′ ≺ A and l′ � l redefines l in A′, l′ will mask l for all instances
of A′, direct and indirect alike.

So in the considered example of Figure 7-b, area::Q implements area for all instances
of Q, except instances of Re, and area::Re implements it for all instances of Re,
including those of Square. This means that defining a property is stronger than
inheriting it [Ducournau and Habib 1991]. In this perspective, method combination
is a way to recover some monotonicity—if l′ calls super, all instances of A′ will
behave like those of A, plus some extra behaviour.

4.2.2 Conflict solutions. Unlike the global property conflict, there is no intrinsic
solution to this problem. Consequently, either the programmer or the language must
bring additional semantics to solve the local property conflict. There are roughly
three ways to do it:

Nothing, i.e. error. The considered language does not specify any answer to local
property conflicts but it signals an error at compile-time. This forces the program-
mer to define a local property in the class where the conflict appears. In this
redefinition, a call to super is often desired but it will be ambiguous (see below).

A variant of this approach makes the class which introduces the conflict (Square)
abstract, by implicitly defining an abstract local property15 (area) in this class [Nys-

15When considering abstract local properties, conflict definition must be slightly adapted. An
actual conflict occurs when spec(g, c) contains several non-abstract properties. If all members of
spec(g, c) are abstract, the inherited property in c is also abstract.
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trom et al. 2006]. This forces the programmer to define the property in all direct
non-abstract subclasses.

Selection. The programmer or the language arbitrarily select the local property
to inherit. In many dynamic languages, the choice is made by a linearization
(Section 4.3); in Eiffel, the programmer can select the desired property with the
undefine inheritance clause.

Combining. For some values or particular properties—especially for some meta-
properties16—the conflict resolution must be done by combining the conflicting
values. For instance, in Java, when the conflict concerns the declared exceptions of
methods, it should be solved by taking the union of all declared exceptions. Another
example is the return type of methods which can be covariantly redefined—the
lower bound of conflicting types, if it exists, is the solution. It follows that the
type system must include intersection types (see Section 4.4). Combining is also
needed by Eiffel contracts with disjunction of preconditions and conjunction of
postconditions. Generally speaking, method combination is often the solution when
several methods conflict—this is examined hereafter.

So the solution is redefining, selecting or combining, or a mix since the redefinition
can be combined with the selection. For instance, in C++, selection can be done
by redefining the local property, with a static call to the selected one. This static
call is done with the :: operator. It is always possible in a legal model since the lid
function (8) is injective. To be compatible with the syntax for global properties,
we shall use a slightly different syntax here—e.g. area::Rhombus17 denotes the local
property area defined in the class Rhombus (Fig. 7). If the global property name is
ambiguous, full qualification can lead to Quadrilateral:area::Rhombus.

4.2.3 Call to super and method combination. Call to super presents a similar,
but more general, kind of conflict. Suppose first that the current local property
l has been determined without local property conflict. Let g ∈ G be the consid-
ered global property and c ∈ X be the receiver’s dynamic type. This means that
spec(g, c) = {l} and loc(g, c)\{l} = supl(l)—see definitions in equations (10-12).
In other words, all other local properties that might be combined are in supl(l).
Therefore, the situation is exactly the same as late binding, except that the selec-
tion or combination process must now consider supl(l) instead of spec(g, c). Then
the set min�(supl(l)) = {l′ | l �d l′} may not be a singleton, thus making super as
ambiguous as a local property conflict. This is, for instance, the case if l has been
defined to solve a local property conflict. The solution is to consider that super is
legal only when min�(supl(l)) is a singleton. This is the approach of Eiffel, with
Precursor. If this is not a singleton, an explicit selection among the conflicting
local properties is required. An alternative would be a static call, as with :: in
C++. Static calls have, however, a major drawback, as they may yield multiple
evaluations of the local property defined in the root Quadrilateral of the diamond
example in Figure 7—consider a method foo with a local definition in each four

16Local properties are objects, hence ‘composed’ of some meta-properties. So solving the conflict
always amounts to combining the conflicting objects and, for each meta-property, selecting or
combining. This is for instance quite explicit in the Clos slot-description specifications.
17Instead of Rhombus::area in C++.
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classes, with each definition, except the diamond root, statically calling all local
properties defined in its direct superclasses.

In a conflict case, when l has been arbitrarily selected in spec(g, c), the point
is that supl(l) is far from including all other local properties in loc(g, c)—actually
spec(g, c)\{l} and supl(l) are disjoint non-empty sets. In a linearization framework,
as in Clos, the analogue of super, called call-next-method, involves calling the
local property following l in the linearization of loc(g, c). So, call-next-method
avoids multiple evaluation risks, but linearizations also have their own drawbacks
(Section 4.3). Of course, call to super can also occur in a local property which has
been invoked by a call to super, not by a ‘primary’ late binding, but this does not
yield any complication.

Finally, there are four possibilities:

(1) call-next-method and linearizations, discussed hereafter;
(2) a constrained keyword super, which behaves like Precursor in Eiffel, i.e.

only sound when there is no conflict;
(3) static call, with a fully qualified syntax such as foo::C;
(4) a qualified use of super, which allows the programmer to explicitly reference

the class when there is a conflict—e.g. super〈C〉.

Among these options, we exclude static calls because they explicitly mention the
property name, like super in Smalltalk and Java. The three others are all
acceptable and area::Rhombus would be replaced by super〈Rhombus〉, but only within
the code of an area method. Moreover, all three mechanisms are compatible with
each other. A language can provide all of them—linearizations are more flexible,
whereas unqualified super has a restricted use and its qualified version can lead to
multiple evaluation.

4.3 Linearizations

Linearizations have been widely used in dynamically typed object-oriented lan-
guages such as Flavors [Moon 1986], Loops [Stefik and Bobrow 1986; Bobrow
et al. 1986], Clos [DeMichiel and Gabriel 1987], Yafool [Ducournau 1991], Power-
Classes [ILOG 1996], Dylan [Shalit 1997], Python [van Rossum and Drake
2003], etc. To our knowledge, their only use in statically typed object-oriented
languages with full multiple inheritance concerns constructors and destructors in
C++ [Huchard 2000]. They are, however, also used in statically typed mixin-based
languages, such as Gbeta and Scala (see Section 4.5.2).

4.3.1 Principle. The linearization principle involves computing, for each class
c ∈ X, a total ordering on the set of superclasses of c, i.e.

supc(c) def= {c′ | c � c′}. (13)

This ordering is called class precedence list in Clos.

Definition 4.2 (Class linearization). Given a class hierarchy H, a class lin-
earization is defined as a function clinH : X → (X → N) (clin for short) such
that clin(c) (noted hereafter clinc for the sake of readability) is a bijective func-
tion clinc : supc(c) → 0..|supc(c)| − 1 (aka a permutation). It yields a total
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order (supc(c),≤clin(c)), whereby x ≤clin(c) y
def⇐⇒ clinc(x) ≤ clinc(y). More-

over, clinc(c) = 0 for all c. An alternative notation is the following: clin(c) =
(c0, c1, ..., ck), with c = c0, supc(c) = {ci | i ∈ 0..k} and clinc(ci) = i for all i ∈ 0..k.

Class linearizations only involve the poset (X,�) and they are just dedicated to
the solution of local property conflicts. Therefore class linearizations must then be
mapped from classes to local properties, i.e. from the poset (supc(c),�) to the poset
(loc(g, c),�), for each global property g ∈ Gc:

Definition 4.3 (Local property linearization). Given a class hierarchy H,
equipped with a class linearization clin, a local property linearization is defined
by the function llin : G × X → (L → N) such that llin(g, c) = (l0, l1, ..lm), with
loc(g, c) = {li | i ∈ 0..m} and 0 ≤ i < j ≤ m ⇒ clinc(def(li)) < clinc(def(lj)). It
yields an analogous total order (loc(g, c),≤llin(g,c)).

In this framework, the selection function sel selects the first property in this
ordering—i.e. sel(g, c) = l0—and the call to super is carried out by the call-next-
method mechanism:

Definition 4.4 (Call next method). The call next method mechanism relies on
the partial function cnm : X × L → L such that, with the previous definition
notations, cnm(c, li) = li+1 when i < m, and cnm(c, lm) is undefined.

So when used for combination, linearizations avoid possible multiple evaluations
which may occur with C++ static calls or with qualified super. It is essential to
note that, in the expression cnm(c, li), c is not the class which defines li, i.e. def (li),
but the receiver’s dynamic type18, hence c � def (li). Contrary to single inheritance,
l � cnm(c, l) is not always verified. Here, some authors, e.g. [Snyder 1991], diagnose
a drawback—this would break class modularity. This seems, however, unavoidable
in method combination when inheritance is multiple.

4.3.2 Requirements. Some theoretical studies have determined what should be
a ‘good’ linearization. We review here their main conclusions.

Linear extensions. In order to ensure that the selection respects the masking rule
(Req. 4.1), i.e. that no other property would be more specific—the total order must
be a linear extension19 [Ducournau and Habib 1987]. This means that

c � c′ � c′′ =⇒ clinc(c′) ≤ clinc(c′′) (14)

or, equivalently, that the restriction � /supc(c) is a subset of ≤clin(c), for all c ∈ X.
This implies that the selected property is taken from the conflict set [Ducournau
et al. 1995]—i.e. def (sel(g, c)) ∈ cs(g, c). This requirement is easy to meet and is
satisfied in most recent languages—it was actually satisfied in mid-80s languages
[Stefik and Bobrow 1986; Bobrow et al. 1986; Moon 1986; DeMichiel and Gabriel

18So, the existence of this ‘next’ method cannot always be statically—i.e. when compiling c—
ensured and an auxiliary function next-method-p allows the programmer to check it at run-time.
However, in the present framework, when the linearization is a linear extension (see hereafter),
this run-time check is only required when the method has been declared abstract in superclasses.
19Linear extensions are also called topological sorting [Knuth 1973].
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1987]—with the notable exception of Python and Scala. When used for selec-
tion, linear extensions have the desired behaviour when there is no local property
conflict—they select the single most specific local property. Hence, when there
is a conflict, linearizations represent only a default selection mechanism and the
programmer can switch it off anyway by simply redefining the property to solve
the conflict. From now on and unless otherwise stated, we shall consider that all
linearizations are linear extensions.

Monotonicity, i.e. linearization inheritance. Another important requirement is
that the linearization should be monotonic—i.e. the total ordering of a class extends
that of its superclasses [Ducournau et al. 1992; 1994; Barrett et al. 1996; Ernst
1999]. This amounts to inheriting linearizations—i.e. ≤clin(c′) is a subset of ≤clin(c),
for all c ≺ c′ in X—or, equivalently, it means that:

c � c′ � c′′, c′′′ =⇒
(
clinc(c′′) ≤ clinc(c′′′) ⇐⇒ clinc′(c′′) ≤ clinc′(c′′′)

)
(15)

Since clinc(c) = 0, a monotonic linearization is always a linear extension.
Obviously, when the linearization is used for combination, monotonicity makes

the order of method invocations preserved by inheritance—of course, llin is also
monotonic. Furthermore, monotonicity implies a nice property when the lineariza-
tion is used for selection—namely, a class always behaves like at least one of its
direct superclasses or, equivalently, inheritance cannot skip a generation.

However, this second requirement is not as easy to meet as the first one. Actually,
given a class hierarchy (X,�) equipped with a monotonic linearization clin, and
two classes c1, c2 ∈ X, it may be impossible to extend the hierarchy to a common
subclass of c1 and c2 without losing monotonicity, because clinc1 and clinc2 con-
flict on some pair x, y—i.e. clinc1(x) < clinc1(y) and clinc2(x) > clinc2(y). This
linearization conflict involves a cycle in the union of ≤clin(c1) and ≤clin(c2).

So, in practice, monotonicity must likely remain a desired but not required prop-
erty. For instance, the strategy proposed by Forman and Danforth [1999] involves
considering whether the disagreement provoked by such a conflict is ‘serious’. For
his part, Ernst [1999] considers linearizations as total preorders and proposes to
unify all classes on a cycle by merging their definitions. This resembles class unifi-
cation—the fifth mechanism outlineed in Section 2.1 and further discussed in Sec-
tion 5.3.2—but in Ernst’s proposition, the unification only concerns the considered
class which causes a linearization cycle. Of course, such merging may provoke some
conflicts between local properties, but the author does not analyze them. On the
contrary, in a subsequent paper [Ernst 2002], he seems to consider that the idea is
not feasible.

Local and extended precedence order. The actual linearization principle is to to-
tally order unrelated superclasses, especially direct superclasses. As such orderings
are rather arbitrary, they are usually explicitly given by the programmer, for in-
stance as the order of superclass declaration—hence, in Definition 3.11, supernames
is an ordered set. These orders are called local precedence orders in Clos, and the
linearization is required to respect them. This is, however, not always possible, for
the same reasons as monotonicity. An extended precedence order has also been con-
sidered [Huchard et al. 1991]—it is the third constraint underlying C3 linearization
[Barrett et al. 1996; Ernst 1999].
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4.3.3 Prospects. Linearizations can be further improved in several ways.

Partial linearizations. It follows from Definitions 4.2 and 4.3 that linearizations
are only intended to order local properties, for selecting and combining them.
Therefore, only llin(g, c) should be required to be monotonic linear extensions.
For instance, if there is no local property conflict, local precedence orders do not
matter and any linear extension makes a good linearization. In the case of a lin-
earization conflict, if there is no conflict between local properties in the cycle, this
cycle in clin(c) does not appear in any llin(g, c) and the cycle ordering does not
matter at all. So, instead of computing clin(c) as a total order, one could restrict it
to a partial order that would only totally order all local properties, for each global
property g ∈ Gc. More precisely, ≤clin(c) could be defined as

⋃
g∈Gc

def (≤llin(g,c)).
Thus, monotonicity should be more often—but still not always—preserved.

Specific linearizations. However, one might also allow the programmer to specify
a partial linearization for each global property—there is no necessity for two global
properties to combine their local properties in the same order. So each class could
provide a default linearization which could be overridden by the programmer for
individual global properties. This is, however, just a research issue.

Finally, linearizations can coexist with other combination techniques, e.g. the
qualified call to super that we propose.

Linearizations are often criticized because they would be hard to understand by
programmers. This could also be improved—for instance, Forman and Danforth
[1999] make a pedagogical presentation of linearizations and Ernst [1999] gives a
declarative definition of the C3 linearization proposed by [Barrett et al. 1996], which
is far more comprehensive than previous algorithmic definitions. Moreover, devel-
opment tools like Eclipse could easily provide precise diagnoses of non-monotonic
situations and help the programmer to fix them.

4.4 Static Typing

It is commonly agreed that classes are not types and specialization is not subtyping
[Cook et al. 1990]. However, commonly used languages, like C++, C#, Eiffel and
Java, identify types to classes and subtyping (<:) to class specialization (�), with
the proviso that class specialization is constrained to coincide with subtyping. This
constraint concerns property redefinition, through the well known contravariance
rule [Cardelli 1984]. However, class specialization and static typing entail a well
known tradeoff between type safety and expressiveness. The contravariance rule
is essential in a type safe policy, but strictly contravariant parameter types have
turned out to be useless. On the contrary, modeling real world often requires
covariant parameter types, as in Eiffel [Meyer 1997; Ducournau 2002b; Büttner
and Gogolla 2004]. We adopt this general approach here but consider both type
safe and unsafe policies. So, we distinguish ‘subtyping’ which refers to the chosen
conformance rule from ‘type safety’ which is related to the possible need for run-
time checks. These checks are generated by the compiler but the programmer
remains in charge of handling failures. We only detail hereafter the differences with
usual approaches.
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4.4.1 Record types. Usual type theories apply to our framework, with just a
slight difference. Object types are generally presented as record types, i.e. functions
from names to types [Cardelli 1984]. However, names are now inadequate—unless
one assumes that there is no global property conflict—and they must be replaced
by global properties. As usual, the type of a local property l, noted ltype(l), is a
functional type t → u, where t and u are the parameter and return types which
can be identified to classes as higher-order functions are beyond the scope of this
analysis. The type of a global property g in a class c, noted gtype(g, c), is then the
type of the local property l of g defined in, or inherited by, c. Finally, the type of a
class c, noted ctype(c), is a function which maps each global property in Gc to its
type in c:

gtype(g, c) = ltype(sel(g, c)) , (16)
ctype(c) = {g 7→ gtype(g, c)}g∈Gc

. (17)

4.4.2 Local property conflicts. So far there is nothing new except in the case of
a local property conflict. Let g be a local property and c a class which presents a
local property conflict, such that spec(g, c) = {l, l′}, ltype(l) = t → u and ltype(l′) =
t′ → u′. If the programmer solves the conflict by redefining g in c, this redefinition
must conform to both l and l′, as usual. However, if the language does not force the
redefinition, i.e. if a default selection mechanism is used, such as linearization, the
type of g in c implies intersection types [Compagnoni and Pierce 1996; Reynolds
1996]. In a covariant setting, gtype(g, c) = t ∩ t′ → u ∩ u′. This makes the type
system a lattice and may yield type conflicts, since x ∩ y = ⊥ when there is no
common subclass to x and y. On the contrary, the contravariance rule would also
imply union types, with gtype(g, c) = t ∪ t′ → u ∩ u′. Intersection types have
their analogue at the class level—i.e. when a class C is defined as a subclass of A
and B, it can be understood as a subclass of an implicit abstract class A&B such
that GA&B = GA ∪ GB , and for all g ∈ GA ∩ GB , gtype(g,A&B) = gtype(g,A) ∩
gtype(g,B).

4.4.3 Method combination. Method combination also presents some interesting,
but slightly paradoxical, typing issues. First, super is implicitly typed by the type
of the redefined method in the superclass—if, in a local property l, a call to super
calls l′, then the static type of super is ltype(l′). In practice, calls to super often
represent one of two specific patterns: (i) passing the method parameter values
as they were received or, conversely, (ii) returning by the calling method the value
returned by super. In the former case, the parameter can be implicit and both cases
can be combined, yielding a single return super instruction—hence an ‘empty’
redefinition. Interestingly, the former case is type safe when the parameter types
are covariant, i.e. in a type unsafe framework, but the latter case makes strictly
covariant return types unsafe20. This is exactly the dual of contravariance rule!

In Clos, the call-next-method syntax allows for the former case, since its usage
without parameter implies passing all method parameters as they were received.
However, call-next-method cannot be statically typed as precisely as super. Ac-
tually, if cnm(l) = l′, l′ can be defined in any unrelated class and is never statically
known, so the static type of call-next-method cannot be made more precise than

20Unless the return type is Mytype or an Eiffel anchored type.
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gtype(g, intro(g)), with g = glob(l), but the dynamic type of l′ may be any func-
tional subtype. Hence, call-next-method may require additional run-time tests.

However, in a covariant setting, the unknown parameter types of l′ are super-
types of the static parameter types—possibly intersection types—of the considered
method in the receiver dynamic type. Thus, if all call-next-method pass the
method input parameters—i.e. if call-next-method is always called without ex-
plicit parameters—this will be type safe. When some call-next-method passes
explicit parameters, call-next-method will be unsafe throughout the global prop-
erty. Of course, in a type safe strictly contravariant setting, call-next-method will
always be unsafe. In the case (ii), regarding the return type, the only difference be-
tween super and call-next-method is that return call-next-method is always
unsafe20, whereas return super is type safe, when the return type is invariant for
the two considered methods. So unsafe cases must be checked at run-time.

The overall conclusion is that the safer specification of call-next-method is
in a type unsafe covariant setting, and it does not allow for explicit parameters.
Accordingly, it does not increase unsafety.

4.5 Comparison with other approaches to multiple inheritance

The main contribution of this metamodel is to make the specifications of languages
unambiguous when naming problems occur, i.e. when there are several properties
with the same identifier in the context of a single class. Such naming problems
mostly occur with multiple inheritance or with static overloading [Meyer 2001].
In the absence of these naming problems, there is no need, except conceptual, to
distinguish global properties from property identifiers and all languages agree with
the metamodel, at least in the global properties. On the contrary, when naming
problems arise, different languages have different behaviors, and our claim is that
the present metamodel is a good basis for better specifications of the relationship
between object-oriented entities and their names.

4.5.1 Inheritance and metamodels in some object-oriented languages. We review
hereafter the most commonly used languages.

In the Smalltalk terminology, ‘method’ and ‘method selector’ respectively de-
note local and global properties. Nevertheless, selectors are simply reified as sym-
bols and there is no equivalent for attributes (instance variables in Smalltalk
terminology). In Clos [Steele 1990], ‘method’ and ‘generic functions’ stand for
local and global properties—they are reified, but multiple dispatch changes the
model as they do not belong to classes, hence are not inherited in the usual mean-
ing. As for attributes (slots in Clos terminology), they are reified into two kinds
of slot descriptions, which can be direct or effective: but both must be understood
as local properties. Moreover, as aforementioned, in both Smalltalk and Clos,
dynamic typing cannot distinguish two properties with the same name, whether it
is a selector, a generic function or a slot. This does not hinder a fully qualified syn-
tax, but makes it impossible to statically instantiate the metamodel when parsing
method calls in method definitions (Req. 3.1). In the example of Figure 6, a call site
x.department could alternatively reference, at run-time, Researcher:department or
Teacher:department, according to the dynamic type of x. So either Requirement 3.1
is dropped, but the call site becomes ambiguous, or the requirement is kept but
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both department are unified. Despite this last point, these languages are the only
ones whose terminology is at least partly suitable for distinguishing the two key
notions that we have called local and global properties. In the following languages,
one word (method, feature, etc.) stands for the two notions.

Java requires two simple adaptations of the metamodel. First, static overload-
ing implies that the ‘name’ of a property also involves its parameter types. This
ensures that overloaded methods represent different global properties. Java class
hierarchies are also made of two kinds of entities, classes and interfaces, which
are disjoint at the notable exception of the hierarchy root—i.e. X = Xc ∪Xi and
Xc ∩ Xi = {java.lang.Object}. Classes are in single inheritance—(Xc,�) is a
tree—and interfaces imply multiple subtyping but cannot specialize classes, hence
≺ is a subset of (Xc×X)∪(Xi×Xi). Interfaces define only abstract methods. This
type system can be understood as the result of statically typing Smalltalk, by
adding interfaces for all methods introduced by more than one class. So far, Java
is fully compatible with the metamodel. However, multiple inheritance is possible
with interfaces and, when a global property conflict occurs, Java cannot distin-
guish between two methods with the same name and signature. Accordingly, there
is no reification of global properties, either in the introspection facilities (package
java.lang.reflect), or in reflective extensions of the language, as OpenJava or
Javassist, though [Chiba 1998] acknowledges the need for a metamodel.

Eiffel is also almost fully compatible, but only in common usage. In Eiffel
terminology, ‘feature’ stands for property, without distinguishing the two kinds,
even though a notion of feature seed could be understood as the introduction of
global properties [Meyer 1992]. Feature renaming allows the programmer to deal
with global property conflicts in the desired way. However, full usage of the rename
clause is not compatible with the metamodel: (i) in subclasses, a feature with the
new name can coexist with the old-named feature, as two distinct features; (ii) in a
class, if two features from different seeds are inherited under the same name, then
they are locally merged; (iii) multiple inheritance of the same class and transitivity
edges are accepted, with a lot of renamings. Moreover, Eiffel does not follow the
masking rule (Req. 4.1) and finds extra local property conflicts, as in Figure 7-b.

Among the most commonly used languages, C++ is the least compatible with
the metamodel. Besides static overloading which is managed in the metamodel
as for Java21, multiple inheritance raises several difficulties. Firstly, the keyword
virtual22 is mandatory in inheritance, to avoid duplication of attributes introduced
in a superclass inherited through multiple paths. In C++ jargon, our proposition
resorts to shared multiple inheritance, in contrast with repeated multiple inheri-
tance23. Nevertheless, C++ does not distinguish between two methods with the
same signature, introduced in different unrelated superclasses but, in contrast, it
signals local property conflicts according to the masking rule.

21C++ name overriding yields a difference—when an overloaded method is redefined in a subclass,
all the homonymic methods defined in superclasses become invisible from the subclass, unless they
are in turn redefined. However, this is a matter of visibility, not of the metamodel.
22Though more obscure, the use of virtual in inheritance is similar to its use for methods—a
‘virtual base class’ (in C++ jargon) has a ‘redefinable’ position in the object layout. See also
Note 6, page 8.
23It is common opinion that “repeated inheritance is an abomination” [Zibin and Gil 2003, note 2].
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30 · Roland Ducournau, Floréal Morandat and Jean Privat

Eventually, one cannot speak of meta-modeling without considering Uml, where
all entities are meta-defined. As a matter of fact, concerning properties, the Uml
metamodel is left unfinished—i.e. the Features diagram of [OMG 2004, page 27]
shows only one kind of entity called ‘feature’. Page 38, the specification says that
“one classifier may specialize another by adding or redefining features”. There is
no way to map this single term to our metamodel. [Büttner and Gogolla 2004] is
an explanation of specialization and redefinition in Uml 2.0—it makes it clear that
combining possibly covariant redefinition and overloading would lead to unspecified
semantics.

4.5.2 Alternatives to full multiple inheritance. Several alternatives have been
proposed, which rely on a degraded form of multiple inheritance, e.g. Java or C#
interface multiple subtyping, mixins [Bracha and Cook 1990] or traits [Ducasse
et al. 2005]. Interfaces have been discussed about Java—they only imply slightly
constraining the metamodel.

Mixins (aka mixin classes) are commonly presented as an alternative to full multi-
ple inheritance. They first appear as a programming style in Lisp-based languages,
before becoming explicit patterns or even first class entities in theories or actual
programming languages. Mixin proposals are numerous and variable—so this sec-
tion must not be considered as a complete survey. Generally speaking, mixins are
abstract classes with some restrictions in the way they are defined and related to
other classes or mixins. Above all, a mixin is not self-sufficient—it must be used to
qualify a class. To take up a distinction from linguistics, a class is categorematic,
like a noun, whereas a mixin is syncategorematic, like an adjective [Lalande 1926].

For instance, in the Scala language [Odersky et al. 2004], one can define a class
C such that C extends B with M , where B is the direct superclass of C and M is
a mixin. An additional constraint is that the superclass of M must be a superclass
of B. Actually, the constraint is a little bit more general—the single mixin M can
be replaced by a set of ≺-related mixins such that all their superclasses24 must be
superclasses of B. Intuitively, the effect of this definition is to copy the definition
of M into B (Fig. 8-b). An alternative and more formal view involves parametrized
heir classes, whereby C extends M〈B〉 (Fig. 8-c). This is the common way of
using mixins with C++ templates [VanHilst and Notkin 1996; Smaragdakis and
Batory 1998]. The heterogeneous implementation of templates makes it possible,
but mixins cannot be separately compiled25. On the contrary, the homogeneous
implementation of generics makes it impossible in Java. Finally, in a last view
compatible with a homogeneous implementation, M is transformed into a proxy,
which involves both an interface and a class: C implements the interface and is
associated with the class by an aggregation, in such a way that each instance of C
contains exactly one instance of M (Fig. 8-d).

Actually, mixins are not exempt from multiple inheritance conflicts—for instance,
B and M may each introduce a property with the same name bar, or redefine

24Of course, here ‘superclass’ denotes a class, not a mixin.
25The implementations of generics lie between two extremes [Odersky and Wadler 1997]. In het-
erogeneous implementation, e.g C++ templates, each instance of the parametrized class is sep-
arately compiled. In homogeneous implementation, a single instance is compiled, after replacing
each formal type by its bound. Intermediate policies still present a research issue.
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Fig. 8. Multiple Inheritance and Mixins—(a) in multiple inheritance, the example reproduces the
two conflicting situations in Figures 6 and 7—foo stands for area and bar for department; (b) the
same example involving a copy view of mixins; (c) mixins as parametrized heir classes; (d) mixins
as proxies. Solid arrows denote class specialization (Java extends) and dashed arrows represent
interface implementation (Java implements).

the same property foo introduced in their common superclass A (Fig. 8). Hence,
mixins are not incompatible with the present metamodel, which could be extended
to include them, in the same manner as for Java interfaces. Global property
conflicts are exactly the same and require the same solutions. Actually, most mixin-
based languages, e.g. Scala, do not recognize these conflicts and ‘solve’ them by
unification (Section 4.1). MixJava presents a notable exception, with a view
keyword which behaves like full qualification [Flatt et al. 1998]. Regarding local
property conflicts, there is no uniform policy among various mixin propositions,
but all involve some explicit or implicit linearization. The previous definitions—
by copy or parametrization—yield the same result and the mixin M overrides the
direct superclass B. Scala uses a linearization where M—or all the mixin set—
precedes the totally ordered superclasses. Incidentally, the linearization used for
the mixin part has all the flaws of multiple inheritance in early versions of Flavors
and Loops—it is a depth-first ordering, hence not a linear extension and, of course,
it is not monotonic. Such a linearization was already obsolete in the mid-80s.

However, mixins are also—sometimes above all—a specification of how things are
implemented. The code of M is at least indirectly copied into C. Hence, mixins
are compatible with a single-inheritance implementation, which is presumed to be
more efficient than full multiple-inheritance implementations, or which is imposed
by the target runtime system, e.g. in Scala. However, in Scala, the code is
compiled into the Jvm bytecode (or the .Net Crl) at the expense of translating
each Scala type into a Java interface. Therefore, the resulting implementation
makes extensive use of method invocation on an interface-typed receiver—this is
the so-called invokeinterface primitive, which is not renowned for its efficiency
[Alpern et al. 2001; Ducournau 2005]. See also [Ducournau 2002a] for a survey of
object-oriented implementations.

Traits26 [Ducasse et al. 2005] are a variant of mixins which provides a more for-

26The term ‘trait’ is overloaded. Actually, Scala uses ‘trait’ instead of ‘mixin’ but it merges
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mal way of combining them, with a finer grain. Traits are intermediate between
Scala mixins and Java interfaces—they can only define methods, contrary to
mixins which can also define attributes27, but these methods can have implemen-
tations, contrary to Java interfaces. Moreover, traits cannot have superclasses or
even ‘super-traits’, but they can be explicitly combined to make composite traits.
Different combination operators allow the programmer to precisely manage name
conflicts, but at the local property level only—like their underlying languages,
Smalltalk and Java, traits do not recognize global property conflicts. In a static
typing framework, traits are types, like usual mixins [Nierstrasz et al. 2006].

4.5.3 Conclusion on multiple inheritance. The specifications of most languages
could adopt the present metamodel while only marginally changing language syn-
tax, programming habits or program behavior. This would provide a terminological
and conceptual basis for object-oriented programming, either for program documen-
tation or teaching, and a sound basis for all tools which are dedicated to program
manipulation—compilers, programming environment, etc. Our claim is that lan-
guages like C++ and Eiffel would be markedly improved if they complied to this
metamodel. In practice, this is however a dream, as such a compliance requires
numerous changes which are incompatible with existing programs, even though the
incompatible cases are likely quite marginal. Conversely, the metamodel can be
easily adapted, while preserving its principle, to include interfaces or even mixins.

Global property conflicts are not an obstacle to multiple inheritance—their solu-
tion is syntactically simple and intuitive for all programmers. Local property con-
flicts present a remaining issue—method combination. There are several solutions—
static calls, linearizations, mixins—but none of them is perfect. This is likely in-
herent to multiple inheritance.

In contrast, mixins do not answer the whole question and they need to be supple-
mented by our metamodel at the global property level. At the local property level,
mixins and linearization are roughly equivalent28, since mixins are linearized—
they are either introduced one by one or separately linearized. However, mixins
are only equivalent to a subset of linearization-based multiple inheritance hierar-
chies. When generalizing the example of Figure 8, only the CB..A path can con-
tain classes between B and A, while all other ‘superclasses’ of C must be mixins.
Hence, linearization-based multiple inheritance permits a full mixin-like program-
ming style, but mixins only permit a very restrictive use of multiple inheritance.

Our view of multiple inheritance is both set-theoretical, i.e. based on union of
property sets, and order-theoretical, i.e. based on partial and total orders. Multiple
inheritance mostly amounts to combining, i.e. ‘mixing in’, superclasses, by union

different approaches, so we prefer to avoid confusions and call them mixins. ‘Trait’ was previously
used in Self [Ungar et al. 1991] with yet another, though similar, meaning. In C++, ‘trait’
denotes a programming pattern which allows the programmer to somewhat ‘refine’ primitive
types, especially characters.
27This limitation of traits may be caused by the target language, Smalltalk.
28Mixins are sometimes defined by the fact that they are linearized—e.g. “They were defined
as classes that allow their superclass to be determined by linearization of multiple inheritance.”
[Smaragdakis and Batory 2002]. This condition is necessary but not sufficient. Bracha and
Cook [1990] made it clear that mixins are not ordinary classes, whereas linearizations apply to
unrestricted class hierarchies.
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of property sets, and ordering conflicting local properties, by linearization. So,
‘mixin’ is often used in a loose way and multiple inheritance and ‘mixins’ are hard
to distinguish. For instance, in [Ernst 1999], it is unclear whether ‘mixin’ could be
uniformly replaced by ‘class’ without any change.

Furthermore, all criticism against linearizations in a full multiple inheritance
framework is also applicable to mixins. Finally, mixins have the disadvantage of
adding a new kind of entities—mixins or traits—which are akin to classes, but
different, rather ad hoc and which do not appear to be stable enough. On the
contrary, full multiple inheritance relies only on the simple notion of class which is
conceptually well understood, after centuries of Aristotelian tradition [Rayside and
Campbell 2000b; 2000a; Rayside and Kontogiannis 2001].

5. MODULES AND CLASSES

Let us now more formally present modules and class refinement, with a strong
analogy with the class and property metamodel. In the following, we successively
present the metamodel, its formalization, an analysis of multiple import and mul-
tiple inheritance conflicts, and a discussion about static typing.

5.1 Module and Class Metamodel

A more rigorous approach follows from the observation that classes are to modules
what properties are to classes, the dependence relation between modules matches
specialization, and import matches inheritance. Formalizing this observation just
involves defining an isomorphic metamodel with two entities associated with the
class concept, and one entity associated with the module concept—Fig. 9.

5.1.1 Modules. Modules are hierarchies of classes. A module depends on zero,
one or more other modules—if module m depends on module n, n is a supermodule
of m, and m is a submodule29 of n. Like the class specialization relation, the module
dependence relation is a strict partial order.

Local classes are defined in modules. A local class is described by an ordinary
class definition (Def. 3.11). Global classes gather local classes and are orthogonal
to modules. Each module has global classes which correspond to the classes that
it knows, i.e. those that can be used in the module, for specialization, refinement,
typing or instantiation.

A module definition is a triplet constituted with the name of the module, the
name of its supermodules, presumably already defined, and a set of local class
definitions. The dependence relation supports an import mechanism—i.e. modules
import the classes of their supermodules. The two kinds of classes yield two-level
import. First of all, a module imports all global classes of its supermodules—this
is global class import. Then, each local class definition is processed. If the name of
the local class is the same as the name of an imported global class, the new local
class is attached to the global class. If there is no such imported global class, a
new global class with the same name is introduced in the module. Note that we do
not distinguish between supermodules, according to whether their imported classes

29Remember that a submodule is not a module inside a module (nested module) but a module
which depends on another module.
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Fig. 9. Metamodel of Modules and Classes

are only used in the current module for typing and instantiation, or whether they
are also specialized or refined. Like visibility, this would be of practical interest
but this does not change the model. Anyway, only the relation which supports
specialization and refinement is required to be acyclic.

For any global class known by a module, the existence of the corresponding
local class is supposed: it is either an explicit definition, or an implicit refinement.
In the latter case, local classes are said to be implicit classes since they do not
have explicit definitions. The class refinement relation is the analogue of property
redefinition. It is deduced from the module dependence relation. On the other
hand, since modules are class hierarchies, their local classes are also related by
a specialization relation. This specialization relation is deduced from both the
explicit declarations of superclasses in local class definitions and the corresponding
relationship in supermodules. Hence, a module imports specialization relationships
from its supermodules. Altogether, property inheritance is now supported by both
specialization and refinement.

5.1.2 Program and Module Semantics. A program is a set of modules closed by
the dependence relationship. It corresponds to a bottom module (possibly empty
and implicit) that depends on every other module in the program. So far, the
simplest way to establish the semantics of a program is probably to reduce it to
a single class hierarchy by a kind of flattening30 mechanism. There are roughly
three ways for doing this, which are not exactly equivalent. The set of classes of
the resulting class hierarchy may be:

(1) the set of global classes, with a specialization relationship resulting from the
projection of the specialization of each module, and local properties defined as
the most specific w.r.t. refinement;

30The term ‘flattening’ is commonly used in extensions of object-oriented models—it involves
translating a class hierarchy extended by some new features into an usual one without these new
features. For instance, the term is used for mixins and traits [Nierstrasz et al. 2006]. It can be
understood as a source-to-source transformation.
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(2) the set of local classes of the bottom module, submodule of all other modules,
with specialization imported from other modules, and local properties defined
as the most specific w.r.t. refinement;

(3) the union of all local class sets over all modules—including the implied bottom
module—with specialization defined as the union of all specialization plus re-
finement, and local properties being exactly what they are in each module and
each class. All local classes are abstract, except those of the bottom module.

Though conceptually simple, the last solution has an obvious drawback—the
resulting class hierarchy would be quite large and multiple inheritance situations
quite numerous. Moreover, it is not a good idea to put class specialization and
refinement on the same level. Though they are intuitively akin, intuition tells us
that refinement is, in some sense, stronger than specialization, in the same way as
defining a property is stronger than inheriting it (Masking rule, page 20). On the
other hand, the first two solutions are quite similar. The first one avoids the artifact
of introducing an implied module and makes global classes concrete—they are the
actual classes of the final program. However, conflict resolution may require to
explicitly define the bottom module by inserting some glue code—see Section 5.3.4.
For technical convenience, our definition will use both.

5.2 Notations and Formal Definitions

A module is a hierarchy of classes and a program is a hierarchy of modules.

Definition 5.1 (Module hierarchy). A model of a program, i.e. of a hierarchy of
modules, is a tuple P = 〈XP ,≺P , GP , LP , NP ,nameP , globP , introP , def P〉, where:

—XP is the set of modules and ≺P is the module dependence relationship, which
satisfies the same notations and properties as class specialization;

—GP and LP are the set of global and local classes;
—NP is the set of module and class identifiers (names);
—nameP : XP ]GP ] LP → NP is the naming function of modules and classes.
—globP : LP → GP associates with each local class a global class;
—introP : GP → XP associates with a global class the module introducing it;
—def P : LP → XP associates with a local class the module in which it is defined.

Each module M ∈ XP is a class hierarchy M = 〈XM,≺M, GM, LM, NM,
nameM, globM, introM, defM〉, where

—XM = LPM is the set of local classes of M in P;
—all NM are the same name-set;
—all GM are part of some set G of global properties;
—all LM are disjoint, so def (resp. glob) is an unambiguous shorthand for some

defM (resp. globM).

Unless otherwise stated, all notations, equations and constraints available for H
(Section 3.2) are also available for P—apart from substituting P (resp. ‘module’,
‘class’) to H (resp. ‘class’, ‘property’)—and for M—except (1) and (3) which are
slightly modified into (18-20). Of course, exponents P or M are now mandatory
in all notations.
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Module dependence entails class refinement, which is simply the analogue of
property redefinition (Def. 3.9):

Definition 5.2 (Class refinement). Class refinement is defined as the relation-
ship �P between a local class in LP↑m, defined in some module m, and the corre-
sponding local classes in the supermodules of m:

c �P c′
def⇐⇒ globP(c) = globP(c′) ∧ def P(c) ≺P def P(c′) .

This is a strict partial order and �P
d denotes its transitive reduction.

As a small difficulty arises regarding XM, for simplification’s sake, one assumes
that XM includes a local class definition, possibly empty—i.e. without any local
property definition—for each31 class in the supermodules of M:

Constraint 5.3 (Implicit class refinement).

M≺P M′ =⇒ globP(XM′
) ⊆ globP(XM) .

Given two dependent modulesM′ ≺P M, let idMM′ be the function idMM′ : XM →
XM′

which maps a class c ∈ XM to the single c′ ∈ XM′
such that c′ �P c. It

follows from Constraint 5.3 that idM
′

M is a well-defined injective total function.
Moreover, one must also ensure that the specialization relationship ≺M includes

its analogue in supermodules.

Constraint 5.4 (Specialization import). Let M∈ XP a module. For all super-
modules M′ such that M≺P M′, for all c, c′ in XM′

, then

c ≺M
′
c′ =⇒ idM

′

M (c) ≺M idM
′

M (c′) .

Moreover, let ≺Me denote the specialization relationship explicitly defined for mod-
ule M by successive class definitions (Def. 3.11). Then ≺M is defined as the tran-
sitive closure of the union of ≺Me and idM

′

M (≺M′
), for all M′ such that M≺Pd M′.

The last constraint makes modules slightly abnormal class hierarchies since, for nor-
mal ones, ≺e and ≺d coincide. However, to be legal, ≺M must be antisymmetric—
possible violations are discussed in Section 5.3.2.

Moreover, when considering global properties, class refinement makes modules
special class hierarchies, that do not verify Constraint 3.7, because class refinement
in turn induces inheritance of global properties.

Constraint 5.5 (Refinement-based inheritance). Let M,M′ ∈ XP , such that
M≺P M′. Then GM

′ ⊆ GM.
Let c ∈ XM and c′ ∈ XM′

such that c �P c′. Then GM
′

c′ ⊆ GMc .
Moreover, for all g ∈ GM

′
, introM(g) = idM

′

M (introM′(g)).

The last constraint does not take a possible property generalization into account—
item (4) in Section 2.1. We shall examine it in Section 5.3.3.

31Actually, this is only required for all superclasses and subclasses of refined classes.
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Altogether, the set GMc of global properties known by c splits up into the sets of
properties introduced in c (GM+c), inherited by specialization (GM↑c ) and by refine-
ment (GM⇑c ). The following equations replace (1) and (3):

GMc
def= (GM↑c ∪GM⇑c ) ]GM+c = GM↑c ]GM⇑+c ]GM+c , (18)

GM⇑c
def=

⋃
c�Pc′

G
def P(c′)
c′ , (19)

GM⇑+c
def=

⋃
c�Pc′

G
def P(c′)
+c′ , (20)

GM+c ∪GM⇑c = intro−1
M (c) . (21)

One just has to add the set GM⇑+c of global properties introduced by classes which
are refined by c. Finally, a small complement must be added to the tuples M,
since global properties are now introduced not only by a class but also by a given
module. Therefore, for each module M∈ XP , one extends the domain of function
introP : GP ]G → XP in such a way that, forall g ∈ G:

g ∈ GM+c
def⇐⇒ introP(g) = M . (22)

Class refinement also entails a redefinition relationship on local properties:

Definition 5.6 (Refinement-based property redefinition). Let M ≺P M′ be
two dependent modules. Refinement-based redefinition is the relationship, noted �,
defined on the sets LM and LM

′
of local properties. Given lp ∈ LM and lp′ ∈ LM

′
,

then
lp � lp′

def⇐⇒ globM(lp) = globM′(lp′) ∧ defM(lp) �P defM′(lp′) .

5.2.1 Module Definition. The program is built by successive module definitions.
A module definition is analogous to a class definition (Def. 3.11), except that ‘mod-
ule’ (resp. ‘class’) replaces ‘class’ (resp. ‘property’). Moreover, local class definitions
differ slightly from Definition 3.11.

Definition 5.7 (Module definition). A module definition is a triplet 〈modname,
supermodnames, localclassdef〉, where modname is the name of the newly defined
module, supermodnames is the set of names of its direct supermodules—they are
presumed to be already defined—and localclassdef is a set of local class defini-
tions.

The effect of this definition is given by the following protocol.

(i) Module hierarchy update. A new module m = M with name modname is
added to XP . For each supermodule name in supermodnames, a pair is added
to ≺Pd (ambiguities and transitivity edges are checked, as in Definition 3.11).

(ii) Global class import. GP↑m is computed according to (2) and global class con-
flicts are checked (Def. 3.4).

(iii) Local class hierarchy. Then each class definition in localclassdef is treated
as a class definition, irrespective of the property definitions (Def. 3.11, step i). The
new local classes are created, with their corresponding names—this yields LPm.
We assume here that a potentially empty class definition is explicitly provided for
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each global class in GP↑m but a default behavior would be straightforward. LP↑m
is determined by (9). Specialization relationships are imported from direct super-
modules (Const. 5.4) and possible cycles in the resulting relationship are checked—
Section 5.3.2. Then, GP+m is constituted as the set of new global classes correspond-
ing to each local class in LP+m = LPm\LP↑m. LPm and GP+m are then respectively added
to LP and GP . Local class conflicts are not considered since they are treated during
the local class definitions.

(iv) Local class properties. In the definition of the module m = M, the definition
of the local class c is made with the usual triplet 〈classname, supernames, localdef〉
(Def. 3.11). Once the complete class hierarchy (XM,≺M) has been processed, the
protocol proceeds to property inheritance and definition. First, global property in-
heritance is managed. The effect is the same as in Definition 3.11 (step ii), except
that class refinement must be considered (Def. 5.5). Thus the set of properties
inherited through specialization (GM↑c ) and refinement (GM⇑c ) are first computed
(2,20). Global property conflicts are checked in the usual way, but in the set
GM↑c ∪GM⇑c instead of GM↑c . GM+c is then constituted as the set of newly introduced
global properties—GM+c = GMc \(GM↑c ∪GM⇑c ). Finally, all local property definitions
in localdef are treated in the usual way (Def. 3.11, step iii-iv). Note that a slight
difference may occur with global property generalization discussed in Section 5.3.3.

5.2.2 Semantics of a Program. As aforementioned, the semantics of a program
is given by a flattening mechanism which maps a module hierarchy to a single
normal class hierarchy.

Definition 5.8 (Program semantics). The semantics of program P is the class
hierarchy Q = 〈XQ,≺Q, GQ, LQ, NQ,nameQ, globQ, introQ, def Q〉, where:

—XQ = GP is the set of global classes of P;

—NQ is a name-set build from the common name-set for all M∈ XP ;

—nameQ is defined by equations (26-27);

—GQ = G is the set of all global properties in P.

Other components of the hierarchy Q are defined by equations (23–28).

An alternative definition involves the bottom module ⊥, which is empty—i.e.
localclassdef = ∅—and depends on each module in P. Then globP is a one-to-
one correspondence between X⊥ = LP⊥ and GP = XQ.

The resulting class specialization is then defined as the class specialization in the
bottom module (Const. 5.5), or its image by globP :

≺Q def= globP(≺⊥) . (23)

Violations of antisymmetry are discussed in Section 5.3.2.
The set of global properties is merely the union of all sets of global properties:

GQ = G =
⋃

M∈XP

GM = G⊥ =
⋃

gc∈XQ

GQgc , (24)
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and, for all global class gc, GQgc is defined as the union of the sets of global properties
of all local classes of gc:

GQgc
def=

⋃
lc∈glob−1

P (gc)

G
def P(lc)
lc = G⊥gc . (25)

The function introQ is defined by globP ◦ intro⊥. In the absence of global property
generalization (Section 5.3.3), this follows from the fact that all local classes which
introduce a given global property belong to the same global class (Const. 5.5).
However, property generalization does not change this definition.

In the hierarchy Q, all names are fully qualified names in P. Hence, NQ def=
(NP×NP)] (NP×NP×NP×NP) and nameQ : XQ]GQ]LQ → NQ is defined
by:

∀c ∈ XQ,nameQ(c) def= nameP(introP(c)):nameP(c) (26)

∀g ∈ GQ,nameQ(g) def= nameQ(introQ(g))::nameP(introP(g)):name⊥(g) (27)

In other words, Q determines the semantics of P in terms of instances of the meta-
model. However, the denotation of the program text, i.e. the mapping from names
to instances, cannot be determined only with unqualified names in P—mediation
of the current module M is required. This will be discussed and exemplified in the
following section.

So far, besides names, Q and ⊥ are exactly isomorphic. This will change when
considering local properties, since ⊥ is empty, whereas local properties are required
to make Q a real program. The local properties of a class are defined as the most
�-specific local properties of all local classes of the considered global class:

LQgc
def= min

�

( ⊎
lc∈glob−1

P (gc)

L
def P(lc)
lc

)
. (28)

Of course, this is a sound local property set only if there are no two local properties
belonging to the same global property—i.e. the restriction of the function globQ on
each LQgc must be injective (Const. 3.6). Otherwise, a conflict occurs, which must
be solved, and this solution involves defining some glue code in the bottom module.
This will be discussed at length in Section 5.3. The whole program is constructed
from these sets LQgc , as in Definition 3.11.

Finally, Q also determines the run-time behavior of P—method invocation is
defined as in Section 3.2.3, except for the call to super and method combination
which will be discussed in Section 5.3.5.

5.3 Multiple Import and Inheritance

As a result of the previous definitions, refining a subclass automatically induces
a kind of multiple inheritance, through class specialization (≺M) and class refine-
ment (�P). Hence, it is impossible to ignore the problems caused by multiple
inheritance. Moreover, the dependence relationship between modules (≺P) can it-
self be ‘multiple’. In this section, we analyze these new conflicts and investigate
their treatment in the light of the metamodel.

A convention similar to that of Figure 1 applies to all figures: local classes ap-
pear as small named inner boxes, and modules are larger numbered enclosing boxes.
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Fig. 10. Multiple Class Import and Conflict

Only specialization relations (≺M) in a module and dependence between modules
(≺P) are drawn. Local classes in the same global class have the same name—hence,
the refinement relation (�P) between classes remains implicit. Moreover, relevant
implicit classes and implicit specializations are drawn in dashed lines. In the fol-
lowing, p, q, r . . . denote property names, A,B, C . . . denote class names, 1, 2, 3 . . .
denote modules, and A1 denotes the local class in module 1 corresponding to the
global class named A.

5.3.1 Multiple Import. Global and local class import yields the same conflicts
as global and local property inheritance.

A global class conflict occurs when a module imports two homonymic global
classes from two different supermodules—Fig. 10-a. It is isomorphic to global
property conflict, has the same definition (Def. 3.4) and it can be solved in the
same way. As modules are usually name-spaces, fully qualified names are the most
natural solution here (Section 4.1)—hence, in the example, 1:Bow and 2:Bow un-
ambiguously denote the two conflicting global classes. However, a class renaming
mechanism, as in Eiffel and its configuration language Lace [Meyer 1997], would
be an alternative.

In a similar way, a local class conflict would occur when a module imports sev-
eral most specific classes from its supermodules, i.e. when |specP(c,m)| > 1 for
a module m and a global class c (Def. 3.10). However, the assumption that all
imported classes are refined with a default empty local class (Const. 5.3) makes
such a situation impossible. Let us consider, for a while, that this constraint does
not hold. Figure 10-b illustrates this conflict configuration: module 4 imports the
global class A introduced by module 1 and explicitly refined by the local classes A2

and A3 in the corresponding supermodules. Nevertheless, apart from the structural
analogy, such a situation is quite different from local property conflicts. Whereas a
local property is generally required to be unique and atomic in a class, local classes
can be understood as sets of local and global properties. Hence, unlike general
local property conflicts, the solution here is straightforward—namely, refining A
by an empty local class A4 which combines, through refinement-based inheritance
(Const. 5.5), the two conflicting classes, A2 and A3. One must however note that
the solution still resorts to re(de)fining and combining, like general local property
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conflicts. Therefore, besides being a technical facility, default empty local classes
are also the solution to local class conflicts. Of course, some property conflicts may
follow, that we shall examine hereafter.

5.3.2 Cyclic Specialization and Class Unification. A new conflict configuration,
named specialization conflict, appears in a module when two local classes special-
ize each other, after importing the specialization from supermodules (Const. 5.4).
Figure 10-c illustrates this case. It creates a cycle in the specialization relation
which is no longer a partial order, but only a preorder. A natural solution would
be to forbid such conflicts, which means that for each module M ∈ XP , the part
of ≺M declared by the programmer should not entail such cycles in conjunction
with the part inherited from supermodules by Constraint 5.4. This is, however, not
enough since the cycle may follow only from the specialization inherited from two
unrelated supermodules, as in the example. Moreover, such a cycle does not only
appear in an explicit module—it could also occur in the implicit bottom module.
Hence, if cycles are forbidden, modules that yield them cannot be gathered in the
same program.

An alternative involves considering that a cycle in the specialization relationship
is an equivalence class, since specialization implies inclusion of instance sets and
property sets. Therefore, the solution would be to unify all classes on the cycle.
Moreover, class unification could be an explicit feature of class refinement languages.
We shall no longer formalize this idea, which seems quite feasible. Of course,
variants of the usual property conflicts might occur when a name denotes several
global properties in the cycle classes, and when several local properties are defined
in the cycle classes, for the same global property.

5.3.3 Global Property Inheritance. Like usual classes, a local class resulting from
specialization and refinement consists of sets of global and local properties.

A local class has the global properties of the classes that it specializes and refines
(18-20). This entails the usual global property conflicts (Def. 3.4) together with
their generalization to refinement, by replacing ≺Md by �P

d , or by union of both.
In Figure 10-b, A2 and A3 inherit the global property p introduced into A1 while
A4 inherits the global properties p, q and r introduced into the classes it refines.
Therefore, global property inheritance behaves, with modules and class refinement,
as for usual class hierarchies. Technically, given the bottom module ⊥, each global
class constitutes a class hierarchy:

Definition 5.9 (Global class hierarchy). Let lc ∈ L⊥ be a local class in the
bottom module and gc = globP(lc) be its corresponding global class, then

Hgc
def= 〈glob−1

P (gc),�P , G⊥lc , L
∗
gc , N

P ,nameP , glob∗, introM, def ∗〉

is a class hierarchy, where L∗gc =
⋃

lc∈glob−1
P (gc) L

def P(lc)
lc is the set of all local prop-

erty definitions in the local classes of gc, and glob∗ and def ∗ are defined accordingly.

There is no need to go into further detail. Just note that these hierarchies are
somewhat dual of modules—i.e. intra-module specialization-based inheritance must
be added here to usual inheritance, whereas, in a module, extra-module refinement-
based inheritance must be added.
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Fig. 11. Global Property Conflicts

So global property conflicts are still possible for specialization, in each module,
and for refinement, in each global class hierarchy. They must be individually solved
by the techniques of Section 4.1. Figure 11-a describes such a conflict, where
conflicting properties named p are introduced in two local classes corresponding to
the same global class A—hence, they must be disambiguated by the module name,
e.g. by 2:p and 3:p. Of course, a global property conflict originating from conflicting
global classes requires double qualification—e.g. 2:A:p and 3:A:p in Figure 11-b.
The global property conflict can also originate from an extra specialization link,
as a combination of specialization and refinement (Fig. 11-c and 11-d). Finally,
in the worst case, fully qualified local classes may be required for disambiguating
property names, when both global property and global class conflicts occur—e.g.
1:A::4:p and 2:A::4:p in Figure 11-e. This fully qualified notation corresponds to
nameQ (27). Disambiguation is complete as gidP , lidP and all gidM are injective.

Global property generalization. However, other apparent conflicts resulting from
the combination of refinement and specialization deserve discussion. As the pro-
grammer of a module M knows the supermodules of M, i.e. classes and proper-
ties which are defined in these supermodules32, it seems relevant to also consider
subclasses when analyzing class refinement. Thus, in Figure 12-a, when the pro-

32The reader must keep in mind that visibility restrictions are not considered in this paper—in
practice, the programmer of M would only partially see the classes and properties defined in
supermodules, and property generalization only applies to the visible ones.
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Fig. 12. Global Property Generalization

grammer defines p in A2, it is interpreted33 as the generalization of the property p

introduced in B1.

Definition 5.10 (Property generalization). Let g be a global property intro-
duced in some local class in module M′ and a submodule M ≺P M′. Property
generalization occurs when idM

′

M (introM′(g)) ≺M introM(g).

For the sake of simplicity, this feature was not considered in Constraint 5.5, but
the modification is straightforward—namely, introM(g) = idM

′

M (introM′(g)) must
be replaced by idM

′

M (introM′(g)) �M introM(g). During module construction
(Def. 5.7, step iv), when defining a local class c, property names must be compared
not only to inherited global properties (GM↑c ∪ GM⇑c ) but also to global properties
introduced in refined subclasses in supermodules, i.e. in GM⇑+c′ , for all c′ ≺M c. So,
in practice, when a local property lp is defined in c, its name must be compared to
all of these property sets.

Property generalization can in turn yield some ambiguities akin to global property
conflicts. For instance, in Figure 12-b, generalizing p in A2 requires disambiguating
it, by B:p or C:p. An alternative would be to include unification of global properties
in our specifications, but we do not consider this extension to our model here. How-
ever, unifying both properties would here be questionable since the programmer of
module 1 could have done it alone. Figure 12-c depicts another example, where the
same property p is generalized in two different classes, B and C, of two unrelated
modules 2 and 3. Therefore, in a common submodule 4, p must be in turn gen-
eralized in a common superclass D of B and C—this ensures that p is introduced
by a single class. Moreover, such a conflict does not appear only in an explicit
module—it could also occur in the implicit bottom module. However, in both cases,
the extra class can be added automatically. Finally, a conflict may occur when

33We are only specifying a model, not an actual programming language. In an actual language,
specific keywords might be added to ensure that there is no confusion.
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Fig. 13. Local Property Conflicts

the considered name has been independently introduced in refined classes of both
superclasses and subclasses (Fig. 12-d).

5.3.4 Local Property Inheritance. Local property inheritance can present differ-
ent kinds of apparent conflicts, when there are several most specific inherited local
properties for a given class and a given global property:

(1) usual local property conflict in a single module, when specificity is related to
≺M and �M (Fig. 7);

(2) the analogue when specificity is related to �P and � (Fig. 13-a);
(3) a special case of the preceding one, where submodule 4 is not explicit (Fig.

13-b);
(4) a mixed situation, when the two conflicting properties are inherited respectively

through ≺M and �P (Fig. 13-c);

In the first two cases, the conflict must be solved in the same way as ordinary
local property conflicts, i.e. redefining, selecting and/or combining. In the third
case, when modules 2 and 3 are included in some program P but have no explicit
submodule, the conflict must be solved in the implicit bottom module ⊥. This is
finally the only glue code which is required for building Q and the only case which
requires making ⊥ explicit. The difference is that in case (2), the conflict solution
is done when defining and compiling module 4, whereas in case (3) it is done at
link-time, when gathering the code of all modules. Figure 13-c illustrates the latter
case and raises the question of local property inheritance of the global property p

in the local class B2. The local classes B1 and A2 are incomparable by ≺M, �P

or even combinations of both, but the intuitive vision considering refinement as an
incremental modification of classes gives to B2 the method p defined in B1. This
intuition agrees with the definition of Q, where the local property p defined in B1

is the local property for B (28).

5.3.5 Call to super and method combination. With class refinement, call to
super becomes much more ambiguous than usual. It could as well denote a rede-
fined local property in a superclass (�M), in a refined class (�), or in a combina-
tion of both. However, the same approaches as with multiple inheritance are still
possible—call-next-method and linearizations and qualified or unqualified use of
super. We do not consider the alternative of static calls.
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Fig. 14. Bidimensional linearizations in Clos and when combining class specialization and
refinement—linearizations are in dotted lines. The Clos example (left) illustrates the product
of two linearizations, (c0, c1, c2) and (c′0, c′1, c′2, c′3), whereas the class refinement example (right)
depicts a module linearization clinP0 = (0, 1, 2, 3), where 0 is the bottom module, a class lineariza-
tion in ⊥, clin⊥(A0) = (A0, B0, C0, D0), and the local class linearizations llinP (A,⊥) = (A0, A1),
llinP (B,⊥) = (B0, B1, B2), llinP (C,⊥) = (C0, C1, C2, C3) and llinP (D,⊥) = (D0, D1, D2, D3).
The linearizations are monotonic w.r.t. refinement—i.e. clin1(A1) includes id2

1(clin2(B2)).

Bidimensional linearizations. Let us first examine linearizations. The situation
is somewhat 2-dimensional, with local properties depending on both specialization
and refinement orderings. This resembles a common situation in Clos, when the
selection of methods (the Clos word for local properties) in a generic function
(the Clos word for global properties) involves the dynamic types of two parame-
ters. This is an original feature of Clos, also called multimethods, which implies
selecting methods in the cartesian product of two hierarchies, one for each pa-
rameter. Each hierarchy is a partial order and this amounts to single parameter
selection in the product of these partial orders34. In this situation, Clos linearizes
the product of both hierarchies, by linearizing the product of their linearizations.
Moreover, among a large set of possible linearizations, Clos selects the following.
Let c0, c

′
0 be the dynamic types of the two parameters, clin(c0) = (c0, c1, c2, .., ck)

and clin(c′0) = (c′0, c
′
1, c

′
2, ..., c

′
k′). Then, the linearization of the product is the

ordering ((c0, c
′
0), .., (ck, c′0), (c0, c

′
1), .., (ck, c′1), .., (c0, c

′
k′), .., (ck, c′k′)) (Fig. 14-a).

So, we propose a similar approach for class refinement. Let c0 = c0 ∈ XP
⊥ be the

dynamic type of the considered receiver, and let the two linearizations be:

(1) clin⊥(c0) = (c0, c1, .., cl) is the linearization of supc⊥(c0), the superclasses of c0

in (X⊥,≺⊥)—or, isomorphically, the global classes in (XQ,≺Q);

34The product of two posets (E, <E) and (F, <F ) is the poset (E × F, <E×F ) defined by
(x, y) <E×F (x′, y′) ⇐⇒ x <E x′ ∧ y <F y′.
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(2) llinP(gc,⊥) = (c0, c1, ..., ck), with gc = globP(c0) is the linearization of c0 in
(glob−1

P (gc),�P), the set of local classes refined by c0. Note that llinP(gc,⊥)
and clinHgc (c0) (Def. 4.2 and 5.9) are total orders on the same set and can be
made equal.

In contrast with Clos, we no longer consider the product of linearizations, but
the concatenation of successive llinP(gci,⊥) = (c0

i , c
1
i , ..., c

ki
i ) where c0

i = ci and all
gci = globP(c0

i ) are ordered by clin⊥(c0). Therefore, the resulting linearization is
(c0

0, c
1
0, .., c

k0
0 , c0

1, .., c
k1
1 , .., c1

l , .., c
kl

l ) (Fig. 14-b). Once again, this ordering is consis-
tent with the definition of LQ (28), hence linearization can serve for selection as
well.

This new framework raises multiple monotonicity issues. (i) With modules, a
programmer is in charge of a whole module, not of a single class—so, he/she can
modify this module until the required monotonicity is reached. Therefore, mono-
tonicity would never be a problem if modules were isolated. However, a module
depends on some other modules and (ii) specialization import entails a new kind of
monotonicity, which amounts to importing linearizations—namely, if M ≺P M′,
clinM(idM

′

M (c)) must include idM
′

M (clinM
′
(c)). Though the only required lineariza-

tion is clin⊥, the programmer does not foresee this bottom module when he/she
develops module M but his/her contribution to clin⊥ is the definition of clinM.
So refinement-based monotonicity is as desirable as usual, i.e. specialization-based,
monotonicity, and both combine for classes introduced inM—i.e. if c′ ≺M idM

′

M (c),
then clinM(c′) must include idM

′

M (clinM
′
(c)). Figure 14-b exemplifies this in a

simple diamond case. Thus, multiple import makes monotonicity as hard to meet
as with usual multiple inheritance hierarchies and partial linearizations clinM are
again better, since they are less constraining for future submodules. (iii) On the
import dimension, the monotonicity of clinP is also desired and partial lineariza-
tions can also be considered. However, clinP and llinP are isomorphic, because of
empty local classes, so partial linearizations must be considered at the local prop-
erty level, i.e. in llinHgc (Def. 5.9)—two ≺P -unrelated modules must be ordered iff
both define a local property for the same global property and class couple.

Qualified super. To overcome potential linearization drawbacks, we also examine
a qualified use of super, with two different usages. Let lp be the considered local
property which is calling super, gp = glob(lp) the corresponding global property,
lc = def (lp) the local class which defines lp, gc = globP(lc) the corresponding
global class, and M = def P(lc) the current module, where lc and lp are defined:

(1) Let M′ be a supermodule of M: super〈M′〉 calls the local property belonging
to gp and defined in, or �P -inherited by, module M′; this is not exactly a
static call because the local property can be defined in a supermodule of M′;

(2) Let B be the name of a superclass lc′ of lc in M, and gc′ the corresponding
global class: super〈B〉 calls the local property defined, in Q, ‘in the direction
of’ gc′, i.e. in the most specific class gc′′ such that gc ≺Q gc′′ �Q gc′ or
gc ≺Q gc′ �Q gc′′.

In both cases, the compiler can statically check for the local property. With
super〈M〉, it can also check for uniqueness, like Precursor in Eiffel. However,
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with super〈B〉, uniqueness cannot be checked at compile-time, since gc′ or other
conflicting classes can be introduced in submodules. Therefore, a robust specifi-
cation of this feature might use a linearization of the superclasses of gc which are
also sub- or super-classes of B. This resembles the point of view notion proposed
by Carré and Geib [1990].

Unqualified use of super would be rather unsafe, since there is no way to ensure,
in the current module, that a class refinement will not yield a conflict.

Example. Let us consider the very simple example of Figure 13-c. Suppose that
B1::p (resp. A2::p) calls super or super〈A〉 (resp. super〈1〉). Then, in the final pro-
gram, B::p (resp. A::p) will be B1::p (resp. A2::p) and will call A::p=A2::p (resp. A1::p).
When substituting call-next-method to super, the two-dimensional linearization
(B2, B1, A2, A1) would lead to the same result.

Mixin-like modules. We do not consider alternatives such as mixins, since we
excluded them when discussing multiple inheritance. Let us just note, however,
that the analogy between class level and module level can also apply to mixins. So
an analogous definition of mixin-like modules would be straightforward.

5.4 Static Typing

Modules and class refinement slightly changes the point with static typing. First,
modules are now compilation units instead of classes. Secondly, the effect of in-
heritance import on subtyping must be examined. Finally, class refinement also
induces extra property conformance.

5.4.1 Modular compiling and linking. First, when statically analyzing a module
M, each occurrence of a type (class name) in M is considered as the corresponding
local class in XM and the subtyping relationship is identified to ≺M. It follows
from specialization import (Const. 5.5) that all subtyping relationships which are
valid in some module remain valid in all submodules. So, modular compile-time
type checking remains unchanged and all class names can be interpreted as the
corresponding classes in X⊥ or, equivalently, in XQ. At end, when modules are
linked together to form a program (Q), all class names reference the corresponding
classes in X⊥, and the subtypings of all modules are still valid in the final program.

The fact that compilation units are now modules instead of classes has actually
few effects. Actually, modules cannot pretend to solve any problem occurring in
usual class hierarchies since any class hierarchy can be canonically transformed
into a module hierarchy, by simply defining a module per class and translating
multiple inheritance into multiple import. However, in practice, each module can
introduce a whole set of related classes which are defined in a consistent way by
a single programmer. Coupled with partial linearizations, this leads us to expect
that monotonicity will be easier to meet than with usual class hierarchies and
total linearizations. From a type perspective, in a module M, the class hierarchy
(XM,≺M) is globally and statically known, as all clinM and llinM linearizations
within the module. Hence, the type of cnmM(l) is statically known. However,
method combination also implies refining classes in submodules. Even if refinement
is type invariant, a submodule may define a method in a class which only inherits
it in M and supermodules—e.g. in Figure 14-b, the method introduced in D3 may
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be redefined in B2 and C1, making call-next-method with explicit parameters in
B2 unsafe if redefinition is not type invariant. On the contrary, call-next-method
without explicit parameters remains type safe in a type unsafe covariant framework.

5.4.2 Property Conformance. Both metamodels are fully compatible with all
subtyping policies—usual type safe policy as in most languages, or covariant policy
as in Eiffel and Prm. Conformity between local properties can take several forms
according to the considered language: arity, static types of result and parameters,
declared exceptions, contracts, etc. We do not need to examine all the details here.

However, the point is that refinement slightly changes the way the conformance
of a property must be checked. Usually, given the redefinition lp′ �H lp, one
must check that lp′ conforms to lp, e.g. by respecting the contravariance rule.
Refinement imposes the same conformance check with the redefinition lp′� lp. But
this is not enough—one should also check that lp′ conforms with the definition of
the considered global property in the subclasses of the considered class. In the
example in Figure 13-c, it must be checked that the local property p defined in B1

and inherited by B2 conforms with the one defined in A2. This must be checked
when defining A2, by looking in its refining subclasses—i.e. in the subclasses of A2

which refine subclasses of A1. Note that even with the invariant policy of C++
and Java, such a check is required since the point may be the return type, not only
the parameter types.

Nevertheless, the type policy suitable for class refinement is unclear. Class spe-
cialization entails the aforementioned covariant vs. contravariant controversy (see
Section 4.4). But refinement is not specialization. Overall, though other type poli-
cies should also be investigated, it might be better to adopt a type invariant policy
regarding refinement.

Finally, property generalization yields a more subtle constraint. Polymorphic use
of primitives types—i.e. the fact that int <: Any, as in Eiffel, C# or Java 1.5—
implies implicit boxing and unboxing generated by the compiler. This can make it
impossible to generalize a method returning int in a method returning Any. This
is, however, only an implementation issue.

5.4.3 Constructors. In statically typed languages without class refinement, poly-
morphism does not apply to instance constructors35. The used static type prede-
termines the dynamic type of the created instances. Thus, in the language spec-
ifications, the particular methods with instance construction roles are either not
inherited (Java or C++) or inherited but without their instance construction roles
(Eiffel).

With class refinement, it is a little bit different since the dynamic type of the new
instances is statically unknown—indeed, the local classes statically handled by the

35‘Constructor’ is another misleading term. As a local property, it denotes only an initial-
izer, which corresponds to Clos initialize-instance. At a constructor call site, i.e. as a
global property, the construction role is ensured by some hidden mechanism—similar to Clos
make-instance—which makes the instance before calling the initializer. Anyway, the programmer
must declare that a given method can be used as a constructor, i.e. as a primary initializer directly
called at an instantiation site. Normally, any method can be used as a secondary initializer, i.e.
when indirectly called by a primary initializer, though an odd specification makes it false in C++
since, in this language, late binding is impossible within a constructor.
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module can be refined in possible submodules. Therefore, the constructor which
will be actually invoked is unknown. Thus, on the one hand, constructors must
be fully �P -inheritable and �-redefinable during class refinement, while on the
other, the refining classes must make sure that the constructors introduced into the
refined classes remain coherent—possibly by redefining them. Actually, a similar
issue occurs for homogeneous implementations of generics (see also Note 25, page
30), e.g. in Java 1.5, where new T is prohibited when T is a formal type parameter.

5.4.4 Abstract classes. A related topic concerns abstract (aka deferred) classes,
i.e. classes which cannot be instantiated, and their complement, concrete classes.
Usually, an abstract class is either explicitly declared as such, by some keyword
abstract, or it has at least one abstract method, i.e. a method without imple-
mentation. Conversely, a class with a constructor is presumed to be concrete. In
common object-oriented languages, there is no need for a neutral position.

Actually, class refinement changes many things. First, it yields a distinction
concerning abstract methods—their implementation can be provided by further
refinement or subclassing. In the first case, the class can be concrete, but only in
submodules. So, the language might offer two distinct keywords to declare a method
abstract. The second point concerns the refinement of abstract classes. First, can
an abstract class be refined as a concrete one? This would be possible but it does not
seem necessary, since the abstract class is not instantiated in supermodules—hence,
submodules can ever specialize it for instantiation. Conversely, can a concrete class
be refined as an abstract one? This would be unsafe, since the concrete class can
be instantiated in supermodules. So concrete is a dominant feature, which cannot
be overridden in further refinements. Hence, abstract methods cannot be defined
in concrete class refinements.

Let us now consider the possibility of a neutral position. A neutral class would
have no constructor and no abstract method. It could be refined by either an
abstract or a concrete class. However, this would yield a new kind of conflict,
when both abstract and concrete refining classes are imported by some common
submodule. Of course, the only way to solve this conflict is to consider that the
resulting class is concrete. Altogether, it is simpler to consider that neutral classes
are abstract, and that abstract classes can be refined by concrete classes. Of course,
this forces the programmer to give, in the refining class, concrete definitions for all
abstract methods defined in the refined abstract class.

6. A CASE STUDY: PRM AND ITS MODULAR COMPILER

Prm is a modular and object-oriented programming language designed for (i) test-
ing a new compilation scheme, (ii) serving as a testbed for testing various object-
oriented implementation and optimization schemes. Originally, we planned to reuse
an existing language and its compiler, namely Eiffel and SmartEiffel [Zendra
et al. 1997]. As it turned out that it was almost as difficult as starting from scratch,
we finally decided to develop a new language, while adding two goals: (iii) a clean
specification of multiple inheritance, by implementing the meta-model, and (iv)
modules and class refinement. The latter were soon found to be necessary to fulfil
(ii). So, Prm is a fully-fledged object-oriented programming language, with static
typing, multiple inheritance (mostly conformable to Section 4), genericity, modules
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Fig. 15. The Prm compilation scheme, with local modular separate compilation phases (left) and
a final global linking phase (right)

and class refinement (mostly conformable to Section 5). There is no place here to
present the language in detail, so the reader is referred to [Privat 2006b; Privat and
Ducournau 2005] and [Privat 2006a, in French].

This section first presents the original compilation scheme which yields an efficient
implementation of module and class refinement. Then the modular architecture of
the Prm modular bootstrapped compiler is sketched, as a real-size example of how
to use modules and class refinement.

6.1 Modular compilation and global optimizations

The notion of module is closely related to modular separate compilation. Each
module must be statically analyzed and compiled irrespective of possible future
usages. However, object-oriented languages present an original implementation is-
sue, related to late binding and worsened by multiple inheritance. It makes global
compilation far more efficient, as the knowledge of the complete program allows the
compiler to apply many optimizations like type analysis, dead code elimination and
devirtualization of method calls. For instance, the aforementioned SmartEiffel
compiler is based on such optimizations. For an analysis of object-oriented imple-
mentations, the reader is referred to [Ducournau 2002a]. So reconciling modular
compilation with global optimizations looks like squaring of the cycle—appealing
but likely difficult. Actually, some first attempts had already been made in a func-
tional programming framework [Boucher 2000].

Figure 15 depicts the overall scheme. Each module is separately compiled and
this compilation yields three different results: (i) the external schema roughly cor-
responds to the model of the module, as defined in Section 5, (ii) the internal
schema describes the flow of types inside the module methods, (iii) the generated
code—in some target language, namely C in the Prm case—is quite common but
it includes more unresolved symbols than usual. So a module delivery consists of
both external and internal schemas, plus the machine code file produced by the final
gcc compilation. An additional benefit of separate compilation is that the source
code does not need to be included in the delivery. Compiling a module generally
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requires some information about related modules—this information is contained in
the external schema, which therefore stands for the module interface (or .h files in
C++). In the module definition (Section 5), the dependence relationship is con-
strained to be acyclic. This is, however, a simplifying assumption only required
for the relationship which supports class refinement and class specialization, and
modules could be ‘related’ without being ‘dependent’. Figure 15 illustrates such
a cyclic relationship, with each module requiring the external schema of the other
module. This is of course not a problem, as generating the external schema does
not depend on any other module. Once all modules are separately compiled, the
global phase generates the executable. This global phase first gathers all external
schemas which represent P, yielding a global schema, which is equivalent to Q.
An inter-module analysis based on the internal schemas produces the live global
schema. In this live global schema, possible conflicts may force the programmer to
make the bottom module explicit and insert some glue code.

An implementation technique is then applied to this global schema. It must
compute the object layout for each class, generate indexes and method tables, if
any, and so on. Various techniques can be considered, like binary tree dispatch as in
SmartEiffel, or coloring [Ducournau 2006]. Anyway, for each method call site,
a small stub function (aka a thunk) is generated which implements late binding
according to the considered technique and call site. The approach is also used for
accesses to attributes and subtype tests. Finally all module target codes, which
have been previously separately compiled into machine code, and stub functions
are linked together.

With this compilation scheme, class refinement only involves computing Q, i.e.
the global schema coupled with method tables (or any alternative) which are filled
with addresses of the right local properties. Method combination makes it slightly
more complicated—when a global property g uses call-next-method, for each
c ≺ intro(g), a local property linearization llin(g, c) is computed as a static array
which is passed to methods as an extra parameter.

Altogether, the implementation of class refinement does not entail any run-time
overhead. Moreover, the cost of multiple inheritance and method combination is
only supported by classes and methods that use these features.

6.2 Prmc modular architecture

Prmc is made of two main executables, which correspond to both phases in the
compilation scheme (Fig. 15)—namely, the modular compiler and the global linker.
So the Prm code which implements the whole is a single module hierarchy P, and
each program corresponds to a subhierarchy, i.e. to a single bottom module and all
its dependent modules. This is, however, just a partial view on Prmc. As the first
goal of Prm is to test various implementation techniques, each program is proposed
in several versions, with each version corresponding to a specific bottom module.

Figure 16 depicts the module hierarchy dedicated to the Prmc version which
generates C++ code. The diagram highlights three groups of modules:

(1) yellow (light grey) modules, from mm4 to prmmm, represent the Prm metamodel,
including types, inheritance, generics and so on; this group is of course common
to all Prm tools;
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Fig. 16. Prm standard library and Prmc modular architecture. Both charts are generated by
Prm dot compiler, another tool not presented in the diagram.

(2) cyan (dark grey) modules, from ast to compiler cpp represent the Prm to
C++ compiler, with its parser;

(3) pink (middle grey) modules, from linker to linker cpp represent the Prm
linker, in the C++ version;

(4) other modules have various specific technical roles such as poset implementa-
tion, abstract code generation and so on.

6.2.1 Metamodels. The modules for the metamodel are quite numerous, almost
more numerous than the corresponding classes. This was, of course, not required,
since all Prm programs are based on the same metamodel, but it was a convenient
way to separate concerns. So each module is rather small and dedicated to a single
concern: mm4 introduces the main classes for the metamodel, and other modules
refines them for introducing types and signatures (mmtype), inheritance and im-
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abstract class Named {
String name;}

abstract class Aentity
<E extends Aentity<E,G,L>, G extends Aglobal<E,G,L>, L extends Alocal<E,G,L>>
extends Named {

Set<G> knows;
Set<L> defines;
Set<E> spec_d;}

abstract class Aglobal
<E extends Aentity<E,G,L>, G extends Aglobal<E,G,L>, L extends Alocal<E,G,L>>
extends Named {

E intro;
Set<L> localset;}

abstract class Alocal
<E extends Aentity<E,G,L>, G extends Aglobal<E,G,L>, L extends Alocal<E,G,L>>
extends Named {

G glob;
E def;
Set<L> redef_d;}

abstract class Aclass extends Aentity<Aclass,Gproperty,Lproperty>{}
class Gproperty extends Aglobal<Aclass,Gproperty,Lproperty> {}
class Lproperty extends Alocal<Aclass,Gproperty,Lproperty> {}

class Module extends Aentity<Module,Gclass,Lclass> {}
class Gclass extends Aglobal<Module,Gclass,Lclass>{}
class Lclass extends Alocal<Module,Gclass,Lclass> {}

class Mclass extends Aclass, Lclass {}

Fig. 17. Definition of the metamodel classes, in module mm4

port (mminh), generics (mmgeneric), and so on. Regarding generics, the language
will implement full F-bounded polymorphism, like Java 1.5, likely with an imple-
mentation which will keep the advantages of both homogeneous and heterogeneous
implementations (see also Note 25, page 30). However, in the current state of the
compiler, generics are handled in a coarse way that does not allow us to directly
implement the metamodel isomorphism with generics. F-bounded polymorphism
is a powerful tool for implementing isomorphic models and, in further versions, the
basic metamodel classes will be defined by the code in Figure 17, which is presented
with a more familiar Java syntax. Aentity, Aglobal and Alocal define the ab-
stract triangle common to both metamodels and implements the whole protocol of
Definition 3.11. Aclass, Gproperty and Lproperty define the metamodel of Figure
4, and Module, Gclass and Lclass the metamodel of Figure 9. Finally, Mclass is
the class of local classes as they are defined in module definitions, at compile-time.
In the linker modules, Gclass is refined to inherit Aclass—this defines the class
of classes in Q. All are legal Java definitions, except the last one which involves
multiple inheritance.

6.2.2 Compiler and linker. The compiler modules involve first a set of mod-
ules dedicated to parsing, among which the abstract syntax tree of the language
(ast), and a set of modules dedicated to code generation, either independent from
the target language (abstractcompiler, compiler) or dedicated to C (target c)
and C++ (target cpp, compiler cpp). Whereas usual compiler architectures are
based on different variants of the Visitor pattern (e.g. [Nystrom et al. 2003]), Prmc
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Table I. Statistics on class and property—numbers of global class introductions, class refinements
and global property introduction.

module C. intro C. ref P. intro

standard 84 0 413
opts 9 1 68
poset 2 0 38
linearizable 5 3 21
errors 4 2 16
mm4 10 0 131
mmtype 6 3 45
mminh 6 9 59
mmgeneric 2 10 49
mmprimitive 8 4 5
star parameter 0 3 7
mmstatic 2 5 5
prmmm 2 3 33
internalmodel 2 0 17

module C. intro C. ref P. intro

ast 85 0 213
parser 3 1 19
target c 2 21 52
srcloader 21 64 131
abstractgenerator 2 0 10
prmtokens 0 1 88
target cpp 0 4 3
compiler 2 11 26
prmparser 22 75 107
compiler cpp 1 66 38
linker 10 5 45
ltarget cpp 0 17 32
memory cpp 0 2 5
linker cpp 0 0 0

total 290 310 1676

uses class refinement, which makes it very easy to add methods to the AST classes,
e.g. in modules srcloader, prmparser and compiler cpp, which all have a high
number of class refinements (Table I). The linker also presents general modules
(linker) and modules dedicated to C++ (from ltarget cpp to linker cpp).

7. RELATED WORKS

We group related works according to whether they are markedly different or similar
to our proposal. [Bergel et al. 2006] is a survey of the notion of modules in an
object-oriented framework. Class refinement corresponds to local rebinding in their
terminology. So the first group presents different ‘module’ systems that we consider
are not very close to our proposal, and the second one presents module systems with
some form of class refinement.

7.1 Generally related works

This quick survey is not meant to be exhaustive—there are many object-oriented
module systems.

Java packages and inner classes. Java proposes two different features which are
closely related to the notion of modules and give good examples of what a module
is or is not [Gosling et al. 2005]. Java packages represent both name-spaces and
directories and their hierarchical organization is also used for finding a class along
a class path. These packages have almost nothing to do with our modules, since
they are unclosed—any programmer can add classes in any package—so they are not
units of compilation and reuse. Moreover, there is nothing close to class refinement.
Package sealing could address the former point and has been discussion issue in
the Java community (e.g. [Biberstein et al. 2001]). On the contrary, inner classes
make usual, i.e. enclosing, classes true modules. However, an inner class can be
specialized but not refined.

Uml package merge. This mechanism is proposed by Uml 2.0 [OMG 2004]. It
permits an incremental definition of packages, independently from package import.
As for multiple inheritance, multiple merge is not clearly specified and inherent
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conflicts are not discussed. So the intention of Uml specifications is likely close
to modules and class refinement, but it is too underspecified to allow any precise
comparison. Clark et al. [2002] propose a metamodel for package extension with
renaming but its primary postulate is that “on package extension, the default is for
elements of the same name to get merged”. Local renaming is possible but it is as
unconstrained as in Eiffel.

Other module systems for object-oriented languages. Many module systems have
taken Modula-family languages as a model. However, in Modula-3 [Harbinson
1992] and Oberon [Mössenböck 1993], modules do not accept class refinement.

Several works propose module systems for object-oriented languages where the
dependence relationship is only implicit and derived from explicit class import
clauses—e.g. JavaMod [Ancona and Zucca 2001] which accepts to specialize an
imported class in a mixin-like way. ObjectiveCaml modules are similar, but the
dependence relationship is expressed with signatures and module types [Leroy et al.
2004]. However, in all of these module systems, there is no trace of refinement.

Some other module definitions are substantially out of line with our view on
modules. For instance, in the Jigsaw programming language [Bracha 1992; Bracha
and Lindstrom 1992], the primary construct is the ‘module’ and inheritance is
characterized as a module manipulation mechanism. This however appears to be a
misnomer—i.e. these modules can be understood as classes or mixins.

Aspect-oriented programming. AOP is a general fine-grained answer to the cross-
cutting concern issue [Kiczales et al. 1997]. As such, one might consider that
modules and class refinement present a form of aspect-oriented programming36.
Modules would be aspects—which can also be organized by a dependence relation-
ship, called extends in AspectJ—and refinement would be a way to add some
cross-cutting aspect to the refined class. However, we do not take up this position
because we consider that AOP focuses on concerns of a much finer grain. Class
refinement works at the class-property interface—it proceeds by defining local prop-
erties, which are considered as atoms in the metamodel. On the contrary, AOP is
intended to work inside the methods, or even inside the basic object-oriented mech-
anisms, such as method invocation or class instantiation, by specifying pointcuts
which provide the programmer with some hooks for aspect-specific code. However,
it might be possible that some AOP proposal includes higher-level mechanisms sim-
ilar to class refinement. Actually, an AOP system like AspectJ [Kiczales et al.
2001] provides some atomic primitives which allow the programmer to modify ‘im-
ported’ classes in a way similar to refinement, but this is much more akin to meta-
programming than to common object-oriented programming. Of course, possible
conflicts are not considered. To our knowledge, there is no proposal which combines
fine-grained AOP with some class-level refinement closer to our proposal.

Reverse inheritance. A notion akin to property generalization has been proposed
under the name of reverse inheritance [Chirila et al. 2004] or exheritance [Sakkinen
2002]. It involves generalizing classes by defining superclasses of preexisting classes.
Some properties defined in the generalized classes can move up in the generalizing

36“[..] it is perhaps hard to find cross-cutting software implementation techniques that would not
qualify as ‘aspect-oriented’ ” [Smaragdakis and Batory 2002].
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class. However, there is no module in the proposal, which seems to resort to re-
engineering rather than to normal software development.

7.2 Closely similar works

All proposals discussed hereafter involve a notion of modules coupled with some
class refinement mechanism.

Modular open classes. MultiJava [Clifton et al. 2000], an extension of Java,
proposes compilation units, similar to the modules presented in the present article.
They are provided with a dependence relation via the keyword require. Multi-
Java makes it possible to extend existing classes by adding functions by an ad hoc
syntax whereas, in opposition to our approach, method redefinition, attribute addi-
tion or declaration of Java interface implementation are not allowed. Nevertheless,
MultiJava is compatible with separate compilation and dynamic loading. It also
proposes an implementation of multimethods.

Classboxes. This notion of ‘box of classes’ is a kind of module first introduced for
Smalltalk [Bergel et al. 2003; Bergel et al. 2005]. Classbox/J applies the same
approach to Java and static typing [Bergel et al. 2005]. Classes can be extended
by adding or redefining methods and attributes in classboxes while controlling the
visibility of these additions since these changes only have local impacts: message
sending answers are determined by both the receiver and the classbox. This method
dispatch mechanism is called local rebinding and seems to yield marked overhead
in the present implementation of Classbox/J, since it is akin to Clos multiple se-
lection. Thus, contrary to our proposal, class amendments made in a classbox are
applied only to this classbox and to classboxes which depend on it. Hence, mes-
sage sending from other classboxes are not affected by the modification. Another
difference is multiple inheritance. Classbox/J allows multiple import but the po-
tential conflicts are not discussed. However, in a conflict—presumed to concern
local properties—involving both refinement and specialization, refinement takes
precedence over specialization, as in our proposal.

Virtual classes and higher-order hierarchies. Virtual classes have been introduced
in the language Beta [Madsen and Møller-Pedersen 1989; Madsen et al. 1993].
They have multiple usages—e.g. they can serve as inner classes, as formal types in
parametrized classes [Thorup and Torgersen 1999], or as Eiffel anchored types.
As inner classes, they differ from those of Java by their ‘virtuality’—like other us-
ages of ‘virtual’ (see Notes 6, page 8, and 22, page 29) a virtual class is ‘redefinable’,
hence submitted to late binding and depending on the dynamic type of some ‘re-
ceiver’. They also introduce a form of class refinement and outer classes are similar
to modules. However, original virtual classes also have limitations—they cannot be
specialized [Ernst 2003]. Another difference with our proposal is that instances of
a virtual class and instances of its redefinition are distinct and can simultaneously
exist in the same program. Higher-order hierarchies provide nested class hierar-
chies, based on an extension of virtual classes, in the Gbeta language [Ernst 2003;
Ernst et al. 2006]. Outer classes are close to our modules, and order 1 inner classes
are close to our classes, but the proposal generalizes this at any order. Techni-
cally, both approaches are quite different concerning multiple inheritance, which is
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unavoidable as we have seen, and method combination. Higher-order hierarchies
propose a combination of completely ordered mixins whereas our proposal relies
on the interpretation of multiple inheritance in the metamodel. Regarding method
combination, among other unique features, Beta replaces the common bottom-up
call to super, by a top-down mechanism, inner. Hence, the problem of method
combination is quite different and both approaches are difficult to compare.

Nested Inheritance. This proposal is quite close to our view of modules and
refinement, though restricted to single inheritance or mixins [Nystrom et al. 2004].
In a recent work, its extension to Multiple Nested Inheritance [Nystrom et al. 2006]
follows a similar analysis of multiple inheritance, though the lack of metamodel
makes the authors uniformly speak of name conflicts. Global property conflicts
are solved by fully qualified syntax37, whereas local property conflicts make the
considered class abstract—hence, they require further redefinitions. Besides these
similarities, there are some differences. Nested inheritance is recursive, like higher-
order hierarchies—however, the first two levels are called packages and classes. It
also provides implicit dependence, via static virtual types.

Layers, collaboration-based design, feature-oriented programming. Mixins are used
in several proposals, in an approach called collaboration-based design [VanHilst
and Notkin 1996]. Mixin layers [Smaragdakis and Batory 1998; 2002] are sets of
mixins—akin to modules—which make the composition of the reusable parts much
easier. In some sense, they can be understood as higher-order or nested mixins.
So, mixin layers are akin to higher-order hierarchies. Actually, ‘layer’ is another
word for ‘module’, with more operational semantics, i.e. stack-wise or linearized
like mixins. Mixin layers have been used for implementing feature-oriented pro-
gramming [Apel et al. 2005], which looks like another synonym for all of theses
approaches—i.e. AOP at the ‘feature’ (property in our terminology) level.

Difference-based modules. MixJuice [Ichisugi and Tanaka 2002] is a language
based on Java which proposes modules in dependence relation and refinement
of classes authorizing method (re)definition, attribute addition and declaration of
Java interface implementation. Therefore, it functionally corresponds to adapt-

37The authors assign to Borning and Ingalls [1982] the paternity of this distinction between
properties according to the class which introduces them: “The distinction between name conflicts
among methods introduced in a common base class and among methods introduced independently
with possibly different semantics was made as early as 1982 by Borning and Ingalls.” Actually, we
carefully re-read this 4-page paper and did not find any trace of that. We only found a mention of
compound selectors for disambiguating calls to super. Anyway, this 1982 paper is quite informal
and cannot yield precise semantics. For instance, it is impossible to determine whether the paper
implies the masking rule, or not. Besides this reference to [Borning and Ingalls 1982], the authors
consider that their view of multiple inheritance derives from intersection types [Compagnoni and
Pierce 1996; Reynolds 1996] (see Section 4.4). We did not find, in the referenced papers on
intersection types, any information about the way name conflicts are managed—it might be as
well unions of names. In these affiliation proceedings, the historical paper by Cardelli [1984] must
also be ruled out—it proposes a theory of record types without classes, hence, without any notion
of introduction. Altogether, to our knowledge, this idea of distinguishing properties according to
the class which introduces them goes back to some studies on the notion of point of view, in a
framework of dynamic typing and knowledge representation [Carré and Geib 1990; Dugerdil 1991].
We are not aware of any prior mention of it.
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ing to Java points (1-3), Section 2.1. In the case of multiple dependence between
modules, global property conflicts are solved by fully qualified names and local prop-
erty conflicts are solved by linearization. The approach is compatible with separate
compilation but not with dynamic loading. So MixJuice is close to our proposal.
The main difference is that, due to Java single inheritance of classes, adding su-
perclasses to existing classes is not possible—though this is theoretically possible
in the restricted case where the new superclass specializes the old one. Property
generalization is also not provided. In contrast with our proposal, MixJuice does
not reveal the structural analogy between classes and modules—therefore, their
proposition, though very similar to ours—may appear as an ad hoc solution.

7.3 Comparison and discussion

Overall, our proposal is akin to all these proposals based on some module and class
refinement notions. Comparing them involves examining the following points:

(1) Run-time instances. At run-time, different versions of a class can coexist in
the same program, as with classboxes. On the contrary, in MixJuice, nested
inheritance and in our proposal, only the most refining classes, and their related
instances, remain at run-time.

(2) Higher-order. The proposal can rely on two distinct notions, classes and mod-
ules, as in MixJuice and our proposal; on the contrary, it can rely on a single,
recursive notion of class, like inner classes, virtual classes or higher-order hier-
archies. It can also rely on both approaches, with an explicit notion of module
and nested classes, like nested inheritance.

(3) Multiple inheritance and import. The proposal can take full multiple inheri-
tance into account, like multiple nested inheritance and our proposal. In a Java
multiple subtyping setting, it can take multiple import into account, and deal
with conflicts in a sound way, like MixJuice. Finally, it can deal with multiple
import and inheritance conflicts in an ad hoc way, e.g. with mixins.

(4) Metamodeling. The proposal may rely on an explicit metamodel, or use some
other formalizations, e.g. calculi, which rely only on names.

Point (1) makes the proposals functionally different. They do not address the
same need. Compared to classboxes, our proposal does not allow the programmer
to keep, in the same run-time program, different versions of the same class. Both
solutions are actually not comparable. If c refines c′ (in our notations, c �P c′),
having an instance of c′ instead of an instance of c at run-time is not a gain in
expressiveness but only a different behaviour. Indeed, having only c instances may
appear at first glance to be less powerful, but these instances can be created by
instructions in the module which defines c′. The other solution is unable to do it.
However, besides the questionable design and the program complexity that such
an expressiveness brings, the implementation cost seems too high—i.e. in Class-
boxes, all method invocations are akin to multiple selection on two parameters, the
current receiver and the current classbox. This differs markedly from all analyses
carried out on multiple selection (e.g. [Kiczales and Rodriguez 1990; Dujardin et al.
1998]), which stress that, in a multiple selection framework, about 95% of method
invocations are single selection. In comparison, our proposal incurs no run-time
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Table II. Comparison. mst (resp. si, mix, fmi) stands for multiple subtyping (resp. single inher-
itance, mixins, full multiple inheritance).

class higher-order mixin diff.-based nested modules &
boxes hierarchies layers modules inheritance class refin.

diff. run-time instances yes yes yes no no no
higher-order no yes yes no yes no
explicit modules yes no no yes yes yes
inheritance si/mst mix mix mst fmi fmi
multiple import yes mix mix yes yes yes
metamodel no no no no no yes

overhead. However, in return, keeping different run-time versions of the same class
is mandatory in a dynamic-loading framework. Indeed, what is the meaning of class
refinement for already existing instances? This is a well-known issue in languages
like Clos which allow the programmer to dynamically redefine classes.

Point (2) makes our proposition less expressive but simpler, and we promote
this simplicity. Modules and classes are distinct notions, with specific roles and,
though recursive higher-order has a nice theoretical flavour, we do not think that it
will help programmers to build comprehensive modular programs. Other proposals
are top-down higher-order and classes can be deeply nested. From a historical
standpoint, class nesting comes from Simula [Birtwistle et al. 1973], the first object-
oriented language and a close parent of both C++ and Beta—so, the confusion
goes back the very beginning of object-oriented programming. [Szyperski 1992]
contains an insightful critique of this confusion between modules and classes (or
even types), which is common in many object-oriented module systems, especially
with class nesting and even in the Modula family. A class that contains inner
classes can be interpreted either as a module or as a class which implements some
aggregation, akin to a container. Only class leaves—i.e. without inner classes—
are really unambiguous and, among higher-order proposals, only nested inheritance
provides explicit unambiguous modules. In contrast, our proposal is bottom-up
second-order—classes are at ground level and modules are order 2—and we stop
there. Of course, metamodel isomorphism could be easily generalized to higher-
order, but we think that the improved expressiveness is not really useful and does
not offset the lack of conceptual simplicity. Actually, among many other arguments,
modules are not classes, given that they do not have instances38. Moreover, one
should not confuse module dependence with module nesting. Modules—i.e. our
view of modules—are separate code units, that must be separately analyzed and
compiled. They cannot be nested—we feel that an inner module is nonsense.

Multiple inheritance (3) is another distinctive feature. Multiple nested inheri-
tance, our proposal and, to a lesser extent, MixJuice are based on a sound analysis
of multiple inheritance and import. They have the same behaviour at the global
entity level. At the local entity level, method combination remains a difficulty and
the linearizations used by the different proposals should be compared in detail.

Finally, meta-modeling (4) is the distinctive feature of our proposal. It allows
us to get rid of names and instead to consider reified entities. The metamodel

38Modules and programs have the same dimension—so, they can have a single instance, corre-
sponding to the static data of an execution, this is a kind of singleton class. However, if the
metaphor is continued, what would be an order 3 class?
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is defined at the class and property level to model our intuitive—one might say
‘Aristotelian’—view on classes, specialization and inheritance. It it then isomorphi-
cally applied to modules, yielding a precise specification—close to multiple nested
inheritance, but not recursive, or close to MixJuice, but applied to full multiple
inheritance—based on formal and intuitive arguments. When comparing with mul-
tiple nested inheritance, which roughly gets to the same conclusion at the expense
of intricate formulations on method names, the metamodel is a great improvement.

8. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed two coupled notions of modules and class refinement
as an extension of the object-oriented model, in the particular context of statically
typed languages with multiple inheritance. This proposal improves modularity—by
grouping in the same module closely related classes—and reusability—by allowing
a module to modify classes imported from its supermodules. Hence, this provides
a simple solution to the so-called expression problem—adding a new property, by
refinement, becomes as easy as adding a new class, by specialization [Findler and
Flatt 1999; Torgersen 1994; Zenger and Odersky 2004].

Functionally, our proposal is very close to two other ones—namely Multiple nested
inheritance [Nystrom et al. 2006], which adds an undesired feature, i.e. higher-order,
and Difference-based modules [Ichisugi and Tanaka 2002], which are restricted to
Java-like languages and single inheritance. Regarding the former, our proposal
follows the analysis of Szyperski [1992] and strongly stresses the different roles
played by classes and modules by avoiding any confusion. We think that this
simplicity should help programmers.

The main originality of our proposal is its meta-modeling approach, with a
twofold contribution: (i) a class and property metamodel and its application to
multiple inheritance, and (ii) its adaptation to modules and class refinement. Al-
though the use of modules and classes are fundamentally different, our proposal
is based on a strict structural analogy between these two concepts since they are
described by isomorphic metamodels.

The class and property metamodel clarifies the notion of property and its rela-
tion to classes and names. Looking back, it is quite strange to note that a whole
scientific field had no words for such basic notions. Being the field of ‘reification’,
it is even stranger that there were no objects underlying these missing words. In a
closely related field, the ObjVlisp model was a decisive step in the understanding
of classes, meta-classes and instantiation [Cointe 1987]. Besides the understand-
ing of the property concept, the first benefit of the present metamodel is to shed
light on multiple inheritance, in a way which is in line with both recent and older
works [Ducournau et al. 1995; Nystrom et al. 2006]. Regarding multiple inheritance
conflicts, the conclusion of this analysis is twofold: (i) global property conflicts could
be easily solved when they are met, in a modular way, with a very simple syntactic
mechanism, i.e. fully qualified names; (ii) local property conflicts can also be solved
either by an explicit modular redefinition, or with a more controversial mechanism,
i.e. linearization. Actually, method combination is the single remaining issue in
multiple inheritance—linearization is a solution, but it is not perfect.

Metamodels enhance the distinction between local and global entities for both
properties and classes. This distinction allows consistent conflict management
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which respects the semantics of class specialization and module dependence. Our
proposal requires only a light syntactic addition—i.e. a fully qualified syntax for
class and property names and a rudimentary module language to express that a
module depends on another module39. Moreover, our proposal is truly modular in
the sense that any module hierarchy can be linked within a single program, with-
out any need to modify the preexisting modules. The resulting multiple inheritance
conflicts can be fixed in the bottom module when they are met at link-time.

The prospects of this work are manifold. First of all, the current model will be
intensively used in Prm and Prmc for testing and benchmarking various implemen-
tation techniques, with each technique being a separate module. Several extensions
must be considered regarding the module system itself. Here we did not examine
the question of visibility (aka ‘protection’ or ‘static access control’), i.e. an export
feature. This is a shallow but important feature that must be carefully designed
since it merges usual module export with class encapsulation. We do not feel that
the keywords commonly used in Java and C++ (private, public and protected)
are very relevant, besides their numerous ambiguities, and we shall likely adopt the
Eiffel approach which generalizes Smalltalk encapsulation—see [Ardourel and
Huchard 2002] for an analysis of these mechanisms at the class level. Analogous
mechanisms should be specified at the module level and the interaction of both
levels should be carefully examined. Another point to examine is the possibility of
extending module dependence to implicit ones, e.g. by defining module interfaces
and true import clauses, as in many module systems. There also remains a kind
of conflict without a modular solution in the current state of the model—i.e. spe-
cialization conflicts caused by specialization import (Fig. 10-c). The solution goes
through class unification, which has to be specified. Of course, all these features
must be added in the metamodels and an interesting question concerns the pos-
sibility of adding them while preserving the isomorphism. This may, however, be
pointless since we claim that modules and classes have different roles—for instance,
visibility might be reserved to the module level. Finally, the adaptation of our
proposal to a dynamic loading framework remains to be investigated.

Regarding the programming language itself, and the associated class and prop-
erty metamodel, several extensions could be considered, which surely interfere with
class refinement. As aforementioned, method combination is likely the only remain-
ing issue with multiple inheritance. In common statically typed object-oriented
languages, it has been poorly specified in comparison with dynamic languages
like Clos. So introducing :before, :after and :around methods—the so-called
‘daemons’—in a statically typed language with class refinement could be consid-
ered. Linearizations are now well known but they should be made more flexible,
(i) by only computing partial linearizations, thus preserving the chances for fur-
ther monotonicity, (ii) by allowing the programmer to customize them at the class
or global property level, (iii) by extending both to bidimensional linearizations.
Furthermore, apart from the aforementioned works on Gbeta, linearization-based
method combination has been mainly applied in a dynamic typing framework—as
we have seen, static typing yields interesting and paradoxical conclusions regarding

39However, if the required keywords are very few, a complete language might gain by providing
more keywords in order to help programmers to specify their intention.
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type safety. Multi-methods or multiple selection, i.e. the dynamic selection of a
local property based on the dynamic types of all parameters, could be also consid-
ered. There are basically two different ways of doing this. The overloaded functions
proposed by Castagna [1997] would only require a small change in the metamodel.
On the contrary, Clos generic functions, which are defined across classes, would
require more indepth changes. Interaction with class refinement should be carefully
examined, especially method combination which would get a third dimension.

Finally, we have presented modules and class refinement at the programming level
but they could also be considered at the design and modeling level. Obviously, our
proposal closely interferes with Uml. The class and property metamodel can be
considered as a more accurate version of a very small part of the Uml metamodel,
whereas the module and class metamodel is a more accurate version of package
merge. However, besides this simple shift from programming to modeling, the
processes illustrated in this paper might be generalized to mechanisms such as model
composition [Clarke 2002], which differ from module import, but which present some
structural analogy. To paraphrase Szyperski [1992], “modules are not models, why
[do] we need both”!
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