
Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Empirical Assessment of Object-Oriented Implementations
with Multiple Inheritance and Static Typing

Roland Ducournau Floréal Morandat ∗ Jean Privat

LIRMM — CNRS — Université Montpellier 2
Université du Québec à Montréal

OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA

1 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Motivation

Multiple Inheritance

Most statically typed languages use some kind of multiple inheritance

Doubtfull scalability

C++ Table size is cubic in the number of classes

Java, C# Implementation of invokeInterface is not time-constant

Objective

Design alternative implementations

Evaluate their efficiency

2 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

1 Introduction
Context
Objectives

2 Implementation Techniques

3 Compilation Schemes

4 Test Protocol and Results
Meta-Compiling Test Protocol
Results and Discussion

5 Conclusion
Prospects

3 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Context I

Language Features

Multiple inheritance

Static typing

Target Languages: C++, Eiffel, Java, C#, . . .

Language Independent Implementation Techniques

Three basic mechanisms

Attribute access

Method invocation (Late binding)

Subtype testing

4 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Context II

Compilation Schemes

Production of an executable from source file

Compiler, linker, loader, . . .

From pure Open World Assumption (OWA)
To pure Closed World Assumption (CWA)

Separate compilation with dynamic loading

. . .

Global compilation

5 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Objectives

Assessment of Runtime Efficiency

Comparing execution times depending on:

Implementation techniques

Compilation schemes

Processors

With all other things being equal

Test Protocol

Based on meta-compilation

6 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

1 Introduction
Context
Objectives

2 Implementation Techniques

3 Compilation Schemes

4 Test Protocol and Results
Meta-Compiling Test Protocol
Results and Discussion

5 Conclusion
Prospects

7 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Single Subtyping (SST)

Offset

attr

meth

Offset

Offset

class
method

method table

table

value

id

class

object

object layout

Invariants

References don’t depend on their static type

Positions independent of receiver’s dynamic type

Compatible with OWA

8 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

From SST to MI

MI can’t preserve both OWA and SST Invariants

Preserving OWA

C++ subobjects (SO)

References depend on their static types

Overhead: Cubic table size, pointer adjustments, . . .

Preserving SST Invariants

Coloring

Dixon et al. (1989), Pugh and Weddell (1990), Vitek et al (1997)

Requires CWA at link-time

Overhead: Holes in object layout

9 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

method tablehashtable

h

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

method tablehashtable

h

hv

ioffset

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

method tablehashtable

h

hv

ioffset

iOffset

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

method tablehashtable

h

hv

ioffset

iOffset

method

offset

method

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)
Alternative to C++ Subobjects

table

Object

method tablehashtable

h

hv

ioffset

iOffset

method

offset

method

Id

interface

Proposed for:

I invokeInterface
I Subtype testing

hv = Hash(h, interface Id)

Collision free

10 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Perfect Hashing (PH)

Preserving SST Invariants

Compatible with OWA

Constant time

Linear space

Hashing Functions

Bit-wise and

Modulo

Evaluation

Time/Space trade-off

11 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Binary Tree Dispatch (BTD)
Alternative to Coloring

Principle

Tableless technique generalizing inline caches

Type analysis / Dead code elimination ⇒ CWA

Used by Smart Eiffel

Evaluation

Logarithmic time for unbounded BTD

BTDk ⇒ depth ≤ k (BTD0 = Static Calls)

Complemented by coloring when depth > k

Efficient iff k small

12 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Caching

Principle

It relies on some underlying implementation

A cache is allocated into the VFT

It memoizes last table access

Used in production VM

Evaluation

Code sequence markedly longer

Efficiency depends on cache-hit rates

Increasing Cache-hit Rate

Cache dedicated to each mechanism (empirical)

Multiple caches with static selection (mathematical)

13 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

1 Introduction
Context
Objectives

2 Implementation Techniques

3 Compilation Schemes

4 Test Protocol and Results
Meta-Compiling Test Protocol
Results and Discussion

5 Conclusion
Prospects

14 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Compilation Schemes

Open World Assumption

Modularity

Closed World Assumption

Efficiency

Separate Compilation + Dynamic Loading

Global compilation

Separate Compilation + Global Link

Separate Compilation + Global Optimisations

D

G

S

O

15 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation with Global Linking (S)

A

source

module

code A

Local phase external

model A

separate
compilation

Modular checks

Source code privacy

Single subtyping efficiency

16 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation with Global Linking (S)

separate
compilationmodule

source

externalLocal phase

B
code B

model B

A

source

module

code A

Local phase external

model A

separate
compilation

Modular checks

Source code privacy

Single subtyping efficiency

16 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation with Global Linking (S)

Global phase

Coloring

Link

separate
compilationmodule

source

externalLocal phase

B
code B

model B

A

source

module

code A

Local phase external

model A

separate
compilation

Modular checks

Source code privacy

Single subtyping efficiency

16 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation with Global Optimization (O)

separate
compilationmodule

source

externalLocal phase

B
code B

model B

A

source

module

code A

Local phase external

model A

separate
compilation

Thunks for
method invocation

Monomorphic calls are static

More optimizations available

17 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation with Global Optimization (O)

Global phase

Coloring

CHA−BTD

generation

Thunk

Link

separate
compilationmodule

source

externalLocal phase

B
code B

model B

A

source

module

code A

Local phase external

model A

separate
compilation

Thunks for
method invocation

Monomorphic calls are static

More optimizations available

17 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Implementation-Schemes Compatibility

Dynamic Separate Optimized Global

Perfect Hashing • ∗ ∗ ∗

Subobjects � � ∗ ∗

Coloring × • • •

BTD × × • •

•: Tested �: Not yet tested
×: Incompatible ∗: Non-Interesting

18 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

1 Introduction
Context
Objectives

2 Implementation Techniques

3 Compilation Schemes

4 Test Protocol and Results
Meta-Compiling Test Protocol
Results and Discussion

5 Conclusion
Prospects

19 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Test Language

Prm the Language

Full multiple inheritance (methods & attributes)

Genericity

Primitive types subtype of Object

Prmc the Compiler

A Prm program

Modular

Generate C code

20 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Meta-Compiling Test Protocol

executable

Test

executable

Test

executable

Test
Compiler

Test

program

All boxes are compilers

Time measurement of the red path

21 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Meta-Compiling Test Protocol

result

Test

data

Test

executable

Test

executable

Test

executable

Test
Compiler

Test

program

All boxes are compilers

Time measurement of the red path

21 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Meta-Compiling Test Protocol

Runtime Reproducibility

Deterministic code generation

I Hashmap with predictable iteration order
I Produces diff-equivalent binaries

Bootstrap = actual fix point

Measurements

Time spent by the Prm to C process

Best time among severals tens of runs

I Minimises OS noise

22 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Some Statistics

Number of Dynamic invocations
Methods calls 1720 M
BTD 0 62 %

≤ 3 22 %
≥ 4 16 %

Cache-hit 1 68 %
2 71 %
4 79 %

Consistent with statistics reported in the literature

23 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Runtime Efficiency
Intel Core2 E8500

%

−
10

0
10

20
30

Unbounded BTD
BTD 2 + Coloring
Coloring
PH−and
PH−mod

Global
Separate with
global optim.

Separate Dynamic Loading

24 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Evaluation

Compilation schemes

Global scheme is far better than separate

Optimized scheme slightly better than separate

Dynamic loading is very expensive
especially in full Multiple Inheritance

Implementation techniques

BTD+Coloring optimal

PH-and efficient for Java interfaces (by extrapolation)

Caching inefficient even with PH-mod

25 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

1 Introduction
Context
Objectives

2 Implementation Techniques

3 Compilation Schemes

4 Test Protocol and Results
Meta-Compiling Test Protocol
Results and Discussion

5 Conclusion
Prospects

26 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Conclusion

First systematic comparisons

Language independent

between

Implementation techniques

Compilation schemes

Processors

ceteris paribus (with all other things being equal)

Mainly confirm previous theorical results

Significant variation according to processors (about ten tested)
but similar behaviours

27 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Conclusion

Prm the testbed

Modular compiler open to new implementations and schemes

Repeatable and reproducible tests

Single program tested, but intensive OO mechanism usage

Prm the languages

Prm : Dedicated to test
http://www.lirmm.fr/prm/

Nit : User friendly language (recommended)
http://www.nitlanguage.org/

28 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing

http://www.lirmm.fr/prm/
http://www.nitlanguage.org/


Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Prospects

Testbed extension

Other implementations (C++ subobjects, . . . )

Other processors and architectures

Other metrics (cpu cache misses, memory usage, . . . )

Heterogeneous vs homogeneous genericity

Other optimisations (garbage collector, . . . )

Virtual Machine application

Perfect Hashing on Production VM

Application of link-time global optimization to adaptive compilers (JIT)

Full multiple inheritance VM (as efficient as Java/.NET)

29 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Thanks ...

30 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Executable Size
Intel Core2 E8500

%

−
20

0
20

40
60

80

Unbounded BTD
BTD 2 + Coloring
Coloring
PH−and
PH−mod

Global
Separate with
global optim.

Separate Dynamic Loading

30 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

delta1 method delta2

Offset

attr

Offset

cast

method table

table

value

meth

Offset

delta1

table1

delta2

object2

table2

object object1

Reference depend on it’s static types

Cubic table size in the number of classes

Pointer adjustments

30 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Separate Compilation and Dynamic Loading (D)

code B

model
external

source
module

B

code A

B

A
source
module

A

model
external

Symbol

substitution

Separate
compilation

Local phase

Local phase

Runtime system (VM, ...)

Separate
compilation

Pure OWA

Modular checks

Source code privacy

Fast recompilation

No optimization available without recompilations

30 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing



Introduction Implementation Techniques Compilation Schemes Test Protocol and Results Conclusion

Global Compilation (G)

A

source

module

source
module

B Code
generation

Link

analysis
Type

code
Living

BTD/Coloring

Lots of optimizations available

More compact code

No modular checks

Heavy recompilation

30 / 30

Empirical Assessment of Object-Oriented Implementations, with Multiple Inheritance and Static Typing


	Introduction
	Context
	Objectives

	Implementation Techniques
	Compilation Schemes
	Test Protocol and Results
	Meta-Compiling Test Protocol
	Results and Discussion

	Conclusion
	Prospects


