
Definable Ellipsoid Method, Sums-of-Squares
Proofs, and the Graph Isomorphism Problem

Albert Atserias
Universitat Politècnica de Catalunya

Barcelona, Catalonia, Spain

Joanna Fijalkow
University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800

F-33400 Talence, France, and
Institute of Informatics, University of Warsaw

Warsaw, Poland

Abstract

The ellipsoid method is an algorithm that solves the (weak) feasibility and linear
optimization problems for convex sets by making oracle calls to their (weak) separation
problem. We observe that the previously known method for showing that this reduc-
tion can be done in fixed-point logic with counting (FPC) for linear and semidefinite
programs applies to any family of explicitly-bounded convex sets. We further show that
the exact feasibility problem for semidefinite programs is expressible in the infinitary
version of FPC. As a corollary we get that, for the graph isomorphism problem, the
Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses
to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree.

1 Introduction

Besides being the first algorithm to be discovered that could solve linear programs (LPs) in
polynomial time, the ellipsoid method has at least two other features that make it an impor-
tant tool for the computer science theoretician. The first is that it is able to handle implicit
LPs given by exponentially many, or even infinitely many, linear inequalities. These include
some of the most fundamental problems of combinatorial optimization and mathematical
programming, such as the weighted matching problem on general graphs, the submodular
function minimization problem, or approximately solving semidefinite programs. The second
important feature of the ellipsoid method is that, for LPs, its running time is polynomial in
the bit length of its input and is provably robust against issues of numerical instability (see,
e.g., [16]).

1

There is a third emerging feature of the ellipsoid method that is of particular significance
for the logician and the descriptive complexity theorist. The starting point is the important
breakthrough result of Anderson, Dawar and Holm [2] who developed a method called folding
to deal with symmetries in an LP. They used this method to show that, for the special
case of LPs, the ellipsoid method can be implemented in fixed-point logic with counting
(FPC), and hence in polynomial time, but choicelessly, i.e., in a way that the symmetries
of the input are respected all along the computation, and in the output. As the main
application of their result, they proved that the class of graphs that have a perfect matching
could be defined in FPC, thus solving one of the open problems raised by Blass, Gurevich
and Shelah in their work on Choiceless Polynomial Time [9]. The method of folding was
extended further by Dawar and Wang to deal with explicitly-bounded and full-dimensional
semidefinite programs (SDPs) [11].

Our first contribution is the observation that the method of folding can be used to
capture the power of the ellipsoid method in its full strength. We observe that the fully
general polynomial-time reduction that solves the weak feasibility problem given a weak
separation oracle for an explicitly-bounded convex set can be implemented, choicelessly, in
FPC. As in the earlier works that employed the folding method, our implementation uses
the reduction algorithm as described in [16] as a black-box. The black-box is made into a
choiceless procedure through a sequence of runs of the algorithm along a refining sequence
of suitable quotients of the given convex set. It should be pointed out that while all the
main ideas for doing this were already implicit in the earlier works by Anderson, Dawar and
Holm, and by Dawar and Wang, working out the details requires a certain degree of care.
For example, when we started this work it was not clear whether the earlier methods would
be able to deal with separation oracles for families of convex sets that are not closed under
the folding-quotient operations. We observe that such closure conditions, which happen to
hold for LPs and SDPs, are not required. The details of this can be found in Section 3.

Aided by this new understanding, we develop three applications of folding.

1.1 The SDP exact feasibility problem

The first application concerns the semidefinite programming exact feasibility problem. A
semidefinite set, also known as a spectrahedron, is a subset of Euclidean space that is defined
as the intersection of the cone of positive semidefinite matrices with an affine subspace. Thus,
semidefinite sets are the feasible regions of SDPs. The SDP exact feasibility problem asks, for
an SDP given as input, whether its feasible region is non-empty. While the approximate and
explicitly-bounded version of this problem is solvable in polynomial-time by the ellipsoid
method, the computational complexity of exact feasibility is a well-known open problem
in mathematical programming: it is decidable in polynomial space, by reduction to the
existential theory of the reals, but its precise position in the complexity hierarchy is unknown.
It has been shown that the problem is at least as hard as PosSLP, the positivity problem
for integers represented as arithmetic circuits [30], and hence at least as hard as the famous
square-root sum problem, but the exact complexity of these two problems is also largely
unknown (see [1]).

2

Our result on the SDP exact feasibility problem is that, when its input is represented
suitably as a finite structure, it is definable in the logic Cω

∞ω, i.e., bounded-variable infinitary
logic with counting (see Section 2 for definitions and references for all logics appearing in
this paper). In more recent terminology, we say that the SDP exact feasibility problem has
bounded counting width: there is a fixed bound k so that the set of YES (and NO) instances
of the problem is closed under indistinguishability by formulas of k-variable counting logic.
Let us briefly discuss the new idea that goes into proving this.

First we show that the FPC-definability of the ellipsoid method can be combined with
the techniques in [11] to give an FPC-formula φ that solves the weak feasibility problem
for explicitly-bounded SDPs. This deviates from the result in [11] in that it removes one
of their two assumptions: the full-dimensionality requirement is now dropped. Then we
show how to reduce the exact feasibility problem for arbitrary SDPs to the weak feasibility
problem for explicitly-bounded SDPs, and do so in bounded-variable infinitary logic. What
drives this reduction is the observation that an arbitrary SDP is feasible if, and only if, there
exists a large radius R>0 such that, for every small tolerance ε>0, an ε-perturbation of the
constraints of the original SDP restricted to solutions of magnitude at most R is non-empty.
Verifying this last condition when an (R, ε)-pair is given in the input can be done in FPC
through the formula φ: indeed, the resulting SDP is explicitly-bounded thanks to R, and
it is enough to decide its weak feasibility thanks to ε. Hence, the reduction boils down
to handling the ∃R>0 ∀ε>0 quantification in bounded-variable infinitary logic. To achieve
this, the key observation is that the part of the input that corresponds to an (R, ε)-pair is
independent of the original SDP. This allows us to construct a Booleanized version φR,ε of the
FPC-formula φ that works only for the fixed (R, ε)-pair. Finally, by replacing the ∃R>0 ∀ε>0
quantification by an infinite disjunction and conjunction, respectively, we obtain the Cω

∞ω
formula

∨
R>0

∧
ε>0 φR,ε. We analyze the exact form of φ and show that it allows for the

operation of fixing R and ε while retaining the same number of variables. This is the subject
of Section 4.

1.2 The SOS proof-existence problem

A Sums-of-Squares (SOS) proof that an n-variable polynomial inequality p0 ≥ 0 holds
on a set defined by the polynomial constraints p1 ≥ 0, . . . , pm ≥ 0 is an identity of the
form

∑m
j=1 pjsj + s0 = p0, where each polynomial sj is a sum of squares of polynomials.

The sums-of-squares methodology for solving polynomial optimization problems advocated
by Lasserre [20] and Parrilo [26] motivates the question of computing such proofs, when they
exist. It is well-known that, in many settings, including in the case of polynomial inequalities
over Boolean variables, the search-space of SOS proofs with polynomials bounded by degree d
can be formulated as the feasible region of an SDP with m · nO(d) variables and constraints,
and small coefficients. This leads to a computational approach to finding low-degree SOS
proofs by reduction to the SDP exact feasibility problem. It should be noted that a naive
application of this method does not in general yield algorithms that are polynomial in n
and m even for d = O(1) due to results in [22] proving that SOS proofs suffer from blow-up
phenomena in the coefficients of their polynomials. Remarkably, it was later shown in [27]

3

that in certain special cases of the problem the blow-up phenomena do not appear.
We recall the SDP that describes the search-space of low-degree SOS proofs and note that

its representation as a finite relational structure is computable in the logic FPC from a natural
representation of the input polynomials p0, p1, . . . , pm. Together with the definability of the
SDP exact feasibility problem, this implies that the SOS proof system over Boolean variables
is weakly degree-automatable in the logic Cω

∞ω in the following sense: there is a constant c
such that, for each degree d, there is a formula φd of the logic Ccd

∞ω that tells whether a
given polynomial inequality p0 ≥ 0 has a degree-d SOS proof from a given system p1 ≥
0, . . . , pm ≥ 0 of polynomial constraints over Boolean variables. The qualification weakly
in degree-automatable distinguishes the problem from its search version in which an actual
degree-d proof is sought. For refutations, where p0 is the constant −1 polynomial, we note
that the proof-existence problem can also be reduced, in FPC, to the weak feasibility problem
for arbitrary SDPs (not necessarily explicitly-bounded). While less demanding, this weaker
form of the problem is not known to be solvable in polynomial time, let alone FPC definable.
All this can be found in Section 5.

While interesting in its own right for its potential applications to proof complexity lower
bounds along the lines of [14], we think of the weak degree-automatability result for SOS
proofs as the required tool to develop the third and main application.

1.3 Hierarchies for the graph isomorphism problem

A variety of mathematical programming relaxations of the graph isomorphism problem have
been proposed in the literature: the fractional isomorphism relaxation of Tinhofer [31], its
strengthening via the Sherali-Adams hierarchy of LP relaxations [3, 21], its further strength-
ening via the Lasserre hierarchy of SDP relaxations [24], its relaxation via Groebner basis
computations [8], and a few others. While it is known that no fixed level of any of these
hierarchies of LP, SDP or Groebner-based relaxations solves the graph isomorphism prob-
lem [3, 21, 24, 8], their relative strength was not fully understood before our work. Since SDP
is a proper generalization of LP, one may be tempted to guess that the Lasserre SDP hier-
archy could perhaps distinguish more graphs than its Sherali-Adams LP sibling. Our main
contribution is to prove that this is not the case: for the graph isomorphism problem, the
strength of the Lasserre hierarchy collapses to that of the Sherali-Adams hierarchy.

Concretely, we prove in Section 6 that there exists a constant c such that if two graphs
are distinguishable at level d of the Lasserre hierarchy, then they are also distinguishable
at level cd of the Sherali-Adams hierarchy. The constant c loss comes from the number of
variables that are needed to express the SDP exact feasibility problem in bounded-variable
infinitary logic with counting. This collapse may sound surprising because it implies that, for
distinguishing graphs, the spectral methods that underlie the Lasserre hierarchy are already
available in low levels of the Sherali-Adams hierarchy. However, it agrees nicely with the
fact that indistinguishability by 3-variable counting logic captures graph spectra [10] and the
correspondence between k-variable counting logic and level k of the Sherali-Adams hierarchy
from [3]. It also aligns well with the results in [23] where it is shown that certain spectral
methods for approximating the number of constraints that can be satisfied in a constraint

4

satisfaction problem can be implemented directly in the Sherali-Adams hierarchy.
To get the collapse result we consider the standard 0-1 quadratic programming formu-

lation P (G,H) of the graph isomorphism problem for graphs G and H on disjoint sets of
vertices. Assuming that the level-d Lasserre relaxation of P (G,H) distinguishes G and H,
our new insights on the expressibility of the SDP exact feasibility problem imply that G
and H can be distinguished by a Ccd

∞ω-sentence, where c is a constant independent of d.
Hence, by the main result in [3] relating the levels of the Sherali-Adams hierarchy with
indistinguishability in bounded-variable counting logic, the graphs G and H can be distin-
guished by level-cd Sherali-Adams relaxation, thus proving the collapse. It should be noted
that, remarkably, this holds for any two graphs and any d, even if d = d(n) is an arbitrary
function of the number n of vertices of G and H. The details of this can be found in Section 6.

When stated in the language of proofs, the collapse has another interesting consequence.
By combining the results in [3] and [8], it was already known that if there is a degree-d
Sherali-Adams (SA) proof that G and H are not isomorphic, then there is also a degree-d
monomial Polynomial Calculus (mon-PC) proof over the reals, hence also a degree-d Poly-
nomial Calculus (PC) proof over the reals, which implies that there is a degree-2d SOS proof
by [7]. Thus, for the graph isomorphism problem, our collapse result completes a full cycle
of simulations SOSd → SAcd → mon-PCcd → PCcd → SOS2cd to show that all these proof
systems are equally powerful up to a 2c-factor loss in the degree. It also confirms the belief
expressed in [8] that the gap between PC and monomial PC is not large (a result obtained
independently in [14]).

It is remarkable that we proved these statements about the relative strength of proof
systems and hierarchies through an excursion into the descriptive complexity of the ellipsoid
method, the SDP exact feasibility problem, and bounded-variable infinitary logics. However,
it should be noted that our proof is indirect as it relies on the correspondence between k-
variable counting logic and the k-th level Sherali-Adams hierarchy from [3]. The question
whether the collapses can be shown to hold directly by strengthening LP-solutions to SDP-
ones for the primals, or by relaxing SDP-solutions to LP-ones for the duals, remains an
interesting one.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}.

Vectors and matrices If I is a non-empty index set, then an I-vector is an element of RI .
The components of u ∈ RI are written u(i) or ui, for i ∈ I. We identify Rn with R[n]. For I-
vectors u and v, the inner product of u and v is 〈u, v〉 =

∑
i∈I uivi. We write ‖u‖1 =

∑
i∈I |ui|

for the L1-norm, ‖u‖2 =
√
〈u, u〉 for the L2-norm, and ‖u‖∞ = max{|ui| : i ∈ I} for the L∞-

norm. For K ⊆ RI and δ > 0, we define the δ-ball around K by S(K, δ) := {x ∈ RI :
‖x − y‖2 ≤ δ for some y ∈ K}. For K = {x}, we set S(x, δ) := S({x}, δ). We define
also S(K,−δ) := {x ∈ RI : S(x, δ) ⊆ K}. When we refer to the volume of a subset K
of Euclidean space RI , we assume that K is Lebesgue measurable and that the volume is

5

defined as its Lebesgue measure (see, e.g., [28]). In particular, the volume of a 1-ball in the
n-dimensional real vector space is Vn = πn/2/Γ(n/2 + 1), where Γ is the gamma function,
i.e., the standard continuous extension of the factorial function.

If I and J are two non-empty index sets, then an I ×J-matrix is simply an I ×J-vector;
i.e., an element of RI×J . Accordingly, the components of X ∈ RI×J are written X(i, j),
or Xi,j, or Xij. The L1-, L2- and L∞-norms of a matrix X ∈ RI×J are defined as the respec-
tive norms of X seen as an I × J-vector, and the inner product of the matrices X, Y ∈ RI×J

is 〈X, Y 〉 =
∑

i∈I
∑

j∈J XijYij. Matrix product is written by concatenation. A square ma-

trix X ∈ RI×I is positive definite, denoted X � 0, if it is symmetric and satisfies zTXz > 0,
for every non-zero z ∈ RI . If it is symmetric but satisfies the weaker condition that zTXz ≥ 0,
for every z ∈ RI , then it is positive semidefinite, which we denote by X � 0. Equivalently, X
is positive semidefinite if and only if X = Y TY for some matrix Y ∈ RJ×I if and only if all
its eigenvalues are non-negative. By I we denote the square identity matrix of appropriate
dimensions, i.e., Iij = 1 if i = j and Iij = 0 if i 6= j. By J we denote the square all-ones
matrix of appropriate dimensions, i.e., Jij = 1 for all i and j. For I and J we omit the
reference to the index set in the notation (particularly so if the index set is called I or J , for
obvious reasons).

Vocabularies, structures and logics A many-sorted (relational) vocabulary L is a set
of sort symbols D1, . . . , Ds together with a set of relation symbols R1, . . . , Rm. Each relation
symbol R in the list has an associated type of the form Di1×· · ·×Dir , where r ≥ 0 is the arity
of the symbol, and i1, . . . , ir ∈ [s] are not necessarily distinct. A structure A of vocabulary L,
or an L-structure, is given by s disjoint sets D1, . . . , Ds called domains, one for each sort
symbol Di ∈ L, and one relation R ⊆ Di1 × · · · × Dir for each relation symbol R ∈ L of
type Di1×· · ·×Dir . We use D(A) or D to denote the domain associated to the sort symbol D,
and R(A) or R to denote the relation associated to the relation symbol R. In practice, the
overloading of the notation should never be an issue. The domain of a sort symbol is also
called a sort. If A is an L-structure and L′ is a many-sorted vocabulary obtained from L by
removing some sort and relation symbols, then an L′-reduct of A, denoted L′(A), is the L′-
structure obtained from A by omitting the domains and relations associated to the sort and
relation symbols which are not present in L′.

A logic for a many-sorted vocabulary L has an underlying set of individual variables
for each different sort in L. When interpreted on an L-structure, the variables are sup-
posed to range over the domain of its sort; i.e., the variables are typed. Besides the equal-
ities x = y between variables of the same type, the atomic L-formulas are the formulas of
the form R(x1, . . . , xr), where R is a relation symbol of arity r and x1, . . . , xr are variables
of types that match the type of R. The formulas of first-order logic over L are built from
the atomic formulas by negations, disjunctions, conjunctions, and existential and univer-
sal quantification of individual variables. For detailed background on first-order logic see,
e.g., [13].

The syntax of First-Order Logic with Counting FOC is defined by adjoining one more
sort N to the underlying vocabulary, adding one binary relation symbol ≤ of type N×N and

6

two ternary relation symbols + and × of types N ×N ×N , as well as extending the syntax
to allow quantification of the form ∃≥yx(ϕ), where ϕ is a formula, x is a variable of any type
and y is a variable of type N . In the semantics of FOC, each L-structure A is expanded
to an L ∪ {N,≤,+,×}-structure with N(A) = {0, . . . , n}, where n = max{|Di(A)| : i =
1, . . . , s}, and ≤, +, and × are interpreted by the standard arithmetic relations on {0, . . . , n}.
The meaning of ∃≥yx(ϕ), for a concrete assignment y 7→ i ∈ {0, . . . , n}, is that there exist
at least i many witnesses a for the variable x within its sort such that the assignment x 7→ a
satisfies the formula ϕ. Numbers up to nc, where c > 1 is an integer, are represented
by c-tuples of numbers in {0, . . . , n − 1}. The arithmetic relations on such numbers, and
the quantifiers counting up to such numbers, are both definable in FPC, the logic that we
introduce next.

The syntax of Fixed-Point Logic with Counting FPC extends the syntax of FOC by
allowing the formation of inflationary fixed-point formulas ifpx,Xϕ(x,X). On a structure A
of the appropriate vocabulary, such formulas are interpreted as defining the least fixed-point
of the monotone operator A 7→ A∪{a ∈ Di1×· · ·×Dir : A |= ϕ(a,A)}, where Di1×· · ·×Dir

is the type of the relation symbol X in ϕ(x,X).
The syntax of Infinitary Logic with Counting C∞ω extends the syntax of first-order logic

by allowing quantifiers of the form ∃≥ix(ϕ) which say that there are at least i many witnesses
for the variable x, where i is a (concrete) natural number, as well as infinite disjunctions and
conjunctions; i.e., formulas of the form

∨
i∈I φi and

∧
i∈I φi where I is a possibly infinite index

set, and {φi : i ∈ I} is an indexed set of formulas. The fragment of C∞ω with k variables,
denoted Ck

∞ω, is the set of formulas that use at most k variables of any type. In the formulas
of Ck

∞ω the variables can be reused and hence there is no finite bound on the quantification
depth of the formulas. We write Cω

∞ω for the union of the Ck
∞ω over all natural numbers k.

It is well-known that for every natural number k, every many-sorted vocabulary L, and
every L-formula ϕ of FPC that uses k variables, there exists an L-formula ψ of C2k

∞ω such
that ϕ and ψ define the same relations over all finite L-structures. While all the published
proofs that we are aware of give the statement for single-sorted vocabularies, it is clear that
the case of many-sorted vocabularies is analogous. For the proof and more on FPC and Cω

∞ω,
we refer to [25].

Interpretations and reductions Let L and K be two many-sorted vocabularies, and
let Θ be a class ofK-formulas. A Θ-interpretation of L inK is given by: two Θ-formulas δD(x)
and εD(x, y) for each sort symbol D of L, and one Θ-formula ψR(x1, . . . , xr) for each rela-
tion symbol R ∈ L of arity r. In all these formulas, the displayed x’s and y’s are tuples
of distinct variables of the same length m, called the arity of the interpretation. We say
that the interpretation takes a K-structure A as input and produces an L-structure B as
output if for each sort symbol D in L there exists a surjective partial map fD : Am → D(B),
where A is the domain of A, such that f−1

D (D(B)) = {a ∈ Am : A |= δD(a)}, f−1
D ({(b, b) : b ∈

D(B)}) = {(a, b) ∈ (Am)2 : A |= εD(a, b)}, and f−1
R (R(B)) = {(a1, . . . , ar) ∈ (Am)r : A |=

ψR(a1, . . . , ar)} where fR = fD1 × . . .× fDr and D1× · · · ×Dr is the type of R. The compo-
sition of two interpretations, one of L in K, and another one of K in J , is an interpretation

7

of L in J defined in the obvious way. Similarly, the composition of an interpretation of L
in K with an L-formula is a K-formula defined in the obvious way. In all these compositions,
the number of variables in the resulting formulas multiply. For example, the composition
of a Ck

∞ω-interpretation with a C`
∞ω-formula is a Ck`

∞ω-formula. A reduction from a compu-
tational problem to another is a pair of maps f and g, where f takes an input x for the
first problem and produces an input y = f(x) for the second problem, and g takes x and
a solution y′ for y in the second problem and produces a solution x′ = g(x, y′) for x in the
first problem. The reduction is called a Θ-reduction if the maps can be produced by Θ-
interpretations when their inputs are represented as structures of appropriate vocabularies.
For more on interpretations and logical reductions see, e.g., [12].

Numbers, vectors and matrices as structures Since we are interested in definability
in logics, we represent mathematical objects which serve as inputs and outputs of algorithms
as finite relational structures. The details of the chosen representation are not essential, but
we provide them for concreteness.

A natural number n ∈ N is represented by a structure, with a domain {0, . . . , N − 1} of
bit positions where N ≥ blog2(n+ 1)c, of a vocabulary LN that contains a binary relation
symbol ≤ for the natural linear order on the bit positions, and a unary relation symbol P for
the actual bits, i.e., the bit positions i that carry a 1-bit in the unique binary representation
of n of length N . Single bits b ∈ {0, 1} are represented as natural numbers with at least
one bit position. Thus the vocabulary LB for representing single bits is really the same
as LN, but we still give it a separate name. A rational q = (−1)bn/d, where b ∈ {0, 1}
and n, d ∈ N, is represented by a structure with domain {0, . . . , N − 1} of bit positions,
where N is large enough to encode both the numerator n and the denominator d in binary.
The vocabulary LQ of this structure has one binary relation symbol ≤ for the natural linear
order on the bit positions, and three unary relation symbols Ps, Pn and Pd that are used
to encode the sign and the bits of the numerator and the denominator of q. We use zero
denominator to represent ±∞.

An I-vector u ∈ QI is represented by a two-sorted structure, where the first sort Ī is the
index set I and the second sort B̄ is a domain {0, . . . , N−1} of bit positions, where N is large
enough to encode all the numerators and denominators in the entries of u in binary. The
vocabulary Lvec of this structure has one unary relation symbol I for Ī, one binary relation
symbol ≤ for the natural linear order on B̄, and three binary relation symbols Ps, Pn and Pd,
each of type Ī × B̄, that are used to encode the entries of u in the expected way: Ps(i, 0) if
and only if u(i) is positive, Pn(i, j) if and only if the j-th bit of the numerator of u(i) is 1,
and Pd(i, j) if and only if the j-th bit of the denominator of u(i) is 1.

More generally, if I1, . . . , Id denote index sets that are not necessarily pairwise distinct,
then the corresponding tensors u ∈ QI1×···×Id are represented by many-sorted structures,
with one sort Ī for each index set I for as many different index sets as there are in the
list I1, . . . , Id, plus one sort B̄ for the bit positions. The vocabulary Lvec,d of these structures
has one unary relation symbol I for each index sort Ī, one binary relation symbol ≤ for the
natural linear order on the bit positions B̄, and three d+1-ary relation symbols Ps, Pn and Pd,

8

each of type Ī1× · · · × Īd× B̄, for encoding the signs and the bits of the numerators and the
denominators of the entries of the tensor. Matrices A ∈ QI×J and square matrices A ∈ QI×I

are special cases of these, and so are indexed sets of vectors {ui : i ∈ K} ⊆ QI and indexed
sets of matrices {Ai : i ∈ K} ⊆ QI×J .

3 The Definable Ellipsoid Method

In this section we show that the ellipsoid method can be implemented in FPC for any family
of explicitly-bounded convex sets. We begin by defining the problems involved.

3.1 Geometric problems and the ellipsoid method

Let C be a class of convex sets, each of the form K ⊆ RI for some non-empty index set I. We
will consider elements of C as inputs of computational problems, and therefore the class C
comes with an associated encoding scheme. Most usual encoding schemes encode instances
of a problem as finite binary strings. In our case, since we want to refer to definability in a
logic, the encoding scheme for C will encode each set K through a finite relational structure.
The details are discussed in Subsection 3.2 below.

We assume that the encoding of a set K ⊆ RI carries within it enough information to
determine the set I. If the encoding also carries information about a rational R satisfy-
ing K ⊆ S(0I , R), then we say that K is circumscribed, and we write (K; I, R) to refer to it.
We write (K;n,R) whenever I = [n].

The exact feasibility problem for C takes as input the encoding of a set K ⊆ RI in C and
asks for a bit b ∈ {0, 1} that is 1 if K is non-empty, and 0 if K is empty. The weak feasibility
problem for C takes as input the encoding of a set K ⊆ RI in C and a rational ε > 0 and
asks for a bit b ∈ {0, 1} and a vector x ∈ QI such that:

1. b = 1 and x ∈ S(K, ε), or

2. b = 0 and vol(K) ≤ ε.

The reason why the exact feasibility problem is formulated as a decision problem and does not
ask for a feasible point is that K could well be a single point with non-rational components.
In the weak feasibility problem this is not an issue because if K is non-empty, then the
ball S(K, ε) surely contains a rational point. The not-so-weak separation problem for C
takes as input the encoding of a set K ⊆ RI in C , a vector y ∈ QI , and a rational δ > 0 and
asks as output for a bit b ∈ {0, 1} and a vector s ∈ QI such that ||s||∞ = 1 and:

1. b = 1 and y ∈ S(K, δ), or

2. b = 0 and 〈s, y〉+ δ ≥ sup{〈s, x〉 : x ∈ K}.

The problems carry the adjective weak in their name to stress on the fact that in both cases
the more natural requirement of membership in K is replaced by the looser requirement of
membership in S(K, γ) for a given γ > 0. For the weak separation problem, the additional

9

qualification not-so-weak serves the purpose of distinguishing it from the weak(er) version
in which condition 2 is replaced by the looser requirement that b = 0 and 〈s, y〉 + δ ≥
sup{〈s, x〉 : x ∈ S(K,−δ)}. It turns out that the main procedure of the ellipsoid method, as
stated in the monograph [16] and in Theorem 3.1 below, requires the not-so-weak version.
Recall that an ellipsoid in RI is a set of the form E(A, a) = {x ∈ RI : (x−a)TA(x−a) ≤ 1},
where a ∈ RI is the center, and A is an I × I positive definite matrix.

Theorem 3.1 (Theorem 3.2.1 in [16]). There is an oracle polynomial-time algorithm, the
central-cut ellipsoid method CC, that solves the following problem: Given a rational num-
ber ε > 0 and a circumscribed closed convex set (K;n,R) given by an oracle that solves
the not-so-weak separation problem for K, outputs one of the following: either a vector x ∈
S(K, ε), or a positive definite matrix A ∈ Qn×n and a vector a ∈ Qn such that K ⊆ E(A, a)
and vol(E(A, a)) ≤ ε.

We plan to use the algorithm CC from Theorem 3.1 almost as a black box, except for
the four aspects of it listed below. Although they are not stated in Theorem 3.2.1 in [16],
inspection of the proof and the definitions in the book shows that they hold:

1. the input to the algorithm is the triple given by ε, n and R,

2. the rational numbers ε and R are represented in binary,

3. the natural number n is represented in unary (i.e., 2n is given in binary),

4. the algorithm makes at least one oracle query, and the output is determined by the
answer to the last oracle call in the following way: if this last call was (y, δ) and
the answer was the pair (b, s), then δ ≤ ε and the output vector x of CC is y itself
whenever b = 1, and there exists a positive definite matrix A and a vector a so that K ⊆
E(A, a) and vol(E(A, a)) ≤ ε whenever b = 0.

The last point implies, in particular, that CC solves the weak feasibility problem for the
given K. However, note also that the theorem states a notably stronger claim than the
existence of a polynomial-time oracle reduction from the weak feasibility problem for a
class C of sets to the not-so-weak separation problem for the same class C of sets: indeed, CC
solves the feasibility problem for K by making oracle calls to the separation problem for the
same K.

3.2 Definability of ellipsoid

We encode sets in C as finite relational structures in an isomorphism-invariant way. Such
encodings we call representations. We define this formally.

Let us first specify what it means for two sets P ⊆ RI and Q ⊆ RJ to be isomorphic,
where I and J are two non-empty index sets. For a function σ : I → J and a J-vector v,
we denote by [v]−σ the I-vector defined by [v]−σ(i) = v(σ(i)) for every i ∈ I. For sets of J-
vectors, such as Q, we define [Q]−σ = {[v]−σ : v ∈ Q}. We say that P and Q are isomorphic,
denoted P ∼= Q, if there is a bijection σ : I → J such that P = [Q]−σ. Now we can define

10

representations of classes of sets. A representation of the class C of sets is a surjective partial
map r from the class of finite L-structures onto C , where L is a finite vocabulary with at
least one unary relation symbol I, that satisfies the following conditions:

1. for every two A,B ∈ Dom(r), if A ∼= B, then r(A) ∼= r(B),

2. for every A ∈ Dom(r) it holds that r(A) ⊆ RI where I = I(A).

A circumscribed representation of C is a surjective partial map r from the class of finite L-
structures onto C , where L is a finite vocabulary containing at least one unary relation
symbol I as well as a copy of the vocabulary LQ, that satisfies the following conditions:

1. for every two A,B ∈ Dom(r), if A ∼= B, then r(A) ∼= r(B),

2. for every A ∈ Dom(r) it holds that r(A) ⊆ RI where I = I(A),

3. for every A ∈ Dom(r) it holds that r(A) ⊆ S(0I , R) where R is the rational number
represented by the LQ-reduct of A.

Note that a circumscribed representation of C exists only if every K in C is bounded. For
a given representation r of C , any of the existing preimages A ∈ r−1(K) of a set K ∈ C
is called a representation of K. If L is the vocabulary of the representation, then we say
that C is represented in vocabulary L. If C has a representation in some vocabulary L, then
we say that C is a represented class of sets, and if it has a circumscribed representation,
then we say that it is a represented class of circumscribed sets.

If C is a represented class of convex sets, L is the vocabulary of the representation,
and Φ is a class of logical formulas, then we say that the weak feasibility problem for C is Φ-
definable if there exists a Φ-interpretation that, given as input a representation of a set K
in C and a rational ε > 0 as a structure over L ∪̇ LQ, produces a structure over LB ∪̇ Lvec

representing a valid output. It is required in addition that the represented K ⊆ RI from the
input and the vector x ∈ QI from the output share the same sort Ī with the same relation
symbol I interpreted by the same set. Similarly, for the not-so-weak separation problem, the
input is a structure over L ∪̇ LQ ∪̇ Lvec and the output is a structure over LB ∪̇ Lvec. Again,
the represented K ⊆ RI and the vector y ∈ QI from the input, and the vector s ∈ QI from
the output, share the same sort Ī with the same relation symbol I interpreted by the same
set.

The following is the main result of this section.

Theorem 3.2. Let C be a represented class of circumscribed closed convex sets. If the not-
so-weak separation problem for C is FPC-definable, then the weak feasibility problem for C
is also FPC-definable.

Although all the main ideas of the proof in Subsection 3.4 below were already present
in the works [2] and [11], we present a detailed proof for completeness as then the key new
insights become clearer.

At an intuitive level, the main difficulty for simulating the ellipsoid method within a
logic is that one needs to make sure that the execution of the algorithm stays canonical ; i.e.,

11

invariant under the isomorphisms of the input structure. The principal device to achieve
this is the following clever idea from [2]: instead of running the ellipsoid method directly
over the given set K ⊆ RI , the algorithm is run over certain folded versions [K]σ ⊆ Rσ(I)

of K, where σ(I) is an ordered subset of I. If the execution of the ellipsoid algorithm does
not detect the difference between K and the folded [K]σ, then an appropriately defined
unfolding of the solution for [K]σ will give the right solution for K. If, on the contrary, the
ellipsoid detects the difference in the form of a vector u ∈ QI whose folding [u]σ does not
unfold appropriately, then the knowledge of u is exploited to refine the current folding into a
strictly larger ordered σ′(I) ⊆ I, and the execution is rebooted with the new [K]σ

′ ⊆ Rσ′(I).
After no more than |I| refinements the folding will be indistinguishable from K, and the
execution will be correct.

The crux of the argument that makes this procedure FPC-definable is that the ellipsoid
algorithm is always operating over an ordered set σ(I). In particular, the algorithm stays
canonical, and the polynomially many steps of its execution are expressible in fixed-point
logic FP by the Immerman-Vardi Theorem [18, 32]. Indeed, the counting ability of FPC is
required only during the folding/unfolding/refining steps.

Our formalization of these ideas will bring in two key insights that were not present in
earlier works. The first one is the observation that it is possible to simulate the oracle queries
to the folded [K]σ by oracle queries to the original K, and that this works for any closed
convex set K. Furthermore, it is possible to transfer an appropriately chosen termination
condition on the volume of the folded [K]σ to the required termination condition on the
volume of the original K. The observation that the volume condition commutes with the
folding operations on arbitrary K’s did not appear in the earlier work on LPs [2], nor on
SDPs [11]. For LPs, the ellipsoid method on [K]σ is typically combined with a rounding
procedure to actually solve the exact feasibility problem. Therefore, the termination condi-
tion in that case is just exact feasibility, or plain emptiness. For SDPs, the volume-based
termination condition is not analyzed in [11], since the results there hold under the addi-
tional assumption of full-dimensionality and the ellipsoid method always outputs a vector
in S(K, ε). The claim that the folding operations do have a mild effect on the volume of
arbitrary K’s is the subject of Lemma 3.4 below.

The second key insight that our formalization brings in is the observation that the two
precision parameters of an input for an arbitrary K, i.e., the large radius R > 0 in the
circumscribing assumption, and the small margin guarantee ε > 0 in the weak feasibility
goal, do not interfere with the requirement that the algorithm behaves in an isomorphism-
invariant way. Again, this observation was not clearly analyzed in the previous work on LPs,
nor on SDPs. As explained in the introduction, it will be crucial for us to be able to handle
arbitrarily large R > 0, and arbitrarily small ε > 0, to get the results of Section 4.

Before we move on to the actual proof of Theorem 3.2, we discuss the required material
for the method of foldings.

12

3.3 Folding operations

Let I and J be non-empty index sets. Let σ : I → J be an onto map. The almost-folding (u)σ

and the normalized almost-folding (u)σn of an I-vector u are the J-vectors defined by

(u)σ(j) :=
∑

i∈σ−1(j)

u(i) and (u)σn :=
(u)σ

‖(u)σ‖∞
(3.1)

for every j ∈ J , with the understanding that if ‖(u)σ‖∞ = 0, then (u)σn is defined as the
zero vector. The folding [u]σ of an I-vector u and the unfolding [v]−σ of a J-vector v are the
vectors defined by

[u]σ(j) :=
1

|σ−1(j)|
∑

i∈σ−1(j)

u(i) and [v]−σ(i) := v(σ(i)) (3.2)

for every j ∈ J and every i ∈ I, respectively. For sets K ⊆ RI and L ⊆ RJ , define [K]σ :=
{[u]σ : u ∈ K} and [L]−σ := {[v]−σ : v ∈ L}. Observe that the notation [v]−σ and [L]−σ

agrees with the one we introduced earlier when we defined representations. The map σ is
said to respect a vector u ∈ RI if ui = ui′ whenever σ(i) = σ(i′) for every i, i′ ∈ I. The
following lemma collects a few important properties of foldings. See Propositions 17 and 18
in [11] in which properties 4 and 7 from the lemma are also proved for all sets but stated
only for convex sets. A small difference is that our statement of 7 is written in terms of the
normalized almost folding operation defined above which is what is actually needed in the
uses of the lemma.

Lemma 3.3. Let σ : I → J be an onto map, let u and v be I-vectors, and let K be a set
of I-vectors. Then the following hold:

1. [au+ bv]σ = a[u]σ + b[v]σ for every a, b ∈ R,

2. ‖[u]σ‖2 ≤ ‖u‖2,

3. K ⊆ S(0I , R) implies [K]σ ⊆ S(0J , R),

4. u ∈ S(K, δ) implies [u]σ ∈ S([K]σ, δ),

5. if K is convex, then [K]σ is convex, and

6. if K is bounded and closed, then [K]σ is bounded and closed,

7. if δ > 0 and σ respects u, and ‖u‖∞ = 1 and 〈u, v〉 + δ ≥ sup{〈u, x〉 : x ∈ K},
then ‖(u)σn‖∞ = 1 and 〈(u)σn, [v]σ〉+ δ ≥ sup{〈(u)σn, x〉 : x ∈ [K]σ}.

Proof. Property 1 is straightforward by definition. Property 2 follows from the inequal-
ity (x1 + · · · + xd)

2 ≤ (x2
1 + · · · + x2

d)d, which is the special case of the Cauchy-Schwartz
inequality |〈x, y〉| ≤ ‖x‖2‖y‖2 where y is the d-dimensional all-ones vector. Property 3
is an immediate consequence of 2. Property 4 follows from 1 and 2: if ‖u − x‖2 ≤ δ,
then ‖[u]σ − [x]σ‖2 = ‖[u − x]σ‖2 ≤ ‖u − x‖2 ≤ δ. Property 5 follows from the fact that

13

the map u 7→ [u]σ is linear. Property 6 follows from the fact that a continuous image of a
compact set is compact: indeed the map u 7→ [u]σ is continuous, and a subset of Euclidean
space is compact if and only if it is closed and bounded. Property 7 follows from the straight-
forward fact that whenever σ respects u, we have 〈(u)σ, [y]σ〉 = 〈u, y〉 and ‖(u)σ‖∞ ≥ ‖u‖∞.
Indeed, sup{〈(u)σn, x〉 : x ∈ [K]σ} = sup{〈(u)σn, [x]σ〉 : x ∈ K}, and for every x ∈ K we
have 〈(u)σn, [x]σ〉 − 〈(u)σn, [v]σ〉 = 〈(u)σn, [x − v]σ〉. Now either 〈(u)σn, [x − v]σ〉 ≤ 0 < δ,
or 〈(u)σn, [x− v]σ〉 > 0 and since ‖(u)σ‖∞ ≥ ‖u‖∞ = 1, we have 〈(u)σn, [x− v]σ〉 = 〈(u)σ, [x−
v]σ〉/‖(u)σ‖∞ ≤ 〈(u)σ, [x− v]σ〉 = 〈u, x− v〉 = 〈u, x〉 − 〈u, v〉 ≤ δ.

There is one further important property of foldings that we need for correctness of
the FPC-interpretation that we are about to define. Let us extend the definition of the
set E(A, a) = {x ∈ RJ : (x−a)TA(x−a) ≤ 1} to arbitrary positive semidefinite matrices A.
It should be noted that if A is positive semidefinite but not positive definite, then at least
one of the semi-axes of E(A, a) is infinite and hence the set is unbounded. In this case we
call E(A, a) an unbounded ellipsoid. If the simulation of the run of CC is executed until
the end over a folded [K]σ and the output bit is 0, then the algorithm certifies that [K]σ is
contained in an ellipsoid of a small volume (see point 3 immediately following the statement
of Theorem 3.1). To ensure that the volume of K itself is small we use the following lemma.

Lemma 3.4. Let K ⊆ RI be a set, let σ : I → J be an onto map, and let R ∈ RJ×I and L ∈
RI×J be the matrices that define the linear maps u 7→ [u]σ and v 7→ [v]−σ, respectively. If
there is a positive definite matrix A ∈ RJ×J and a vector a ∈ RJ such that [K]σ ⊆ E(A, a),
then K ⊆ E(RTAR,La). Moreover, for every ε > 0 and r > 0, if vol(E(A, a)) ≤ ε,
then vol(E(RTAR,La) ∩ S(0I , r)) ≤ 2nrn−1nkε1/k, where n = |I| and k = |J |.

Proof. Assume that [K]σ ⊆ E(A, a), where A = BTB is positive definite. Take a point x ∈
K. We want to show that x is in E((BR)T (BR), La). We have:

‖BR(x− La)‖2
2 = ‖B(Rx−RLa)‖2

2 = ‖B(Rx− a)‖2
2 ≤ 1, (3.3)

with the first equality following from the linearity of R, the second equality following from
the easily verified fact that [[a]−σ]σ = a, and the inequality following from the fact that x ∈ K
and hence Rx = [x]σ belongs to [K]σ ⊆ E(A, a) = E(BTB, a).

For the second part of the proof, observe that the matrix RTAR = (BR)T (BR) is
positive semidefinite. Let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of RTAR, let V =
{u1, . . . , un} be an orthonormal basis of corresponding eigenvectors, and let (b1, . . . , bn) be
the coordinates of La with respect to the basis V . The axes of symmetry of the (possi-
bly unbounded) ellipsoid E(RTAR,La) correspond to the vectors in V . As we show be-
low, λ1 > 0 and therefore the shortest axis of E(RTAR,La) has a finite length 2(1/λ1)1/2.
It follows that E(RTAR,La) is contained in the set of points whose coordinates, with re-
spect to the basis V , are given by [b1 − (1/λ1)1/2, b1 + (1/λ1)1/2] × Rn−1. Since the r-
ball S(0, r) is inscribed in the n-dimensional hypercube [−r, r]n, where the coordinates are
again given with respect to the basis V , this implies that E(RTAR,La)∩S(0I , r) is contained
in [b1 − (1/λ1)1/2, b1 + (1/λ1)1/2]× [−r, r]n−1. Hence,

vol(E(RTAR,La) ∩ S(0I , r)) ≤ 2(1/λ1)1/2(2r)n−1 = 2nrn−1(1/λ1)1/2. (3.4)

14

We will finish the proof by showing that vol(E(A, a)) ≤ ε implies (1/λ1)1/2 ≤ nkε1/k, and in
particular λ1 > 0.

Let µ1 ≥ · · · ≥ µk > 0 be the eigenvalues of the matrix A. We have

vol(E(A, a)) = Vk(1/µ1)1/2 · · · (1/µk)1/2 ≥ Vk(1/µ1)k/2, (3.5)

where Vk denotes the volume of a 1-ball in the k-dimensional real vector space (for the
volume of an ellipsoid see, e.g., [16]). Therefore, if vol(E(A, a)) ≤ ε, then µ1 ≥ (Vk/ε)

2/k >
k−2(1/ε)2/k, where the last inequality follows from the fact that Vk > k−k. Now, let y ∈ RJ

be an eigenvector of A corresponding to the eigenvalue µ1, and let x = Ly. Note that xTx ≤
nyTy. Hence,

xTRTARx = yTAy = µ1y
Ty ≥ (µ1/n)xTx. (3.6)

Since y 6= 0 also x 6= 0, and the Rayleigh quotient principle implies that λ1 ≥ µ1/n > 0.
Hence λ1 ≥ k−2(1/ε)2/k/n, which gives (1/λ1)1/2 ≤ n1/2kε1/k ≤ nkε1/k.

From now on, all maps σ : I → J will be onto and have J = [k] for some positive
integer k. Such maps define a preorder ≤σ on I with exactly k equivalence classes which is
defined by i ≤σ i′ if and only if σ(i) ≤ σ(i′). A second map σ′ : I → [k′] is a refinement
of σ if σ′(i) ≤ σ′(i′) implies σ(i) ≤ σ(i′). The refinement is proper if there exist i, i′ ∈ I
such that σ′(i) < σ′(i′) and σ(i) = σ(i′). Recall that σ : I → [k] respects a vector v ∈ RI

if v(i) = v(i′) whenever σ(i) = σ(i′). Since any bijective map respects any vector, observe
that if σ does not respect v, then there exists at least one proper refinement of σ that does
respect v. We aim for a canonical such refinement, that we denote σv, and that is definable
in FPC. We define it as follows.

Fix an onto map σ : I → [k] and a vector v ∈ RI . Define:

n(j) := |{v(`) : σ(`) = j}| for j ∈ [k],
m(i) := |{v(`) : σ(`) = σ(i), v(`) ≤ v(i)}| for i ∈ I,
σ′(i) := n(1) + · · ·+ n(σ(i)− 1) +m(i) for i ∈ I,
k′ := n(1) + · · ·+ n(k).

In words, n(j) is the number of distinct v-values in the j-th equivalence class of ≤σ, and m(i)
is the number of distinct v-values in the equivalence class of i that are no bigger than the v-
value v(i) of i. The map σ′ : I → [k′] is our σv. Note that if σ respects v, then σv = σ. On
the other hand:

Fact 3.5. If σ does not respect v, then σv is onto and a proper refinement of σ that respects v.

Although not strictly needed, it is useful to note that σv is a coarsest refinement of σ that
respects v. The final lemma before we proceed to the proof of Theorem 3.2 collects a few
computation tasks about foldings that are FPC-definable:

Lemma 3.6. The following operations have FPC-interpretations:

1. given a set I, output the 0 vector 0I and the constant 1 map σ : I → [1],

15

2. given u ∈ QI and onto σ : I → [k], output (u)σn,

3. given u ∈ Qk and onto σ : I → [k], output [u]−σ,

4. given u ∈ QI and onto σ : I → [k], output 1 if σ respects u, else output 0,

5. given u ∈ QI and σ : I → [k], output σu : I → [k′].

Proof. All five cases are straightforward given the ability of FPC to perform the basic arith-
metic of rational numbers, compute sums of sets of rationals indexed by definable sets, and
compute cardinalities of definable sets.

3.4 Proof of Theorem 3.2

Let Ψ be an FPC-interpretation that witnesses that the not-so-weak separation problem
for C is FPC-definable. We start by showing that there is an FPC-interpretation Ψ′ that
either simulates the not-so-weak separation oracle for [K]σ or outputs a vector not respected
by σ. More precisely, Ψ′ takes as input a representation of a set K ⊆ RI in C , an onto
mapping σ : I → [k] where k is an integer that satisfies 1 ≤ k ≤ |I|, a vector y ∈ Qk, and a
rational δ > 0 and outputs an integer b ∈ {−1, 0, 1} and a vector s ∈ QI such that ‖s‖∞ = 1
and:

1. b = 1 and σ respects s and [y]−σ ∈ S(K, δ) and y ∈ S([K]σ, δ), or

2. b = 0 and σ respects s and 〈(s)σn, y〉+ δ ≥ sup{〈(s)σn, x〉 : x ∈ [K]σ}, or

3. b = −1 and σ does not respect s.

Concretely, let Ψ′ be the interpretation that does the following:

01. given a representation of K ⊆ RI in C , σ : I → [k], y ∈ Qk, and δ ∈ Q,
02. compute y− := [y]−σ and (b, s) := Ψ(K; y−, δ),
03. if σ respects s, output the same (b, s),
04. if σ does not respect s, output (−1, s).

The claim that Ψ′ is FPC-definable follows from points 3 and 4 in Lemma 3.6. The claim
that Ψ′ satisfies the required conditions follows from the correctness of Ψ, together with the
fact that [[y]−σ]σ = y, and Properties 4 and 7 in Lemma 3.3. For later use, let us note that
if the given σ : I → [k] is a bijection, then the third type of output b = −1 cannot occur.

Next we show how to use Ψ′ in order to implement, in FPC, the algorithm CC from
Theorem 3.1. Consider the following variant CC′ of CC:

01. given a rational ε > 0 and a representation of a set K ⊆ RI in C ,
02. compute R satisfying K ⊆ S(0I , R) from the representation of K,
03. let n := |I| and k := 1, and let σ : I → [1] be the constant 1 map,
04. start a run of CC on input (γ, k, R) where γ := min{(ε/(2nRn−1nk))k, ε},
05. given an oracle query (y, δ), replace it by (b, s) := Ψ′(K;σ, y, δ),
06. if σ respects s, then

16

07. compute (s)σn and take the pair (b, (s)σn) as an output to the query (y, δ),
08. if the run of CC makes a new query (y, δ), go back to step 05,
09. if the run of CC makes no more queries, go to step 13,
10. else
11. compute σs : I → [k′], the canonical refinement of σ that respects s,
12. reboot the run of CC with σ := σs and k := k′ and go back to step 04,
13. let (b, s) be the output of Ψ′ for the last oracle call (y, δ),
14. output (b, [y]−σ).

As discussed above, CC′ simulates the ellipsoid method over folded versions [K]σ of K. By
Properties 3, 5 and 6 in Lemma 3.3 each such folded version is a circumscribed closed convex
set. A key aspect of CC that makes this algorithm well defined is that the only knowledge
about the targeted set [K]σ that it needs for steps 04, 05, 08 and 09 are its dimension k, its
bounding radius R, and correct answers to the earlier queries to the not-so-weak separation
oracle for [K]σ itself. In particular, the algorithm does not need the folded [K]σ to belong to
the class C . Indeed, as long as all s vectors are respected by a particular σ, Properties 4 and 7
in Lemma 3.3 guarantee that the answers in step 07 stay consistent with the assumption
that the circumscribed closed convex set given by the oracle is [K]σ. As soon as an s vector
that is not respected by σ is found, the map σ is refined, and the run of CC is rebooted with
the new k and γ for the new σ (and the same R).

No later than after |I| refinements of σ, the simulation of CC will be executed until the
end. This happens at the latest when σ becomes the totally refined map: at that point σ
is a bijection that respects every s. Whenever a run of the simulation is completed, the
algorithm reaches step 13 with a pair (b, s) and a σ that respects s. We use this to show
that CC′ solves the weak feasibility problem for K, and that it can be implemented in FPC.

The claim that CC′ solves the weak feasibility problem for any K in C is proved as follows.
Let (b, s) be the output of Ψ′ for the last oracle call (y, δ) of the execution of CC. As noted
above, σ : I → [k] respects s and hence b ∈ {0, 1} by Property 3 in the description of Ψ′.
If b = 1, then [y]−σ ∈ S(K, δ) by Property 1 in the description of Ψ′, and S(K, δ) ⊆ S(K, ε)
because δ ≤ γ ≤ ε. This shows that (b, [y]−σ) is a correct output for the weak feasibility
problem for ε and K in case b = 1. In case b = 0 we have [K]σ ⊆ E(A, a) for a positive
definite matrix A and a vector a, with vol(E(A, a)) ≤ γ ≤ (ε/(2nRn−1nk))k, by point 4
immediately following the statement of Theorem 3.1. Since K ⊆ S(0, R), by Lemma 3.4 this
means that the volume of K is at most ε and the answer b = 0 is a correct output.

For the implementation in FPC, we note that CC′ is a relational WHILE algorithm that
halts after at most |I| iterations all whose steps can be computed by FPC-interpretations
without quotients. Step 01 is the description of the input. Step 02 follows from the fact
that K has a circumscribed representation: just take the LQ-reduct of the representation
of K, where LQ is the copy of the vocabulary that is used for representing the rational
radius R. Step 03 follows from point 1 in Lemma 3.6. Step 04 follows from the Immerman-
Vardi Theorem on the fact that the representation of [k] is an ordered structure and the
computation of CC in between oracle calls runs in polynomial time. Step 05 follows from
the fact that Ψ′ is FPC-definable. Step 06 is just a control statement. Step 07 follows

17

from point 2 in Lemma 3.6. Step 08 follows, again, from the Immerman-Vardi Theorem on
the fact that the representation of [k] is an ordered structure and the computation of CC
in between oracle calls runs in polynomial time. Step 09 follows from the same reason as
Step 08. Step 10 is a control statement. Step 11 follows from point 5 in Lemma 3.6. Steps 12
and 13 are just control statements. Step 14 follows from point 3 in Lemma 3.6.

This completes the proof of Theorem 3.2, and this section.

4 Feasibility of SDPs

In this section we use Theorem 3.2 to show that the exact feasibility of semidefinite programs
is definable in Cω

∞ω.

4.1 Semidefinite sets

The semidefinite set KA,b ⊆ RI is defined by the constraints

〈Ai, X〉 ≤ bi for i ∈M and X � 0, (4.1)

where A ∈ RM×(J×J) is an indexed set of J × J matrices, b ∈ RM is an indexed set of
reals, X is a J × J symmetric matrix of formal variables xij = xji = x{i,j} for i, j ∈ J ,
and I = {{i, j} : i, j ∈ J} is the set of variable indices. A circumscribed semidefinite set is
a pair (KA,b ⊆ RI , R), where KA,b ⊆ RI is a semidefinite set as defined above and R is a
rational satisfying KA,b ⊆ S(0I , R).

When A and b have rational coefficients, the semidefinite set KA,b ⊆ RI is represented
by a four-sorted structure, with one sort Ī for the set I of indices of variables, two sorts J̄
and M̄ for the index sets J and M , and one sort B̄ for a domain {0, . . . , N − 1} of bit
positions that is large enough to encode all the numbers in binary. The vocabulary LSDP

includes the following relation symbols:

1. three unary symbols I, J and M , for Ī, J̄ and M̄ , respectively,

2. one ternary symbol P of type Ī × J̄ × J̄ ,

3. one binary symbol ≤ for the natural linear order on B̄,

4. three 4-ary symbols PA,s, PA,n, PA,d,

5. three binary symbols Pb,s, Pb,n, Pb,d.

The relation that interprets P encodes the two indices of each variable. The relations
that interpret PA,s, PA,n, PA,d encode the signs and the bits of the numerators and the
denominators of the entries of the matrices in {Ai : i ∈ M}. The relations that inter-
pret Pb,s, Pb,n, Pb,d encode the signs and the bits of the numerators and the denominators
of the rationals in {bi : i ∈ M}. The representation of the circumscribed semidefinite
set (KA,b ∈ RI , R) is a structure over the vocabulary LSDP ∪̇ LQ whose LSDP-reduct is the
representation of KA,b ∈ RI , and whose LQ-reduct is the representation of R.

18

The class of semidefinite sets together with the representation defined above form a
represented class of sets, which we denote by CSDP. Similarly, the class of circumscribed
semidefinite sets form a represented class of circumscribed sets denoted C C

SDP.
In [11] Dawar and Wang show the FPC-definability of the weak optimization problem

for C C
SDP with the additional assumption of the input SDP being non-empty.

Theorem 4.1 ([11]). There exists an FPC-interpretation that takes as input a non-empty
circumscribed semidefinite set (KA,b ⊆ RI , R), a vector c ∈ RI and a rational δ > 0, and
outputs a vector x ∈ RI such that x ∈ S(KA,b, δ) and 〈c, x〉+ δ ≥ sup{〈c, y〉 : y ∈ KA,b}.

In order to do so they prove Theorem 3.2 for the special case of full-dimensional semidefinite
sets and note that weak optimization reduces to weak feasibility by adding the cost vector as
a constraint. They also observe that a non-empty input set can be made full-dimensional by
considering an ε-perturbation of the constraints, for an appropriately chosen ε > 0. Finally,
they propose an FPC-interpretation for the not-so-weak separation oracle. We work out the
details of a variant of their oracle construction that takes care of a missing step in their proof.
This fix was first published in the preliminary report of this paper [4] and the conference
version of this paper [5]. The revised version of Wang’s PhD thesis [33] included the same
fix.

As a consequence of Theorem 3.2 and the FPC-definability of the not-so-weak separation
oracle we get the following:

Theorem 4.2. The weak feasibility problem for circumscribed semidefinite sets is definable
in FPC.

4.2 Separation oracle

We show that the not-so-weak separation problem is FPC-definable for the class CSDP of all
semidefinite sets. This clearly implies the FPC-definability of the not-so-weak separation
problem for C C

SDP, which is what is needed for the proof of Theorem 4.2. We begin with a
few definitions and lemmas. In particular, since one of the steps of the separation procedure
is a reduction to a family of LPs, we specify an encoding of an LP as a finite relational
structure.

The polytope Ku,v ⊆ RI is defined by a system of linear inequalities:

〈ui, x〉 ≤ vi for i ∈M, (4.2)

where x is an I-vector of variables, u ∈ RM×I is an indexed set of I-vectors, and v ∈ RM

is an indexed set of reals. If the entries of the vectors {ui : i ∈ M} and v are rational
numbers, then the polytope Ku,v ⊆ RI is represented by a three-sorted structure, with two
sorts Ī and M̄ for the index sets I and M , and one sort B̄ for a domain {0, . . . , N − 1} of
bit positions that is large enough to encode all the numbers in binary. The vocabulary LLP

includes the following relation symbols:

1. two unary symbols I and M , for Ī and M̄ , respectively,

19

2. one binary symbol ≤ for the natural linear order on B̄,

3. three ternary symbols Pu,s, Pu,n, Pu,d,

4. three binary symbols Pv,s, Pv,n, Pv,d.

The relations that interpret the symbols in point 3 encode the signs and the bits of the
numerators and the denominators of the entries of the vectors in {ui : i ∈M}. The relations
that interpret the symbols in point 4 encode those of the rationals in {vi : i ∈M}.

Linear programs of the form:

(P) : inf x 〈c, x〉 s.t. 〈ui, x〉 ≤ vi for i ∈M, (4.3)

where x, u and v are as specified above and c is an I-vector, are represented similarly as
polytopes. The vocabulary LoptLP contains three additional binary symbols Pc,s, Pc,n, Pc,d
that encode the vector c.

Theorem 4.3 ([2]). There exists an FPC-interpretation that takes as input a linear pro-
gram P : inf x 〈c, x〉 s.t. 〈ui, x〉 ≤ vi for i ∈ M, and outputs an integer b ∈ {−1, 0, 1}, a
vector s ∈ QI and a rational r, such that:

1. b = 1 and P is feasible but unbounded below, or

2. b = 0 and P has an optimal feasible solution of value r, and s is one, or

3. b = −1 and P is infeasible.

We also need the following lemma from [11] showing that the smallest eigenvalue of a given
symmetric matrix can be approximated in FPC:

Lemma 4.4 ([11]). There exists an FPC-interpretation that takes as input a symmetric
matrix A ∈ QI×I and a rational δ > 0 and outputs a rational λ̂, such that λ̂ is the approximate
value of the smallest eigenvalue λ of A up to precision δ, i.e., |λ̂− λ| ≤ δ.

We are now ready to show the following:

Proposition 4.5. The not-so-weak separation problem for semidefinite sets is definable
in FPC.

Proof. If KA,b ⊆ RI is a non-empty semidefinite set and Y ∈ RJ×J is a symmetric matrix
outside KA,b, then either Y violates at least one of the linear inequalities that describe KA,b,
or fails to be positive semidefinite. In the former case, we get a separating hyperplane
by taking the normal of the violated inequality, and a canonical one by taking the sum of
all of them, as in [2]. In the latter case, the smallest eigenvalue λ of Y is negative, and
if v is an eigenvector of this eigenvalue, then vvT is a valid separating hyperplane (after
normalization). Such an eigenvector would be found if we were able to find an optimal
solution to the optimization problem

inf y ‖(Y − λI)y‖1 s.t. ‖y‖∞ = 1. (4.4)

20

Unfortunately, this optimization problem cannot be easily phrased into an LP because the
constraint ‖y‖∞ = 1 cannot be expressed by linear inequalities. Here is where we differ
from [11]: first we relax the constraint ‖y‖∞ = 1 to ‖y‖∞ ≤ 1, but then we add the
condition that some component yl is 1, and we do this for each l ∈ J separately. Thus, for
each l ∈ J , let P (Y, λ, l) be the following optimization problem:

inf y ‖(Y − λI)y‖1 s.t. ‖y‖∞ ≤ 1, yl = 1. (4.5)

This we can formulate as an LP. The problem P (Y, λ, l) may be feasible for some l ∈ J
and infeasible for some other l ∈ J , but at least one is guaranteed to be feasible. We take
a solution for each feasible one and add them together to produce a canonical separating
hyperplane. All this would be an accurate description of what our separation oracle does if
we could compute λ exactly, but unfortunately only an approximation λ̂ is available. Still,
if the approximation is good enough, using λ̂ in place of λ in the P (Y, λ, l)’s will do the job.
We provide the details.

Let Ψ be the interpretation that takes as input a symmetric matrix Y ∈ QJ×J , a ratio-
nal δ > 0, and a representation of KA,b ⊆ RI in CSDP, where A ∈ QM×(J×J) and b ∈ QM ,
and does the following:

01. given Y , δ, and KA,b ⊆ RI as specified,
02. compute L := {i ∈M : 〈Ai, Y 〉 > bi},
03. if |L| 6= 0, then
04. compute D := ‖

∑
i∈LAi‖∞,

05. if D 6= 0, compute S :=
∑

i∈LAi/D, and output (0, S),
06. if D = 0, output (0, I),
07. else
08. compute n := |J |,
09. compute λ̂, the smallest eigenvalue of Y up to precision δ/2n2,

10. if λ̂ > δ/2n2, output (1, I),
11. else

12. compute T := {l ∈ J : P (Y, λ̂, l) is feasible with optimum ≤ δ/2n},
13. compute v := {vl ∈ QJ : l ∈ T and vl is optimal for P (Y, λ̂, l)},
14. compute D := ‖

∑
l∈T vlv

T
l ‖∞ and S := −

∑
l∈T vlv

T
l /D,

15. output (0, S).

Let us show that Ψ is FPC-definable and satisfies the required conditions.
Step 01 is the description of the input. Steps 07 and 11 are control steps. FPC-definability

of Steps 02, 03, 04, 05, 06, 08, 10, 14 and 15 follows from the ability of FPC to perform the
basic arithmetic of rational numbers, compare rational numbers, and compute cardinalities
of definable sets. Step 09 follows from Lemma 4.4. Below we first argue that the output
of Ψ is always correct and finally that the Steps 12 and 13 are FPC-definable.

Suppose that L = {i ∈M : 〈Ai, Y 〉 > bi} 6= ∅ and let us prove that the output in Steps 05

21

and 06 is correct. If
∑

i∈LAi is the zero matrix, then we have that∑
i∈L

bi <
∑
i∈L

〈Ai, Y 〉 = 〈
∑
i∈L

Ai, Y 〉 = 0. (4.6)

Therefore, the feasibility region KA,b is empty. Indeed, every X ∈ KA,b satisfies

0 >
∑
i∈L

bi ≥
∑
i∈L

〈Ai, X〉 = 〈
∑
i∈L

Ai, X〉 = 0, (4.7)

which is a contradiction. Hence, for any matrix whose L∞-norm is 1, in particular for the
identity matrix I, the output (0, I) is correct.

If
∑

i∈LAi is not the zero matrix, let D = ‖
∑

i∈LAi‖∞ and S =
∑

i∈LAi/D. Then for
every X ∈ KA,b we have that

〈S,X〉 = 〈
∑
i∈L

Ai
D
,X〉 =

1

D

∑
i∈L

〈Ai, X〉 ≤
1

D

∑
i∈L

bi <
1

D

∑
i∈L

〈Ai, Y 〉 = 〈S, Y 〉. (4.8)

Moreover, the matrix S has L∞-norm 1. So the output is correct.
Suppose that L = {i ∈ M : 〈Ai, Y 〉 > bi} = ∅, n = |J | and λ̂ > δ/2n2, and let us

argue that the output in Step 10 is correct. Observe that, for every i ∈ M , the matrix Y
satisfies 〈Ai, Y 〉 ≤ bi, and its smallest eigenvalue λ is positive, which means that the matrix Y
is positive semidefinite. Hence, Y is in the feasibility region KA.b and the output is correct.

Finally, let us assume that λ̂ ≤ δ/2n2. In this case, for every l ∈ J , the FPC inter-
pretation needs to compute the optimal value and an optimal solution of the optimization
problem P (Y, λ̂, l). To show that this is possible, we define an essentially equivalent linear
program P ′(l) and use Theorem 4.3 to conclude.

To perform Steps 12 and 13 the FPC interpretation takes, for each l ∈ J , the linear
program P ′(l) with variables {xi : i ∈ J} ∪ {yi : i ∈ J}, defined by:

inf x,y
∑

i∈J xi
s.t. −xi ≤ (Y y − λ̂y)i ≤ xi, for every i ∈ J

−1 ≤ yi ≤ 1, for every i ∈ J
yl = 1,

where y is the vector {yi : i ∈ J}. In the following, since Y and λ̂ are fixed, let us write P (l)
instead of P (Y, λ̂, l).

Claim 4.6. The program P (l) is feasible if and only if the program P ′(l) is feasible and the
optimal values of P (l) and P ′(l) are the same. Moreover, if a vector {xi : i ∈ J}∪{yi : i ∈ J}
is an optimal solution to P ′(l), then the vector {yi : i ∈ J} is an optimal solution to P (l).

Proof. Suppose that the feasibility region of P (l) is non-empty. For every vector y = {yi :
i ∈ J} in the feasibility region of P (l), the vector {xi : i ∈ J} ∪ {yi : i ∈ J}, where xi =
|(Y y − λ̂y)i|, belongs to the feasibility region of P ′(l) and its value

∑
i∈J xi = ‖(Y − λ̂I)y‖1

22

is the same as the value of {yi : i ∈ J} for P (l). Therefore, the feasibility region of P ′(l) is
non-empty and the optimal value opt′ of P ′(l) is smaller or equal to the optimal value opt
of P (l).

Suppose that the feasibility region of P ′(l) is non-empty, and take an optimal solu-
tion {xi : i ∈ J} ∪ {yi : i ∈ J} for P ′(l). It holds that ‖y‖∞ = 1 and yl = 1, so the vector y
is in the feasibility region of P (l). Therefore, the feasibility region of P (l) is non-empty,
and opt ≤ ‖(Y − λ̂I)y‖1 . Moreover, for every i ∈ J , we have that |(Y y − λ̂y)i| ≤ xi
so ‖(Y − λ̂I)y‖1 ≤

∑
i∈J xi = opt′. On the other hand we know that opt′ ≤ opt. To

summarize
opt ≤ ‖(Y − λ̂I)y‖1 ≤

∑
i∈J

xi = opt′ ≤ opt. (4.9)

Hence, the vector y is an optimal solution for P (l) and the optimal values are the same.

To perform Steps 12 and 13 the FPC interpretation computes, for every l ∈ J , an optimal
solution and the optimal value of the optimization problem P (l), by computing an optimal
solution and the optimal value of the linear program P ′(l) via Theorem 4.3, and projecting
the output to the variables {yi : i ∈ J}.

We now show that the set T , defined in Step 12, is non-empty, and that ‖
∑

l∈T vlv
T
l ‖∞ 6=

0. It follows that the output matrix S in Step 14 is well defined.

Claim 4.7. T 6= ∅.

Proof. Let v be an eigenvector of Y with the smallest eigenvalue λ, and let ‖v‖∞ = 1. We
have the following

‖(Y − λ̂I)v‖1 = ‖(Y − λI)v − (λ̂− λ)Iv‖1 ≤
≤ ‖(Y − λI)v‖1 + ‖(λ̂− λ)Iv‖1 =

= ‖(λ̂− λ)Iv‖1 ≤
δ

2n2
n‖v‖∞ =

δ

2n
.

(4.10)

If there exists l ∈ J such that vl = 1, then v ∈ P (l) and T 6= ∅. Otherwise, there exists l ∈ J
such that vl = −1. Then −v ∈ P (l) and we are done as well.

Claim 4.8. 1 ≤ ‖
∑

l∈T vlv
T
l ‖∞ ≤ |T |.

Proof. Observe that for every l ∈ J all the main diagonal entries of the matrix vlv
T
l are

squares and since ‖vl‖∞ = 1, at least one of those entries is equal 1. Therefore,

‖
∑
l∈T

vlv
T
l ‖∞ ≥ 1, (4.11)

and on the other hand,

‖
∑
l∈T

vlv
T
l ‖∞ ≤

∑
l∈T

‖vlvTl ‖∞ = |T |. (4.12)

23

Finally, let us show that the output (0, S) in Step 15 is correct.

Claim 4.9. For every l ∈ T , let vl be the optimal solution of P (l). Then for every X ∈ KA,b,

〈−vlvTl , Y 〉+
δ

n
≥ 〈−vlvTl , X〉. (4.13)

Proof. Take X ∈ KA,b. Since the matrix X is positive semidefinite, 〈−vlvTl , X〉 = −vTl Xvl ≤
0. We will show that 〈−vlvTl , Y 〉+ δ/n ≥ 0. It holds that

〈−vlvTl , Y 〉 = −vTl Y vl = −vTl (λ̂I + (Y − λ̂I))vl =

= −λ̂vTl vl − vTl (Y − λ̂I)vl ≥ −λ̂vTl vl − |vTl (Y − λ̂I)vl| ≥

≥ −λ̂vTl vl − ‖vl‖∞‖(Y − λ̂I)vl‖1 ≥ −λ̂vTl vl −
δ

2n
.

(4.14)

It follows that

〈−vlvTl , Y 〉+
δ

n
≥ −λ̂vTl vl +

δ

2n
. (4.15)

Now if λ̂ ≤ 0, then −λ̂vTl vl + δ/2n = −λ̂‖vl‖2
2 + δ/2n ≥ δ/2n > 0. Otherwise 0 < λ̂ ≤

δ/2n2, and

λ̂vTl vl ≤
δ

2n2
‖vl‖2

2 ≤
δ

2n2
(
√
n‖vl‖∞)2 =

δ

2n2
n =

δ

2n
. (4.16)

Hence, −λ̂vTl vl + δ/2n ≥ −δ/2n+ δ/2n = 0.

We finish the proof by showing that for every X ∈ KA,b,

〈S, Y 〉+ δ ≥ 〈S,X〉. (4.17)

Let X be any matrix in KA,b. From now on, let D = ‖
∑

l∈T vlv
T
l ‖∞. Recall from Claim 4.8

that 1 ≤ D ≤ |T |. It holds that

〈S, Y 〉 = 〈−
∑
l∈T

vlv
T
l

D
, Y 〉 =

1

D

∑
l∈T

〈−vlvTl , Y 〉 ≥
1

D

∑
l∈T

(〈−vlvTl , X〉 −
δ

n
) =

= 〈−
∑
l∈T

vlv
T
l

D
,X〉 − |T |

D

δ

n
= 〈S,X〉 − |T |

n

δ

D
≥ 〈S,X〉 − δ,

(4.18)

where the first inequality follows from (4.13) in Claim 4.9 and the last inequality follows
from the fact that |T | ≤ n and D ≥ 1.

4.3 Exact feasibility

We use Theorem 4.2 to prove the main result of this section:

Theorem 4.10. The exact feasibility problem for semidefinite sets is definable in Cω
∞ω.

24

We begin the proof by relating the problem of exact feasibility to the subject of Theo-
rem 4.2, i.e., the weak feasibility problem for circumscribed semidefinite sets.

For any R > 0 and any semidefinite set KA,b, the R-restriction of KA,b is the set of all
those points in KA,b whose L∞-norm is bounded by R, i.e., it is the semidefinite set given
by:

〈Ai, X〉 ≤ bi for i ∈M ,
X{i,j} ≤ R for i, j ∈ J ,
−X{i,j} ≤ R for i, j ∈ J ,
X � 0.

For any ε > 0 and any semidefinite set KA,b, the ε-relaxation of KA,b is the semidefinite
set given by:

〈Ai, X〉 ≤ bi + ε for i ∈M
X � 0.

Since an R-restriction of a semidefinite set is a semidefinite set itself, it makes sense to
talk about its ε-relaxation. The question of emptiness for ε-relaxations of R-restrictions of
semidefinite sets is closely linked to the exact feasibility problem under consideration. Recall
the Cantor Intersection Theorem: If K1 ⊇ K2 ⊇ · · · is a decreasing nested sequence of non-
empty compact subsets of Rn, then the intersection

⋂
i≥1Ki is non-empty. We use it for the

following lemma.

Lemma 4.11. A semidefinite set KA,b is non-empty if and only if there exists a positive
rational R such that for every positive rational ε it holds that the ε-relaxation of the R-
restriction of KA,b is non-empty.

Proof. Assume that KA,b is non-empty and let x be a point in it. Let R be a rational bigger
than ‖x‖∞. Then x is also in the R-restriction of KA,b, and therefore in the ε-relaxation of
the R-restriction of KA,b for every positive rational ε.

Assume now that R is a positive rational such that the ε-relaxation of the R-restriction
of KA,b is non-empty for every positive rational ε. For each positive integer m, let Km be
the 1/m-relaxation of the R-restriction of KA,b. Each Km is closed and bounded, hence
compact. Moreover K1 ⊇ K2 ⊇ · · · , i.e., the sets Km form a decreasing nested sequence
of non-empty subsets of RI . It therefore follows from the Cantor Intersection Theorem
that

⋂
m≥1Km is non-empty. The claim follows from the observation that

⋂
m≥1Km is

indeed the R-restriction of KA,b.

It follows from Theorem 4.2 that the emptiness problem for ε-relaxations of R-restrictions
of semidefinite sets is definable in FPC in the following sense.

Proposition 4.12. There exists a formula ψ of FPC such that if A is a structure over LSDP∪̇
LQ∪̇LQ, representing a semidefinite set KA,b ⊆ RI and two positive rational numbers R and ε,
then:

25

1. if A |= ψ, then the ε-relaxation of the R-restriction of KA,b is non-empty,

2. if A 6|= ψ, then the R-restriction of KA,b is empty.

Proof. Let Φ be an FPC-interpretation that witnesses that the weak feasibility problem for
the class of circumscribed semidefinite sets is FPC-definable. The formula ψ takes as input
the representation of a semidefinite set KA,b ⊆ RI , a rational ε > 0 and a rational R > 0,
and does the following:

01. given KA,b ⊆ RI , ε and R as specified,
02. compute k := |I|,
03. compute R′ := d

√
k(R + ε)2e,

04. compute a representation of K, the ε-relaxation of the R-restriction of KA,b,
05. compute m := max {‖Ai‖2 : i ∈M} ∪ {1},
06. compute δ = εk/(k!(2km)k),
07. compute (b, x) := Φ((K,R′), δ),
08. if b = 1 output >,
09. if b = 0 output ⊥.

This procedure is clearly FPC-definable. In order to prove correctness we will need the
following lemma.

Lemma 4.13. Let A ∈ RM×(J×J), b ∈ RM , I = {{i, j} : i, j ∈ J}, k = |I|, and m =
max {‖Ai‖2 : i ∈ M} ∪ {1}. For any ε > 0, if the semidefinite set KA,b ∈ RI is non-empty,
then its ε-relaxation has volume greater than δ = εk/(k!(2km)k).

Proof. Take ε1 = ε/2km. Let Y be an element of KA,b. We will show that the ε1-ball
around Y + ε1I is included in the ε-relaxation of KA,b. It will follow that the volume of
the ε-relaxation of KA,b is at least εk1Vk, where Vk is the volume of a 1-ball around Y in
the k-dimensional real vector space. Since Vk > 1/k! this finishes the proof.

Suppose that T ∈ S(Y + ε1I, ε1). This means that T = Y + ε1I + Z, where ‖Z‖2 ≤ ε1.
We start by showing that T is positive semidefinite. Let v be a vector whose L2-norm is 1.
It holds that

vTTv = vT (Y + ε1I + Z)v = vTY v + ε1v
T Iv + vTZv ≥

≥ 0 + ε1‖v‖2
2 + 〈vvT , Z〉 ≥ ε1 − |〈vvT , Z〉| ≥

≥ ε1 − ‖vvT‖2‖Z‖2 = ε1 − ‖v‖2
2‖Z‖2 ≥ ε1 − ε1 = 0.

(4.19)

26

Moreover, for every i ∈M , we have

〈Ai, T 〉 − bi = 〈Ai, Y 〉+ 〈Ai, ε1I〉+ 〈Ai, Z〉 − bi ≤
≤ 〈Ai, ε1I〉+ 〈Ai, Z〉 ≤ |〈Ai, ε1I〉|+ |〈Ai, Z〉| ≤
≤ ε1‖Ai‖2‖I‖2 + ‖Ai‖2‖Z‖2 ≤
≤ ε1‖Ai‖2

√
k + ‖Ai‖2ε1 =

=
ε‖Ai‖2

√
k

2km
+
‖Ai‖2ε

2km
≤

≤ ε

2
√
k

+
ε

2k
≤ ε,

(4.20)

where the first inequality follows from the fact that Y is an element of KA,b hence, for
every i ∈M , it satisfies 〈Ai, Y 〉 ≤ bi, the third inequality follows from the Cauchy-Schwartz
inequality |〈x, y〉| ≤ ‖x‖2‖y‖2, the second to last inequality follows from the fact that m =
max {‖Ai‖2 : i ∈M}∪{1}, and the last inequality follows from the fact that k = |I| ≥ 1.

We are now ready to conclude the proof. Observe that the L∞-norm of any point that
belongs to the ε-relaxation of the R-restriction of a semidefinite set is bounded by R + ε,
therefore the pair (K,R′) computed in Steps 03 and 04 is a representation of a circumscribed
semidefinite set. Let (b, x) be the pair computed in Step 07.

If b = 1, then there exists a point in S(K, δ), which in particular means that K is non-
empty, so the output in Step 08 is correct. If b = 0, then we know that the volume of K
is at most δ. The inequalities that define K have the form 〈Ai, X〉 ≤ bi + ε for i ∈ M ,
and X{i,j} ≤ R + ε or −X{i,j} ≤ R + ε for i, j ∈ J . The maximum 2-norm of the normals of
these inequalities and 1 is m = max {‖Ai‖2 : i ∈ M} ∪ {1}, so Lemma 4.13 applies. This
means that K is empty, and the output in Step 09 is correct.

To finish the proof of Theorem 4.10 we show a technical lemma that may sound a bit
surprising at first: it sounds as if it was stating that Ck

∞ω-definability is closed under second-
order quantification over unbounded domains, which cannot be true. However, on closer
look, the lemma states this only if the vocabularies of the quantified and the body parts
of the formula are totally disjoint. In particular, this means that the domains of the sorts
in the quantified and body parts of the formula stay unrelated except through the counting
mechanism of Ck

∞ω.
Note for the record that if L and K are two many-sorted vocabularies with disjoint sorts,

then obviously the vocabulary L∪K does not contain any relation symbol whose type mixes
the sorts of L and K. If A is a class of L∪K-structures and B is a class of K-structures, we
use the notation ∃B ·A to denote the class of all finite L-structures A for which there exists
a structure B ∈ B such that A ∪̇B ∈ A . In words, this is the set of finite structures that can
be disjointly extended and expanded by a structure in B to a structure in A . Similarly, we
use ∀B ·A to denote the class of all finite L-structures A such that for all structures B ∈ B
we have that A ∪̇ B ∈ A . In words, this is the set of finite structures all whose disjoint
extensions and expansions by a structure in B are in A .

27

Lemma 4.14. Let L and K be many-sorted vocabularies with disjoint sorts, let A be a class
of finite L∪K-structures, and let B be a class of finite K-structures. If A is Ck

∞ω-definable,
then the classes of L-structures ∃B ·A and ∀B ·A are also Ck

∞ω-definable.

Proof. The proof is a simple Booleanization trick to replace the finite quantifiers ∃≥i over
the sorts in K by finite propositional formulas, followed by replacing ∃B and ∀B by infinite
disjunctions and conjunctions, respectively, indexed by the structures in B. We provide
the details. Let φ be a formula of the many-sorted vocabulary L ∪K with all variables of
the L-sorts among x1, . . . , xk, and all variables of the K-sorts among y1, . . . , yk. Note that
since L and K have disjoint sorts, all the atomic subformulas of φ have all its variables
among x1, . . . , xk or all its variables among y1, . . . , yk. In other words, there are no atomic
subformulas with mixed x-y variables. For every finite K-structure B with domain B and
every b = (b1, . . . , bk) ∈ Bk, let φ(B, b) be the Booleanization of φ with respect to the atomic
interpretation of K given by B, the domain of quantification B for the variables of the K-
sorts, and the free-variable substitution x := b. Formally, using the notation [E] for the
truth value of the statement E, the formula φ′ = φ(B, b) is defined inductively:

1. if φ = R(xi1 , . . . , xi`) with R ∈ L ∪ {=}, define φ′ = φ,

2. if φ = R(yi1 , . . . , yi`) with R ∈ K ∪ {=}, define φ′ = [(bi1 , . . . , bi`) ∈ R(B)],

3. if φ = ¬θ, define φ′ = ¬θ(B, b),
4. if φ =

∧
i θi, define φ′ =

∧
i θi(B, b),

5. if φ = ∃≥txi(θ), define φ′ = ∃≥txi(θ(B, b)),
6. if φ = ∃≥tyi(θ), define

φ′ =
∨
c∈Bt

(∧
j,j′∈[t]
j 6=j′

[cj 6= cj′] ∧
∧
j∈[t]

θ(B, b[i/cj])
)
. (4.21)

Since there are no atomic subformulas with mixed x-y variables, the definition covers all
cases. The construction of φ(B, b) was designed so that for every finite (L ∪K)-structure C
with L- and K-reducts A and B with domains A and B, respectively, every a ∈ Ak and
every b ∈ Bk, it holds that C |= φ[a, b] if and only if A |= φ(B, b)[a]. Now, if φ is an (L∪K)-
sentence, define φ(B) :=

∨
b∈Bk φ(B, b) and φ∃ :=

∨
B∈B φ(B). It follows from the definitions

that φ∃ defines ∃B ·A . Similarly, defining φ∀ :=
∧

B∈B φ(B) works for ∀B ·A .

We put everything together in the proof of Theorem 4.10.

Proof of Theorem 4.10. Let ψ be the LSDP ∪̇ LQ ∪̇ LQ-formula of FPC defined in Proposi-
tion 4.12. Let l be the number of variables in ψ. By the translation from l-variable FPC
to C2l

∞ω (see Section 2), there exists an LSDP ∪̇ LQ ∪̇ LQ-formula τ of C2l
∞ω defining the same

class A of finite structures. The vocabulary of A is a disjoint union of LSDP and two copies
of LQ. Hence, all three of those vocabularies have disjoint sorts. Let BR be the class of finite
structures which are representations of positive rational numbers over the first copy of LQ,

28

and let Bε be the class of finite structures which are representations of positive rational num-
bers over the second copy of LQ. By Lemma 4.14 the class ∀Bε ·A , and hence ∃BR ·∀Bε ·A ,
is also C2l

∞ω-definable. Let φ be the LSDP-formula of C2l
∞ω defining this last class. Lemma 4.11

implies that φ defines the exact feasibility problem for semidefinite sets.

5 Sums-of-Squares Proofs and the Lasserre Hierarchy

In this section we develop the descriptive complexity of the problem of deciding the existence
of degree-bounded SOS proofs. Along the way we discuss the relationship between the
Lasserre hierarchy of SDP relaxations and SOS refutations, and how 0/1-valued variables
ensure that they satisfy strong duality. These results will be used in the next section. The
strong duality property will also imply that SOS refutations exist if and only if approximate
SOS refutations exist, for a notion of approximate SOS refutation that we introduce. This
will be used to complement the descriptive complexity results for SOS proofs by getting a
stronger upper bound in the case of refutations.

5.1 Descriptive Complexity of SOS Proofs

We begin with a few definitions. Let x1, . . . , xn be a set of variables. In the following
whenever we talk about polynomials or monomials we mean polynomials and monomials
over the set of variables x1, . . . , xn and real or rational coefficients. By Bn we denote the set
containing the following polynomials:

1, xi, 1− xi, x2
i − xi, xi − x2

i , for every i ∈ [n]. (5.1)

We refer to the inequalities p ≥ 0 for p ∈ Bn as Boolean axioms. A polynomial s is a sum of
squares of polynomials if it has the form s =

∑
i∈[l] r

2
i , for some polynomials r1, . . . , rl. For

a set of polynomials Q and a polynomial p, a Sums-of-Squares (SOS) proof of p ≥ 0 from Q
is an indexed set of polynomials {sq : q ∈ Q̄} that satisfy an identity∑

q∈Q̄

qsq = p, (5.2)

where, Q̄ = Q∪Bn and for every q ∈ Q̄, the polynomial sq is a sum of squares of polynomials.
The degree of the proof is defined as max{deg(qsq) : q ∈ Q̄}, where, for a polynomial p, the
notation deg(p) denotes the degree of p.

One should think about the set of polynomials Q as representing a system of polynomial
inequalities {q ≥ 0 : q ∈ Q}. The identity (5.2) implies that any 0/1-solution to this
system satisfies also the inequality p ≥ 0. Therefore, if p = −1, a proof certifies that
the system {q ≥ 0 : q ∈ Q} has no 0/1-solutions. This is why we call it a refutation
of Q. The definition of SOS as a proof system is sometimes attributed to Grigoriev and
Vorobyov [15]. We note that, in the case of refutations, our definition is the special case
their Positivstellensatz [15, Definition 2] in which all non-trivial products of qj’s have 0

29

multipliers. Unlike theirs, our proof system includes the Boolean axioms by default, thus
ensuring completeness even for proofs of polynomial inequalities over 0/1-valued variables.

We consider the problem of deciding the existence of SOS proofs and refutations of a
fixed degree 2d for a set of polynomials given as input. The first easy observation is that the
proof-existence problem can be reduced to the exact feasibility problem for semidefinite sets,
and the reduction can be done in FPC. Then we ask whether the exactness condition in the
feasibility problem for semidefinite sets can be relaxed, and we achieve this for refutations.
In other words:

1. Proof-existence reduces in FPC to exact feasibility for semidefinite sets.

2. Refutation-existence reduces in FPC to weak feasibility for semidefinite sets.

We note that, in both cases, the semidefinite sets in the outcome of this reduction are not
circumscribed. Roughly, this is because their elements are vectors encoding sequences of
coefficients of sum of squares polynomials that form a valid proof. By the results in [22], the
bit-complexity of these coefficients may not be polynomially bounded, not even for proofs
over Boolean variables [27], nor for refutations over Boolean variables [17].

As stated, point 1. above is almost a reformulation of the problem. In order to prove
point 2. we need to develop a notion of approximate refutation, and combine it with a strong
duality theorem that characterizes the existence of SOS refutations in terms of so-called
pseudoexpectations [6]. We note that the strong duality theorem that we need relies on the
assumption that the Boolean axioms are included in the definition of SOS proof.

Finally, we combine these FPC reductions with the results of the previous section in
order to get the following:

Corollary 5.1. For every fixed positive integer d, the problems of deciding the existence
of SOS proofs of degree 2d, and SOS refutations of degree 2d, are Cω

∞ω-definable. Moreover,
there exists a constant c, independent of d, such that the defining formulas are in Ccd

∞ω.

As usual with descriptive complexity results like these, we need to fix some encoding of the
input as finite relational structures. In this case the inputs are indexed sets of polynomials,
where each polynomial is an indexed set of monomials and coefficients. The exact choice of
encoding is not very essential, but we propose one for concreteness.

Let I be an index set for variables and let {xi : i ∈ I} be a set of formal variables. A
monomial is a product of variables. For α = (αi : i ∈ I) ∈ NI , we use the notation xα to
denote the monomial that has degree αi on variable xi. We write |α| for the degree

∑
i∈I αi

of the monomial xα. A polynomial is a finite linear combination of monomials, i.e., a formal
expression of the form

∑
α cαx

α in which all but finitely many of the coefficients cα are zero.
A polynomial p with rational coefficients is represented by a three-sorted structure, with a
sort Ī for the index set I, a second sort M̄ for the finite set of monomials that have non-zero
coefficients in p, and a third sort B̄ for a domain {0, . . . , N − 1} of bit positions, where N is
large enough to encode all the coefficients of p and all the degrees of its monomials in binary.
The vocabulary of this structure has one unary relation symbol I for Ī, one binary relation
symbol ≤ for the natural linear order on B̄, three binary relations symbols Ps, Pn, and Pd

30

of type M̄ × B̄ that encode, for each monomial, the sign, the bits of the numerator, and the
bits of the denominator of its coefficient, respectively, and a ternary relation symbol D of
type M̄ × Ī × B̄ that encodes, for each monomial and each variable, the bits of the degree
of this variable in the monomial.

Let J be an index set for polynomials and let {pj : j ∈ J} be a set of polynomials on the
variables {xi : i ∈ I}. Such a set is represented by a four-sorted structure, with a sort J̄ for
the index set J , and the three sorts Ī , M̄ , B̄ of the previous paragraph. The vocabulary for
this structure has one unary relation symbol J for J̄ , one binary relation symbol ≤ for the
natural linear order on B̄, three ternary relation symbols Ps, Pn, and Pd of type J̄ × M̄ × B̄
that encode, for each j ∈ J , the coefficients of the monomials in pj, and a four-ary relation
symbol of type J̄ × M̄ × Ī × B̄ that encodes, for each j ∈ J , the degrees of the variables in
the monomials in pj.

5.2 The Lasserre hierarchy

There is a sense in which sums-of-squares proofs can be seen as the dual solutions in a
hierarchy of semidefinite programming relaxations of an associated optimization problem.
This correspondence will be used explicitly in Subsection 5.4. Some of the concepts we
introduce now will also be useful in the next Subsection 5.3.

We adopt the setting in [19]. For a set of polynomials {q0, q1, . . . , qk}, we denote the
following polynomial optimization problem by POP(q0; {q1, . . . , qk}):

(POP) : inf x q0(x) s.t. qi(x) ≥ 0 for i ∈ [k]. (5.3)

Take a positive integer d. Recall that we use the notation xα, where α = (αi : i ∈ [n]) ∈
Nn, to denote the monomial that has degree αi on variable xi. We identify the monomial xα

with its vector of degrees α. By Md we denote the matrix indexed by monomials of degree at
most d defined by (Md)α,β = xα+β. For every monomial xα, we introduce a variable yα and
by Md(y) we denote the corresponding matrix of variables, defined by (Md(y))α,β = yα+β.
More generally, for any polynomial q =

∑
γ cγx

γ, the matrix Mq,d, indexed by monomials

of degree at most d, is defined by Mq,d = qMd, i.e., (Mq,d)α,β = qxα+β. The corresponding
matrix of variables Mq,d(y) is defined by (Mq,d(y))α,β =

∑
γ cγyα+β+γ. Observe that the

entries of the matrix Mq,d are polynomials of degree at most 2d + deg(q), while the entries
of the matrix Mq,d(y) are the corresponding linear combinations of variables. Note also
that M1,d = Md and M1,d(y) = Md(y). For every variable yα, consider the coefficients of yα
in the matrix Mq,d(y). Those coefficients form a matrix which we denote by Aq,d,α. Formally,
for |α| ≤ 2d+deg(q), the matrices Aq,d,α are defined as the real matrices satisfying Mq,d(y) =∑

α yαAq,d,α or equivalently Mq,d =
∑

α x
αAq,d,α. Finally, for any polynomial q, by dq we

denote the biggest integer satisfying 2dq + deg(q) ≤ 2d.
Let Q be a set of polynomials and let q0 =

∑
α x

α be a polynomial. For any posi-
tive integer d, the level -d Lasserre SDP relaxation of the polynomial optimization prob-
lem POP(q0;Q) is the pair of semidefinite programs (Pd, Dd), where Pd is the primal semidef-

31

inite program:
inf y

∑
α aαyα

s.t. y∅ = 1
Mq,dq(y) � 0 for q ∈ Q

(5.4)

and Dd is the dual semidefinite program:

sup z,Z z
s.t.

∑
q∈Q〈Aq,dq ,∅, Zq〉 = a∅ − z∑
q∈Q〈Aq,dq ,α, Zq〉 = aα for 1 ≤ |α| ≤ 2d

Zq � 0 for q ∈ Q

(5.5)

Weak SDP duality implies that the optimal value of Pd is always greater or equal than
the optimal value of Dd. The main theorem in [19] establishes a condition which guarantees
strong duality for primal and dual SDP problems in the Lasserre hierarchy.

Theorem 5.2 ([19]). If POP(q0;Q) is a polynomial optimization problem where one of the
inequalities describing the feasibility region is R2 −

∑
i∈[n] x

2
i ≥ 0, then for every positive

integer d, the optimal values of Pd and Dd are equal.

Strong duality for primal and dual problems implies, in particular, that Pd is infeasible if
and only if Dd is unbounded above and, analogously, Pd is unbounded below if and only
if Dd is infeasible.

The polynomial optimization problem POP(q0;Q) is called encircled if a polynomial R2−∑
i∈[n] x

2
i can be obtained as a non-negative linear combination of polynomials from Q of

degree at most 2. The following lemma implies strong duality for primal and dual SDP
problems in the Lasserre hierarchy for encircled polynomial optimization problems.

Lemma 5.3. Let Q be a set of polynomials and let p =
∑

q∈Q cqq be a non-negative linear
combination of polynomials from Q, such that deg(p) = max{deg(q) : cq > 0}. For some
polynomial q0, let (Pd, Dd) and (P ′d, D

′
d) be the level-d Lasserre SDP relaxations of POP(q0;Q)

and POP(q0;Q∪ {p}), respectively. The optimal values of Pd and P ′d, as well as the optimal
values of Dd and D′d are equal.

Proof. Let q0 =
∑

α aαx
α and let d be some positive integer.

The primal P ′d is the following semidefinite program:

inf y
∑

α aαyα
s.t. y∅ = 1

Mq,dq(y) � 0 for q ∈ Q
Mp,dp(y) � 0

(5.6)

Let P = {q ∈ Q : cq > 0}. Note that since deg(p) = max{deg(q) : q ∈ P}, for every q ∈
P , we have dp ≤ dq. For each q ∈ P , by M ′

q,dq
(y) let us denote the principal submatrix

of Mq,dq(y) obtained by removing the rows and columns indexed by monomials of degree
greater than dp. Observe that Mp,dp(y) =

∑
q∈P cqM

′
q,dq

(y). Since the constraints {Mq,dq(y) �

32

0 : q ∈ P} imply the constraint Mp,dp(y) =
∑

q∈P cqM
′
q,dq

(y) � 0, the feasibility regions, and
therefore also the optimal values, of Pd and P ′d are the same.

The dual D′d is the following semidefinite program:

sup z,Z z
s.t.

∑
q∈Q〈Aq,dq ,∅, Zq〉+ 〈Ap,dp,∅, Zp〉 = a∅ − z∑
q∈Q〈Aq,dq ,α, Zq〉+ 〈Ap,dp,α, Zp〉 = aα for 1 ≤ |α| ≤ 2d

Zq � 0 for q ∈ Q
Zp � 0

(5.7)

Any solution to the program Dd can be extended to a solution to the program D′d with
the same optimal value by taking Zp to be the zero matrix. On the other hand, any so-
lution (z, {Zq}q∈Q, Zp) to the program D′d gives rise to a solution (z̃, {Z̃q}q∈Q) to the pro-
gram Dd with the same optimal value by setting z̃ := z and Z̃q := Zq + cqZp for each q ∈ P ,
and Z̃q := Zq for each q ∈ Q\P . This follows from the fact that Ap,dp,α =

∑
q∈P cqAq,dq ,α.

5.3 SOS proofs as semidefinite sets

Fix a set of polynomials Q and a further polynomial p =
∑

α aαx
α such that deg(p) ≤ 2d.

Our goal now is to describe degree-2d SOS proofs of the polynomial inequality p ≥ 0 from Q
as points in a semidefinite set Kd(Q, p) that we are about to define. Recall that a degree-
2d SOS proof of p ≥ 0 from Q is an indexed set of polynomials {sq : q ∈ Q̄} that satisfy an
identity

∑
q∈Q̄ qsq = p where Q̄ = Q ∪ Bn and for every q ∈ Q̄, the polynomial sq is a sum

of squares of polynomials and has degree at most 2dq. A polynomial s of degree at most 2t
is a sum of squares if and only if there exists a positive semidefinite matrix Z indexed by
monomials of degree at most t such that s = 〈Mt, Z〉. Therefore, there exists a degree-2d SOS
proof of the polynomial inequality p ≥ 0 from Q if and only if, for every q ∈ Q̄, there exists
a positive semidefinite matrix Zq indexed by monomials of degree at most dq such that∑

q∈Q̄

q〈Mdq , Zq〉 =
∑
α

aαx
α. (5.8)

Let us have a closer look at the expression
∑

q∈Q̄ q〈Mdq , Zq〉 on the left-hand side of the
above identity. It can be rewritten in terms of the matrices introduced at the beginning of
Subsection 5.2: ∑

q∈Q̄

q〈Mdq , Zq〉 =
∑
q∈Q̄

〈Mq,dq , Zq〉 =
∑
q∈Q̄

〈
∑
α

xαAq,dq ,α, Zq〉 =

=
∑
α

xα
∑
q∈Q̄

〈Aq,dq ,α, Zq〉.
(5.9)

Hence, there exists a degree-2d SOS proof of p ≥ 0 from Q if, and only if, there exists a set of
positive semidefinite matrices {Zq : q ∈ Q̄} such that for every q ∈ Q̄ the matrix Zq is indexed

33

by monomials of degree at most dq and for all |α| ≤ 2d it holds
∑

q∈Q̄〈Aq,dq ,α, Zq〉 = aα, which,

in turn, can be expressed as non-emptiness of the semidefinite set Kd(Q, p) ⊆ RId given by:∑
q∈Q̄

〈Aq,dq ,α, Zq〉 = aα for |α| ≤ 2d and X � 0, (5.10)

where Jd = {(q, xα) : q ∈ Q̄, |α| ≤ dq} is a set of indices, X is a Jd× Jd symmetric matrix of
formal variables, Id = {{(q, xα), (q′, xα

′
)} : (q, xα), (q′, xα

′
) ∈ Jd} is a set of variable indices,

and for every q ∈ Q̄, the matrix Zq is the principal submatrix of X corresponding to the
rows and columns indexed by {(q, xα) : |α| ≤ dq}.

Indeed, from every feasible point X ∈ Kd(Q, p) we get a set of positive semidefinite
matrices {Zq : q ∈ Q̄} satisfying the identity (5.8) by setting Zq be the principal submatrix
of X corresponding to the rows and columns indexed by {(q, xα) : |α| ≤ dq}. On the other
hand, any set of positive semidefinite matrices {Zq : q ∈ Q̄} satisfying the identity (5.8) can
be extended to a point in Kd(Q, p) by setting all remaining variables to 0.

The representation of the semidefinite set Kd(Q, p) can be easily obtained from the repre-
sentation of the set of polynomials Q and the polynomial p by means of FPC-interpretations:

Fact 5.4. For every fixed positive integer d, there is an FPC-interpretation that takes a set of
polynomials Q and a polynomial p as input and outputs a representation of the semidefinite
set Kd(Q, p). Moreover, there exists a constant c, independent of d, such that the formulas
in the FPC interpretation have at most cd variables.

Therefore, as a consequence of Theorem 4.10 we obtain Corollary 5.1.

Proof of Corollary 5.1. Let us fix a positive integer d and let Φ be the FPC-interpretation
from Fact 5.4. We compose Φ with the Cω

∞ω-sentence from Theorem 4.10 that decides
the exact feasibility of semidefinite sets. The resulting sentence ψ decides the existence of
an SOS proof of degree 2d. It is a sentence of Ck

∞ω, where k = cd, for an integer c that is
independent of d. A Cω

∞ω-sentence deciding the existence of an SOS refutation of degree 2d
is obtained analogously by starting with an FPC-interpretation which takes as input a set
of polynomials Q and outputs the semidefinite set Kd(Q,−1).

5.4 SOS refutations

We will now relate the existence of SOS refutations of a set of polynomialsQ to the primal and
dual problems in the Lasserre hierarchy for the polynomial optimization problem POP(0; Q̄).
Then we will introduce the concept of ε-approximate SOS refutation and use the primal-dual
correspondence to show that, for small enough ε > 0, the existence of SOS refutations is
equivalent to the existence of ε-approximate ones. It will follow from this that the problem
of deciding the existence of SOS refutations of a fixed degree reduces, by means of FPC-
interpretations, to the weak feasibility problem for semidefinite sets.

For any set of polynomialsQ, the polynomial optimization problem POP(0; Q̄), character-
izing the existence of 0/1-solutions to the system of polynomial inequalities {q ≥ 0 : q ∈ Q},

34

will be denoted by SOL(Q):

(SOL(Q)) : inf x 0 s.t. q(x) ≥ 0 for q ∈ Q̄. (5.11)

Indeed, the optimization problem SOL(Q) is feasible if and only if the system of polynomial
inequalities {q ≥ 0 : q ∈ Q} has a 0/1-solution if and only if the optimal value of SOL(Q)
is 0. Otherwise, the optimal value of SOL(Q) is +∞. Although we care only about the
feasibility of SOL(Q), we define it as an optimization problem, since we want to analyze its
Lasserre SDP relaxations.

For a positive integer d, by (Pd(Q), Dd(Q)) we denote the level-d Lasserre SDP relaxation
of the polynomial optimization problem SOL(Q), i.e., Pd(Q) is the semidefinite program:

inf y 0
s.t. y∅ = 1

Mq,dq(y) � 0 for q ∈ Q̄
(5.12)

and Dd(Q) is the semidefinite program:

sup z,Z z
s.t.

∑
q∈Q̄〈Aq,dq ,∅, Zq〉 = −z∑
q∈Q̄〈Aq,dq ,α, Zq〉 = 0 for 1 ≤ |α| ≤ 2d

Zq � 0 for q ∈ Q̄

(5.13)

Observe that degree-2d SOS refutations of Q correspond precisely to the feasible solutions
to Dd(Q) with value 1 (see (5.8) and (5.9)). The following lemma summarizes the relationship
between degree-2d SOS refutations of Q and solutions to the program Dd(Q). The second
equivalence follows from the fact that by multiplying a solution to Dd(Q) with value v by
any c ≥ 0 we obtain another solution with value cv.

Lemma 5.5. There exists an SOS refutation of Q of degree 2d if and only if Dd(Q) has a
solution with value 1 if and only if the optimal value of Dd(Q) is +∞.

For a system of polynomials Q, a pseudoexpectation for Q of degree 2d is a linear map-
ping F from the set of polynomials of degree at most 2d over the set of variables x1, . . . , xn
to the reals such that F (1) = 1, and for every q ∈ Q̄ and every sum of squares polynomial s
of degree at most 2dq, we have F (qs) ≥ 0.

A linear mapping from the set of polynomials of degree at most 2d to the reals is uniquely
defined by its restriction to monomials. Therefore, there is a natural one-to-one correspon-
dence between linear functions from the set of polynomials of degree at most 2d to the
reals and assignments to the set of variables {yα : |α| ≤ 2d} of the program Pd(Q), given
by G(yα) = F (xα). We recall the known fact that an assignment G to the variables of Pd(Q)
is a feasible solution if and only if F is a pseudoexpectation of degree 2d.

Lemma 5.6. There exists a degree-2d pseudoexpectation for Q if and only if the pro-
gram Pd(Q) is feasible.

35

Proof. Let F be a linear function from the set of polynomials of degree at most 2d to the
reals and let G be the corresponding assignment to the variables of Pd(Q). The statement
of the lemma follows by showing that for every q ∈ Q̄, the matrix Mq,dq(G(y)) is positive
semidefinite if and only if for every sum of squares polynomial s of degree at most 2dq, we
have F (qs) ≥ 0.

Let us take some q ∈ Q̄. Observe that for every matrix Z indexed by monomials of degree
at most dq, we have

〈Mq,dq(G(y)), Z〉 = 〈F (Mq,dq), Z〉) = F (〈qMdq , Z〉) = F (q〈Mdq , Z〉). (5.14)

The matrix Mq,dq(G(y)) is positive semidefinite if and only if for every positive semidefinite
matrix Z indexed by monomials of degree at most dq, it holds that 〈Mq,dq(G(y)), Z〉 =
F (q〈Mdq , Z〉) ≥ 0 if and only if F (qs) ≥ 0 for every sum of squares polynomial s of degree at
most 2dq. The last equivalence follows from the fact that a polynomial s of degree at most 2t
is a sum of squares if and only if there exists a positive semidefinite matrix Z indexed by
monomials of degree at most t such that s = 〈Mt, Z〉.

Note that by summing the inequalities 1 − x1 ≥ 0, . . . , 1 − xn ≥ 0, together with the
inequalities x1 − x2

1 ≥ 0, . . . , xn − x2
n ≥ 0, we get the inequality n −

∑
i∈[n] x

2 ≥ 0, which

witnesses the fact that the problem SOL(Q) is encircled. By Lemma 5.3 and Theorem 5.2 it
follows that for the problem SOL(Q) there is no duality gap between primal and dual SDP
problems in the Lasserre hierarchy. In particular, the optimal value of Dd(Q) is +∞ if and
only if Pd(Q) is infeasible. Now, recall from Lemma 5.5 that the optimal value of Dd(Q)
is +∞ if and only if there exists an SOS refutation of Q of degree 2d, and from Lemma 5.6
that the program Pd(Q) is infeasible if and only if there is no pseudoexpectation for Q of
degree 2d. Hence, we obtain the following:

Corollary 5.7. There exists an SOS refutation of Q of degree 2d if and only if there is no
pseudoexpectation for Q of degree 2d.

For any ε > 0, an ε-approximate degree-2d SOS refutation of a set of polynomials Q is
an indexed set of polynomials {sq : q ∈ Q̄} that satisfy an identity∑

q∈Q̄

qsq =
∑
α

aαx
α, (5.15)

where for every q ∈ Q̄, the polynomial sq is a sum of squares, for each xα of degree at
least 1 we have |aα| ≤ ε, and |1 + a∅| ≤ ε. In the same way as the degree-2d SOS refutations
correspond to the points in the semidefinite set Kd(Q,−1), the ε-approximate degree-2d SOS
refutations correspond to the points in the ε-relaxation of Kd(Q,−1).

In what follows, suppose that Q has no degree-2d SOS refutation. By Corollary 5.7, there
exists a degree-2d pseudoexpectation. This in turn, as we will show now, precludes even the
existence of ε-approximate refutations, for small enough ε. The key is the following lemma,
which says that in the presence of Boolean axioms the absolute values of a pseudoexpectation
on the set of monomials are bounded by 1.

36

Lemma 5.8. If F is a degree-2d pseudoexpectation for Q, then 0 ≤ F (m) ≤ 1 for every
monomial m of degree at most d, and −1 ≤ F (m) ≤ 1 for every monomial m of degree at
most 2d.

Proof. Consider a monomial m written as a product of powers of distinct variables. The
multilinearization m̄ of m is the monomial obtained from m by replacing each xc with c ≥ 2
that appears in this product by x. For instance, the multilinearization of x2y3z is the
monomial xyz.

First we show that if m is a monomial of degree at most 2d, then F (m̄) = F (m). We
do this by showing that F (x2m) = F (xm) for every variable x and every monomial m of
degree at most 2d − 2. Fix such a monomial m and let r and s be monomials of degree at
most d− 1 such that m = rs. Note that m = p2− q2 where p = (r+ s)/2 and q = (r− s)/2,
and both p2 and q2 have degree at most 2d− 2. It holds that

F ((x2 − x)m) = F ((x2 − x)(p2 − q2))

= F ((x2 − x)p2) + F ((x− x2)q2)

≥ 0,

(5.16)

F ((x2 − x)m) = F ((x2 − x)(p2 − q2))

= −F ((x2 − x)q2)− F ((x− x2)p2)

≤ 0,

(5.17)

where the last inequalities in (5.16) and (5.17) follow from the fact that the polynomials x2−x
and x−x2 are Boolean axioms so they belong to Q̄ and dx2−x = dx−x2 = 2d−2. Hence, by the
definition of a pseudoexpectation all the values F ((x2 − x)p2), F ((x− x2)q2), F ((x2 − x)q2)
and F ((x− x2)p2) are non-negative.

This shows that F ((x2 − x)m) = 0 and hence F (x2m) = F (xm).
Now we show that 0 ≤ F (m) ≤ 1 for every monomial m of degree at most d. By the

previous paragraph we have F (m) = F (m2), and F (m2) ≥ 0 because m2 is a square of
degree at most 2d. The other inequality will be shown by induction on the degree. For the
empty monomial 1 we have F (1) = 1. Now let m be a monomial of degree at most d − 1
such that F (m) ≤ 1 and let x be a variable. It holds that F (m)− F (xm) = F ((1− x)m) =
F ((1− x)m2) ≥ 0, and hence F (xm) ≤ F (m) ≤ 1.

Finally, let m be a monomial of degree at most 2d and let r and s be monomials of
degree at most d such that m = rs. We have F (r2) + 2F (rs) + F (s2) = F ((r + s)2) ≥ 0.
Therefore, 2F (rs) ≥ −F (r2) − F (s2) ≥ −2, so F (m) ≥ −1. Similarly F (r2) − 2F (rs) +
F (s2) = F ((r − s)2) ≥ 0. Therefore, 2F (rs) ≤ F (r2) + F (s2) ≤ 2, so F (m) ≤ 1.

Let

εn,d =
1

3

(
n+ 2d

2d

)−1

. (5.18)

Note that 1/(3εn,d) is the number of monomials of degree 2d over the set of n variables.
We are now ready to show that the existence of a degree-2d SOS refutation of a system of

37

polynomial inequalities with n variables is equivalent to the existence of an εn,d-approximate
such refutation.

Proposition 5.9. There exists an SOS refutation of Q of degree 2d if and only if there exists
an εn,d-approximate SOS refutation of Q of degree 2d, where n is the number of variables
in Q.

Proof. If Q has an SOS refutation of degree 2d, then clearly it has an εn,d-approximate
refutation of degree 2d.

Now assume that Q has no SOS refutation of degree 2d. Therefore, by Corollary 5.7
there exists a pseudoexpectation of degree 2d. Let us denote it by F . Suppose that Q has
an εn,d-approximate SOS refutation of degree 2d, i.e., there exists a set of sum of squares
polynomials {sq : q ∈ Q̄} such that ∑

q∈Q̄

qsq =
∑
α

aαx
α, (5.19)

where for each xα of degree at least 1, we have |aα| ≤ εn,d, and |1 + a∅| ≤ εn,d.
Now, observe that F

(∑
q∈Q̄ qsq

)
=
∑

q∈Q̄ F (qsq) ≥ 0, while

F (
∑
α

aαx
α) = a∅ +

∑
α 6=∅

aαF (xα) ≤ −1 + εn,d +

(
n+ 2d

2d

)
εn,d ≤ −

1

3
. (5.20)

This contradiction finishes the proof.

An ε-relaxation of a convex set K is either empty, which clearly implies the emptiness
of the set K itself, or it has volume greater than δ (see Lemma 4.13), where δ can be easily
computed by means of FPC-interpretations from the representation of K and ε. We therefore
get the following:

Corollary 5.10. For every positive integer d, there is an FPC-definable reduction from the
problem of deciding the existence of SOS refutations of degree 2d, to the weak feasibility
problem for semidefinite sets.

Proof. The reduction is an FPC-interpretation which takes a set of polynomials Q with n
variables as input and outputs the εn,d-relaxation of Kd(Q,−1) and a rational δ > 0, such
that either the εn,d-relaxation of Kd(Q,−1) is empty, or it has volume greater than δ.

6 Graph Isomorphism

We formulate the isomorphism problem for graphs G and H as a system ISO(G,H) of
quadratic polynomial equations with 0/1-valued variables. Let U and V denote the sets of
vertices of G and H, respectively, assumed to be disjoint. The atomic type of a tuple of
points in a relational structure is the complete description of the equalities and the relations

38

that the points in the tuple satisfy. In the special case of graphs, these are the equalities
and the edge and non-edge relationships between the vertices in the tuple. For u1, u2 ∈ U ,
we write tpG(u1, u2) for the atomic type of (u1, u2) in G. Similarly, for v1, v2 ∈ V , we
write tpH(v1, v2) for the atomic type of (v1, v2) in H. The system of equations has one 0/1-
valued variable xu,v for each pair of vertices u ∈ U and v ∈ V ; the intended meaning
of xu,v = 1 is that the vertex u is mapped to v by a fixed isomorphism. The set of equations
of ISO(G,H) is the following:∑

v∈V xu,v − 1 = 0 for u ∈ U,∑
u∈U xu,v − 1 = 0 for v ∈ V,

xu1,v1xu2,v2 = 0 for u1, u2 ∈ U, v1, v2 ∈ V s.t. tpG(u1, u2) 6= tpH(v1, v2).

When necessary, we think of the equations q = 0 from ISO(G,H) as pairs of inequal-
ities q ≥ 0 and −q ≥ 0. It is straightforward to check that the relational structure that
represents ISO(G,H) can be produced from G and H by an FPC-interpretation. As a struc-
ture, the pair of graphs (G,H) is given by two sorts Ū and V̄ for U and V , and two binary
relations E and F of types Ū × Ū and V̄ × V̄ for the sets of edges of G and H, respectively.
For sets of polynomial equations and inequalities we use the representation described in
Section 5.

Fact 6.1. There is an FPC-interpretation that takes a pair of graphs (G,H) as input and
outputs the set of equations ISO(G,H).

An SOS proof that G and H are not isomorphic is an SOS refutation of ISO(G,H). A
Sherali-Adams (SA) proof that G and H are not isomorphic is an SA proof of the inequal-
ity −1 ≥ 0 from ISO(G,H), where an SA proof is an identity of the type (5.2) in which the
polynomials sq are not sums-of-squares but sums of extended monomials, i.e., polynomials of
the form

∑
i∈I ci

∏
j∈Ji xj

∏
k∈Ki

(1− xk) where each ci is a positive real, and each Ji and Ki

is a subset of indices of variables. A Polynomial Calculus (PC) proof that G and H are
not isomorphic is a PC proof of the equation −1 = 0 from the system of polynomial equa-
tions ISO(G,H), where by PC we mean the (deductive) proof system for deriving polynomial
equations over R[x1, . . . , xn] by means of the following inference rules: from nothing derive
the axiom polynomial equation x2 − x = 0, from the equations p = 0 and q = 0 derive the
equation p + q = 0, and from the equation p = 0 derive the equations ap = 0 and xp = 0,
where p and q are polynomials, a is a real, and x is a variable. In monomial PC, as defined
in [8], the polynomial p in the last rule is required to be either a monomial, or a product of
a monomial with one of the polynomials from the set of hypotheses (in our case ISO(G,H)),
or a product of a monomial and an axiom polynomial x2 − x.

We rely on the following facts from [3] and [8]:

Theorem 6.2. Let G and H be graphs and let k be a positive integer. The following are
equivalent:

1. G ≡k H, i.e., G and H cannot be distinguished by Ck
∞ω-sentences,

2. there is no degree-k SA proof that G and H are not isomorphic,

39

3. there is no degree-k monomial PC proof that G and H are not isomorphic.

To be precise, the main result in [3] is stated for the formulation of the graph isomorphism
problem as a system of linear equations with 0/1-valued variables. For that encoding, the
correspondence between ≡k-equivalence and the non-existence of degree-k SA proofs is not
exact but only a tight sandwich: if there is no degree-k SA proof that G and H are not
isomorphic then G ≡k H, and if G ≡k H then there is no degree-(k − 1) SA proof that G
and H are not isomorphic. However, it follows from the methods in [3] and [8] that, for the
quadratic encoding used here, Theorem 6.2 holds as stated. For the collapse result we are
about to prove, we use Corollary 5.1 and the implication 2. implies 1. from Theorem 6.2.

Theorem 6.3. There exists an integer c such that, for all pairs of graphs G and H and all
positive integers d, if there is a degree-2d SOS proof that G and H are not isomorphic, then
there is a degree-cd SA proof that G and H are not isomorphic.

Proof. Fix a positive integer d. Let Φ be the FPC-interpretation from Fact 6.1 and compose
it with the Cω

∞ω-sentence from Corollary 5.1 that decides the existence of SOS refutations of
degree 2d. The resulting sentence φ is a sentence of Ck

∞ω, where k = cd for an integer c that is
independent of d. The sentence φ was designed in such a way that for every pair of graphs G
and H it holds that (G,H) |= φ if and only if there is a degree-2d SOS proof that G and H
are not isomorphic. In particular, since there certainly is no degree-2d SOS proof that G
is not isomorphic to an isomorphic copy of itself, we have (G′, G) |= ¬φ, where G′ is an
isomorphic copy of G on a disjoint set of vertices. Now assume that there is no degree-k SA
proof that G and H are not isomorphic. We get G ≡k H by Theorem 6.2, from which it
follows that (G′, G) ≡k (G,H) because G′ ∼= G and hence G′ ≡k G, and G ≡k H. Since φ is
a Ck

∞ω-sentence and (G′, G) |= ¬φ we get (G,H) |= ¬φ. Therefore, by design of φ, there is
no degree-2d SOS proof that G and H are not isomorphic.

Next we use the result of Berkholz [7] showing that, for systems of polynomial-equations
over 0/1-valued variables, SOS simulates PC.

Theorem 6.4 ([7]). Let Q be a system of polynomial equations with real coefficients over 0/1-
valued variables and let d be a positive integer. If Q has a PC refutation of degree d, then Q
has an SOS refutation of degree 2d+ 1.

The discrepancy between the 2d+ 1 in the conclusion of Theorem 6.4 and the 2d in the
conclusion of Theorem 1.1 from [7] is due to a small difference between our definition of SOS
and the variant of SOS used in [7]. We discuss this next. We focus on the case of polynomial
equations, which is the subject of the above theorem. We denote the variant by SOS′.

Given a system of polynomial equations Q = {qi = 0 : i ∈ [k]} over Boolean vari-
ables and a polynomial q, an SOS′ proof of q ≥ 0 from Q is a sequence of polynomi-
als (g1, . . . , gk, h1, . . . , hn, s0) that satisfy an identity∑

i∈[k]

qigi +
∑
j∈[n]

(x2
j − xj)hj + s0 = q, (6.1)

40

where the polynomial s0 is a sum of squares of polynomials. To be able to compare SOS
with SOS′ we view each equation qi = 0 in Q as two inequalities qi ≥ 0 and −qi ≥ 0. Hence,
an SOS proof of q ≥ 0 from Q is a set {s1, . . . , sm} of sum of squares polynomials that satisfy
the identity

∑
j∈[m] pjsj = q, where, for every j ∈ [m], the polynomial pj either is in the

set {q1,−q1, . . . , qk,−qk} or is one of the Boolean axioms listed in (5.1).

Lemma 6.5. Let Q be a system of polynomial equations over 0/1-valued variables. If q ≥ 0
has an SOS′ proof from Q of degree 2d, then it has an SOS proof from Q of degree at most
2d+ 1.

Proof. For any polynomial p and any monomial m, such that deg(pm) ≤ 2d, we will show
that the product pm can be written as pm = ps+ (−p)s′, where s and s′ are sums of squares
of polynomials and deg(ps) = deg(−ps′) ≤ 2d + 1. This last fact implies that the left-hand
side of any degree-2d SOS′ proof as in (6.1) can be rewritten as follows∑

i∈[k]

qisi +
∑
i∈[k]

(−qi)s′i +
∑
j∈[n]

(x2
j − xj)zj +

∑
j∈[n]

(xj − x2
j)z
′
j + s0, (6.2)

where, in the sequence (s1, . . . , sk, s
′
1, . . . , s

′
k, z1, . . . , zn, z

′
1, . . . , z

′
n, s0), all the polynomials

are sums of squares. As a result of this rewriting we obtain an SOS proof of q ≥ 0
from {q1,−q1, . . . , qk,−qk}, and hence an SOS proof of q ≥ 0 from Q by the convention
that we introduced to be able to compare SOS with SOS′. Note that the degree of the proof
increases by at most 1.

Take any polynomial p and any monomial m, such that deg(pm) ≤ 2d. Let r and t
be monomials such that m = rt and | deg(r) − deg(t)| ≤ 1. Then we have m = s − s′,
where s = ((r + t)/2)2 and s′ = ((r − t)/2)2. Moreover, deg(s) = deg(s′) ≤ deg(m) + 1.
We obtain, pm = ps + (−p)s′, where s and s′ are sums of squares of polynomials and
deg(ps) = deg(−ps′) ≤ 2d+ 1, which finishes the proof.

For graphs G and H, let sos(G,H), sa(G,H), monpc(G,H) and pc(G,H) denote the
smallest degrees for which SOS, SA, monomial PC and PC prove that G and H are not
isomorphic, respectively, taken as∞ if the graphs are isomorphic. Combining Theorems 6.4,
6.2, 6.3, we get a full cycle of implications.

Corollary 6.6. There exists an integer constant c such that, for all pairs of graphs G and H,
the following inequalities hold:

1
2
· (sos(G,H)− 1) ≤ pc(G,H) ≤ monpc(G,H) ≤ sa(G,H) ≤ c

2
· sos(G,H). (6.3)

Let us now state the collapse for the primals. Recall from Subsection 5.2 that the Lasserre
SDP relaxation of a polynomial optimization problem is defined to be a primal-dual pair of
semidefinite programs. However, it is the primal that is most often referred to as the Lasserre
relaxation. This is the terminology we will use now. For a positive integer k, let LAk(G,H)
denote the level-k Lasserre relaxation of ISO(G,H), i.e., the primal in the primal-dual SDP-
pair (Pk(ISO(G,H)), Dk(ISO(G,H))) as defined in Subsection 5.4. By Lemma 5.5 and the

41

strong duality implied by Lemma 5.3 and Theorem 5.2, for every positive integer d it holds
that LA2d(G,H) is feasible if and only if there is no degree-2d SOS proof that G and H are
not isomorphic. Similarly, we write SAk(G,H) to denote the primal in the primal-dual LP-
pair corresponding to the level-k Sherali-Adams relaxation of ISO(G,H) as defined in [29,
Section 4] for generic systems of polynomial constraints over 0/1-valued variables. We refer
to it as the level-k Sherali-Adams relaxation of ISO(G,H). In this case, strong duality holds
by the duality theorem for linear programming, and the dual solutions are degree-k SA
refutations of ISO(G,H). It follows that, for every positive d, the linear program SAd(G,H)
is feasible if and only if there is no degree-d SA proof that G and H are not isomorphic.
Theorem 6.3 gives then the following.

Corollary 6.7. There exists an integer c such that, for all pairs of graphs G and H and
all positive integers d, if the level-2d Lasserre relaxation of ISO(G,H) is infeasible, then the
level-cd Sherali-Adams relaxation of ISO(G,H) is infeasible.

As mentioned in the introduction, our proof of Corollary 6.7 is very indirect as it goes
through many black boxes. It would be very instructive to find a concrete and direct way of
lifting feasible LP-solutions of SAcd(G,H) to feasible SDP-solutions of LA2d(G,H). Corol-
lary 6.7 and the fact that its indirect proof is nonetheless constructive imply that such a
direct way of lifting does, in principle, exist.

Acknowledgments. We are grateful to Christoph Berkholz, Anuj Dawar, and Wied
Pakusa, for useful discussions at an early stage of this work. We are also grateful to Aaron
Potechin for pointing out that the ability of the Lasserre hierarchy to capture spectral argu-
ments was relevant for our result. Special thanks go to Moritz Müller for carefully reading and
commenting on a preliminary version of this paper. First author partially funded by the Eu-
ropean Research Council (ERC) under the European Union’s Horizon 2020 research and in-
novation programme, grant agreement ERC-2014-CoG 648276 (AUTAR) and MICCIN grant
TIN2016-76573-C2-1P (TASSAT3) and AEI grant PID2019-109137GB-C22 (PROOFS). The
work of second author on this manuscript is a part of the project BOBR that has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 948057). Second author
supported also by the French Agence Nationale de la Recherche, QUID project reference
ANR-18-CE40-0031. Part of this work was done while the second author was visiting UPC
funded by AUTAR.

References

[1] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen.
On the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

[2] Matthew Anderson, Anuj Dawar, and Bjarki Holm. Solving linear programs without
breaking abstractions. J. ACM, 62(6):48:1–48:26, 2015.

42

[3] Albert Atserias and Elitza Maneva. Sherali–Adams relaxations and indistinguishability
in counting logics. SIAM J. Comput., 42(1):112–137, 2013.

[4] Albert Atserias and Joanna Ochremiak. Definable ellipsoid method, sums-of-squares
proofs, and the isomorphism problem. CoRR, abs/1802.02388, 2018.

[5] Albert Atserias and Joanna Ochremiak. Definable ellipsoid method, sums-of-squares
proofs, and the isomorphism problem. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, page 66–75, New York, NY, USA,
2018. Association for Computing Machinery.

[6] Boaz Barak, Fernando G. S. L. Brandão, Aram W. Harrow, Jonathan A. Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their appli-
cations. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 307–326. ACM, 2012.

[7] Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and
Sum-of-Squares Proofs. In Proceedings of the 35th Symposium on Theoretical Aspects
of Computer Science, pages 11:1–11:14, 2018.

[8] Christoph Berkholz and Martin Grohe. Limitations of algebraic approaches to graph
isomorphism testing. In Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming, Part I, pages 155–166, 2015.

[9] Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time computation
over unordered structures. J. Symb. Log., 67(3):1093–1125, 2002.

[10] Anuj Dawar, Simone Severini, and Octavio Zapata. Descriptive complexity of graph
spectra. Ann. Pure Appl. Log., 170(9):993–1007, 2019.

[11] Anuj Dawar and Pengming Wang. Definability of semidefinite programming and
Lasserre lower bounds for CSPs. In Proceedings of the 32nd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, pages 1–12, 2017.

[12] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathe-
matical Logic. Springer, 1995.

[13] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2.
ed.). Undergraduate texts in mathematics. Springer, 1994.

[14] Erich Grädel, Martin Grohe, Benedikt Pago, and Wied Pakusa. A finite-model-theoretic
view on propositional proof complexity. Log. Methods Comput. Sci., 15(1), 2019.

[15] Dima Grigoriev and Nicolai Vorobjov. Complexity of null- and positivstellensatz proofs.
Annals of Pure and Applied Logic, 113(1):153–160, 2001. First St. Petersburg Conference
on Days of Logic and Computability.

43

[16] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1993.

[17] Tuomas Hakoniemi. Monomial size vs. bit-complexity in sums-of-squares and polyno-
mial calculus. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–7. IEEE, 2021.

[18] Neil Immerman. Relational queries computable in polynomial time (extended abstract).
In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC ’82, page 147–152, New York, NY, USA, 1982. Association for Computing Ma-
chinery.

[19] Cédric Josz and Didier Henrion. Strong duality in Lasserre’s hierarchy for polynomial
optimization. Optim. Lett., 10(1):3–10, 2016.

[20] Jean-Bernard Lasserre. Global optimization with polynomials and the problems of
moments. SIAM J. Optim., 11(3):796–817, 2001.

[21] Peter N. Malkin. Sherali–Adams relaxations of graph isomorphism polytopes. Discrete
Optim., 12:73–97, 2014.

[22] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In Chris-
tos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages
59:1–59:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[23] Ryan O’Donnell and Tselil Schramm. Sherali-adams strikes back. Theory Comput.,
17:1–30, 2021.

[24] Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of robust
graph isomorphism, Lasserre gaps, and asymmetry of random graphs. In Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1659–1677,
2014.

[25] Martin Otto. Bounded variable logics and counting – A study in finite models, volume 9.
Springer-Verlag, 1997.

[26] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization. PhD thesis, Massachussets Institute of Technology,
2000.

[27] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares
proofs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 80:1–
80:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

44

[28] Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., 1987.

[29] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM J.
Discrete Math., 3(3):411–430, 1990.

[30] Sergey P. Tarasov and Mikhail N. Vyalyi. Semidefinite programming and arithmetic
circuit evaluation. Discrete Appl. Math., 156(11):2070–2078, 2008.

[31] Gottfried Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing,
36(4):285–300, 1986.

[32] Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, page 137–146, New York, NY, USA, 1982. Association for Computing Machinery.

[33] Pengming Wang. Descriptive complexity of constraint problems. Doctoral thesis, 2018.

45

