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Abstract
We investigate several variants of the homomorphism problem: given two relational structures, is there
a homomorphism from one to the other? The input structures are possibly infinite, but definable by first-
order interpretations in a fixed structure. Their signatures can be either finite or infinite but definable. The
homomorphisms can be either arbitrary, or definable with parameters, or definable without parameters.
For each of these variants, we determine its decidability status.

1998 ACM Subject Classification F.4.1 Mathematical Logic–Model theory, F.4.3 Formal Languages–
Decision problems

Keywords and phrases Sets with atoms, first-order interpretations, homomorphism problem

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

First-order definable sets, although usually infinite, can be finitely described and are therefore
amenable to algorithmic manipulation. Definable sets (we drop the qualifier first-order in what
follows) are parametrized by a fixed underlying relational structure A whose elements are called
atoms. We shall assume that the first-order theory ofA is decidable. To simplify the presentation,
unless stated otherwise, letA be a countable set {1, 2, 3, . . .} equipped with the equality relation only;
we shall call this the pure set.

I Example 1. Let

V = { {a, b} | a, b ∈ A, a , b } ,

E = { ({a, b}, {c, d}) | a, b, c, d ∈ A, a , b ∧ a , c ∧ a , d ∧ b , c ∧ b , d ∧ c , d } .

Both V and E are definable sets (over A), as they are constructed from A using (possibly nested)
set-builder expressions with first-order guards ranging overA. In general, we allow finite unions in
the definitions, and finite tuples (as above) are allowed for notational convenience. Precise definitions
are given in Section 2. The pair G = (V, E) is also a definable set, in fact, a definable graph. It is an
infinite Kneser graph (a generalization of the famous Petersen graph): its vertices are all two-element
subsets ofA, and two such subsets are adjacent iff they are disjoint.

The graph G is ∅-definable: its definition does not refer to any particular elements of A. In
general, one may refer to a finite set of parameters S ⊆ A to describe an S -definable set. For instance,
the set

{
a | a ∈ A, a , 1 ∧ a , 2

}
is {1, 2}-definable. Definable sets are those which are S -definable

for some finite S ⊆ A. J

Although definable relational structures correspond (up to isomorphism) to first-order interpret-
ations well-known from logic and model theory [21], we prefer to use a different definition since
standard set-theoretic notions directly translate into this setting. For example, a definable function
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f : X → Y is simply a function whose domain X, codomain Y , and graph Γ( f ) ⊆ X × Y are definable
sets. A relational structure is definable if its universe, signature, and interpretation function that maps
each relation symbol to a relation on the universe, are definable. Finally, a definable homomorphism
between definable structures over the same signature is a definable mapping between their universes
that is a homomorphism, i.e., preserves every relation in the signature. All hereditarily finite sets
(finite sets, whose elements are finite, and so on, recursively) are definable, and every finite relational
structure over a finite signature is (isomorphic to) a definable one.

The classical homomorphism problem is the problem of determining whether there exists a
homomorphism from a given finite source structure A to a given finite target structure B. This is
also known as the Constraint Satisfaction Problem, and is clearly decidable (and NP-complete). The
precise computational complexity has been thoroughly studied in the literature in many variants. The
case when the target structure is fixed (and is called a template) is of particular interest, as it expresses
many natural computational problems (such as k-colorability, 3-SAT, or solving systems of linear
equations over a finite field). The famous Feder-Vardi conjecture states that for every fixed template
B, the corresponding constraint satisfaction problem CSP(B) is either solvable in polynomial time or
NP-complete [19].

In this paper, we consider the homomorphism problem for definable structures: given two
definable structures A,B, does there exist a homomorphism from A to B? Note that definable
structures can be meaningfully considered as instances of a computational problem since they are
finitely described with the set-builder notation and first-order formulas in the language ofA.

We remark that in the pure setA with equality, every first-order formula is effectively equivalent
to a quantifier-free formula. Thus, as long as complexity issues are ignored and decidability is the
only concern, we can safely restrict to quantifier-free formulas.

I Example 2. The graph G from Example 1 does not map homomorphically to a clique of 3 vertices,
which is another way of saying that G is not 3-colorable. In fact, G does not map homomorphically
to any finite clique (the finite subgraph of G using only atoms 1, . . . , 2n has chromatic number at least
n, as it contains an n-clique). However, G maps homomorphically to the (easily definable) infinite
clique on the setA, by any injective mapping from V toA. No such homomorphism is definable, as
there is no definable injective function from V toA, even with parameters. J

We consider several variants of the homomorphism problem:

Finite vs. infinite signature. In the most general form, we allow the signature of both input
structures to be infinite, but definable. In a restricted variant, the signature is required to be finite.
Finite vs. infinite structures. In general, both input structures can be infinite, definable. In a
restricted variant, one of the two input structures may be assumed to be finite.
Definability of homomorphisms. In the general setting, we ask the question whether there exists
an arbitrary homomorphism between the input structures. In other variants, the homomorphism is
required to be definable, or to be ∅-definable.
Restrictions on homomorphisms. Most often we ask about any homomorphism, but one may also
ask about existence of a homomorphism that is injective, strong, or an embedding.
Fixing one structure. In the uniform variant, both the source and the target structures are given on
input. We also consider non-uniform variants, when one of the two structures is fixed.
Structured atoms. In the basic setting, the underlying structure A is the pure set, i.e., has no
structure other than equality. One can also consider sets definable over other structures. For
instance, if the underlying structure is (Q,≤), the definitions of definable sets can refer to the
relation ≤.
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Contribution. For most combinations of these choices we determine the decidability status of
the homomorphism problem. The decidability border turns out to be quite subtle and sometimes
counterintuitive. The following theorem samples some of the opposing results proved in this paper:

I Theorem 3. LetA be the pure set. Given two definable structures A,B over a finite signature,

1. it is decidable whether there is a ∅-definable homomorphism from A to B,
2. it is undecidable (but semidecidable) whether there is a definable homomorphism from A to B,
3. it is decidable whether there is a homomorphism from A to B,
4. it is undecidable (but co-semidecidable) whether a given ∅-definable partial mapping between the

universes of A and B extends to a homomorphism. J

In a previous paper [23], the constraint satisfaction problem is considered for source structures
definable over the pure set, or more generally over (Q,≤). We denote this problem by CSPdef(B). The
results from [23], together with the polynomial time reduction to the finite-template CSP which we
provide here, imply complexity results for different variants of the constraint satisfaction problem:

I Theorem 4. For any definable template B over a finite signature:

1. the problem CSP(B) is in NP,
2. the problem CSPdef(B) is in NEXPTIME. J

Related work. Some of the variants considered in this paper are closely related to previous work.
Bodirsky, Pinsker and coauthors [2, 8, 10] consider fixed infinite templates over finite signatures,

and finite source structures given on input. They usually consider the template B to be a reduct of
a fixed structureA with good properties, in particular, with a decidable first-order theory. Reducts
are special cases of definable structures: a structure B is a reduct of A if B is ∅-definable over A
and both have the same domains. In general, if the template B is definable over a structureA with
decidable first-order theory, then B itself has decidable first-order theory. It follows that the existence
of a homomorphism from a given finite source structure A is trivially decidable, as it can be expressed
as an existential formula evaluated in B. In this case, the interesting problem is to analyse precise
complexity bounds. Templates for which a complete complexity classification was obtained (modulo
the Feder-Vardi conjecture) include all reducts of countably infinite homogeneous graphs [3, 9, 12, 6],
of (Q,≤) [4], and of the integers with the successor function (Z,+1) [5]. One of the key tools used in
these results is the notion of a canonical mapping. The construction of a canonical mapping relies
on Ramsey theory, most conveniently applied through the use of the result of Kechris, Pestov, and
Todorcevic concerning extremely amenable groups [22].

For finite templates, it is shown in [23] that the complexity analysis of CSPdef(B) can be reduced
(with an exponential blowup) to the case of finite input structures. For example, 3-colorability of
definable graphs is decidable and NEXPTIME-complete, because 3-colorability of finite graphs is
NP-complete. A more general decidability result concerns locally finite templates, i.e., definable,
possibly infinite templates (over definable, possibly infinite signatures) where every relation contains
only finitely many tuples. The decidability proof also employs Ramsey theory, applied through the use
of Pestov’s theorem concerning the topological dynamics of the group Aut(Q,≤), which is a special
case of the Kechris-Pestov-Todorcevic result. As we shall demonstrate here, for infinite signatures
the local finiteness restriction is crucial and adding even a single infinite definable relation may lead
to undecidability.

This paper, as well as [23], is part of a programme aimed at generalizing classical decision
problems and computation models such as automata [14], Turing machines [15] and programming
languages [13, 16, 24, 26], to sets with atoms. For other applications of sets with atoms (called there
nominal sets) in computing, see [28].
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Motivation. Testing existence of homomorphisms is at the core of many decision problems in
combinatorics and logic. As shown in [11], decidability of pp-definability of a definable relation R in
a definable structure A can be reduced to deciding the existence of homomorphisms between definable
structures. Another application is 0-1 laws, and deciding whether a sentence φ of the form ∃R.∃∗∀∗ψ
is satisfied with high probability in a finite random graph. In [25], after showing that the problem
is equivalent to testing if φ holds in the infinite random graph, the authors give a complex Ramsey
argument based on [27] to prove the decidability of the latter. The second step can be alternatively
achieved by reducing to several instances of the homomorphism problem from structures definable
over the ordered random graph (which is a Ramsey structure by [27], see Section 5) to finite target
structures. Finally, in [23] the homomorphism problem for locally finite definable templates is used
to test whether the logic IFP captures PTime over a certain class of finite structures, generalizing the
Cai-Fürer-Immerman construction [18].
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2 Preliminaries

Thorough this section, fix a countable relational structureA of atoms. We assume that the signature
ofA is finite. We shall now introduce definable sets, following [23].

Definable sets. An expression is either a variable from some fixed infinite set, or a formal finite
union (including the empty union ∅) of set-builder expressions of the form

{ e | a1, . . . , an ∈ A, φ } , (1)

where e is an expression, a1, . . . , an are (bound) variables, and φ is a first-order formula over the
signature ofA and over the set of variables. Free variables in (1) are those free variables of e and of
φ which are not among a1, . . . , an.

For an expression e with free variables V , any valuation val : V → A defines in an obvious way a
value X = e[val], which is either an atom or a set, formally defined by induction on the structure of e.
We then say that X is a definable set with atoms, and that it is defined by e with val. Note that one set
X can be defined by many different expressions. When we want to emphasize those atoms that are in
the image of the valuation val : V → A, we say that the finite set S = val(V) ⊆ A supports X, or that
X is S -definable.

As syntactic sugar, we allow atoms to occur directly in set expressions. For example, what we
write as the {1}-definable set {a | a ∈ A, a , 1} is formally defined by the expression {a | a ∈ A, a , b},
together with a valuation mapping b to 1. Similarly, the set {1, 2} is {1, 2}-definable as a union of two
singleton sets.

I Remark 5. To improve readability, it will be convenient to use standard set-theoretic encodings to
allow a more flexible syntax. In particular, ordered pairs and tuples can be encoded e.g. by Kuratowski
pairs, (x, y) = {{x, y}, {x}}. We will also consider as definable infinite families of symbols, such as
{Rx : x ∈ X}, where R is a symbol and X is a definable set. Formally, such a family can be encoded as
the set of ordered pairs {R} × X, where the symbol R is represented by some ∅-definable set, e.g. ∅ or
{∅}, etc. Here we use the fact that definable sets are closed under Cartesian products.
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Closure properties. The following lemma is proved routinely by induction on the nesting of
set-builder expressions.

I Lemma 6. Definable sets are effectively closed under:

Boolean combinations ∩,∪,− and Cartesian products,
images and inverse images under definable functions,
quotients under definable equivalence relations,
intersections and unions of definable families,
the operations (below, x ∈ y and x ⊆ y are interpreted as false if y is an atom):
V,W 7→ { (v,w) | v ∈ V,w ∈ W, v ∈ w },
V,W 7→ { (v,w) | v ∈ V,w ∈ W, v ⊆ w } . J

This implies that the set-builder notation (1) may be safely generalized by allowing bound
variables to range not only overA but also over other definable sets, and allowing in φ quantifiers of
the form ∃v∈V or ∀v∈V , for V a definable set presented by an expression. One may also use binary
predicates =, ∈,⊆ and binary operations ∪,∩,−,×. The resulting sets will still be definable. As an
example, if V and W are definable sets, then so is

{ (v,w) | v ∈ V,w ∈ W, v ⊆ w ∧ ∃a ∈ A ∃b ∈ A (a, b) ∈ v } .

Suppose that the first-order theory of A is decidable (this applies in particular to the pure set).
Then it is straightforward to prove that the validity of first-order sentences generalized as above,
such as ∀v ∈ V ∃w ∈ W v ⊆ w where V and W are definable sets presented by expressions, is also
decidable. This demonstrates that definable sets are suitable for effectively performing set-theoretic
manipulations and tests.

Definable relational structures. For any object in the set-theoretic universe (a relation, a function,
a logical structure, etc.), it makes sense to ask whether it is definable. For example, a definable
relation on X,Y is a relation R ⊆ X × Y which is a definable set of pairs, and a definable function
X → Y is a function whose graph is definable. Along the same lines, a definable relational signature
is a definable set of symbols Σ, together with a partition Σ = Σ1 ] Σ2 ] . . . ] Σl into definable subsets,
for l ∈ N. We say that σ has arity r if σ ∈ Σr.

For a signature Σ, a definable Σ-structure A consists of a definable universe A and a definable
interpretation function which assings a relation σA ⊆ Ar to each relation symbol σ ∈ Σ of arity r.
(We denote structures using blackboard font, and their universes using the corresponding symbol in
italics). More explicitly, such a structure can be represented by the tuple A = (A, I1, . . . , Il) where
Ir = {(σ, a1, . . . , ar) | σ ∈ Σr, (a1, . . . , ar) ∈ σA} is a definable set for r = 1, . . . , l (where l is the
maximal arity in Σ).

I Remark 7. A definable Σ-structure A = (A, I1, . . . , Il), for Σ finite or infinite, can be seen as a
definable structure over a finite signature, denoted AΣ and defined as follows. The universe of AΣ is
A ] Σ, and its relations are I1, . . . , Il, of arity 2, . . . , l+1, respectively. The signature is finite, with just
l symbols. Then homomorphisms between Σ-structures A and B correspond to those homomorphisms
between AΣ and BΣ that are the identity on Σ. J

I Example 8. The graph G from Example 1 can be seen as a structure over a signature with a
single binary relation symbol E. To give an example of an infinite, definable signature, extend G to
a structure A by infinitely many unary predicates representing the neighborhoods of each vertex of
G. To this end, define the signature Σ = {E} ∪ {Nv | v ∈ V }, where V is the vertex set of G and N is
a symbol (cf. Remark 5). The interpretation of Nv is specified by the set I1 = { (Nv,w) | (v,w) ∈ E }
(where E is defined by the expression from Example 1), which is definable by Lemma 6. J
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I Lemma 9. For every S -definable set X there is an S -definable surjective function f : Y → X,
where Y is an S -definable subset of Ak, for some k ∈ N. Moreover, f and Y can be computed
from X. J

I Remark 10. By Lemma 9, definable structures over finite signatures coincide, up to definable
isomorphism, with structures that admit a first-order interpretation with parameters inA, in the sense
of model theory [21]. J

Representing the input. Definable relational structures can be input to algorithms, as they are
finitely presented by expressions defining the signature, the universe, and the interpretation function.
If the input is an S -definable set X, defined by an expression e with valuation val : V → S with
V = {v1, . . . , vn} the free variables of e, then we also need to represent the tuple val(v1), . . . , val(vn) of
elements of S . For the pure setA, these elements can be represented as 1, 2, . . ..

3 Homomorphism problems

To simplify the presentation, we now drop some of the generality of the previous section. In this
section letA be the pure set. In Section 5 we shall discuss generalizations of our results to underlying
structures other than the pure set.

3.1 ∅-definable homomorphism problem

Let’s start with the following warm-up decision problem:

Problem: ∅-definable Homomorphism
Input: ∅-definable structures A and B over a ∅-definable signature Σ.
Decide: Is there an ∅-definable homomorphism from A to B?

It is not hard to prove the following theorem, which gives (1) of Theorem 3:

I Theorem 11 ( [23]). ∅-definable Homomorphism is decidable.

We sketch a proof here in order to illustrate the good algorithmic properties of definable sets, and to
emphasize the contrast with later undecidability results.

Proof sketch. Our aim is to decide if two given ∅-definable Σ-structures A = (A, I1, . . . , Il) and
B = (B, J1, . . . , Jl) admit an ∅-definable homomorphism. The signature Σ is assumed to be part of the
input (also, it can be computed from A or from B).

We will use the following facts that hold for the pure setA, but also for many other structures
with decidable first-order theories.

I Lemma 12. For each number n ∈ N, there are finitely (doubly exponentially) many first-order
formulas with n free variables, up to equivalence inA. Moreover, they can be computed from n. J

The following lemma is a consequence.

I Lemma 13. An ∅-definable set X has only finitely many ∅-definable subsets, and expressions
defining these subsets can be enumerated from an expression defining X.

Indeed, for each definable set X represented by a single set-builder expression of the form (1), replace
φ by each (up to equivalence) quantifier-free formula ψ with the same free variables, such that ψ→ φ.
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To verify existence of an ∅-definable homomorphism from A to B, apply Lemma 13 to X = A × B
and for every ∅-definable subset R ⊆ A × B, test the validity of the first-order formula

∀a ∈ A ∃!b ∈ B R(a, b)

ensuring that R is a graph of a function; and, for i = 1 . . . l, test the validity of the formula

∀a1, . . . , ai ∈ A ∀b1, . . . , bi ∈ B ∀ρ ∈ Σi

∧
1≤ j≤i

R(a j, b j) ∧ Ii(ρ, a1, . . . , ai)→ Ji(ρ, b1, . . . , bi)

ensuring that the function is a homomorphism. J

In a similar vein one can decide the existence of homomorphisms that are injective, strong, or are
embeddings (i.e. injective and strong), as all these properties are first-order definable.

The assumption that the structures A and B are ∅-definable is inessential in Theorem 11; the
crucial assumption is that a homomorphism we ask for is required to be ∅-definable. In fact, a similar
argument as above works even if the two given structures are definable instead of ∅-definable, and a
homomorphism is allowed to be definable with n parameters, for a number n ∈ N given on input.

3.2 (Definable) homomorphism problem

In more relaxed versions of the homomorphism problem, we ask for a homomorphism that is definable
without any bound on the number of parameters:

Problem: Definable Homomorphism
Input: Definable structures A and B over a definable signature Σ.
Decide: Is there a definable homomorphism from A to B?

Or we may make no restriction on a homomorphism at all:

Problem: Homomorphism
Input: Definable structures A and B over a definable signature Σ.
Decide: Is there a homomorphism from A to B?

These problems appear similar, but they are of rather different nature. On one hand, Definable
Homomorphism is recursively enumerable, by an argument similar to the proof sketch of Theorem 11:
if a definable homomorphism exists then one can find it by searching for homomorphisms definable
with n parameters, for increasing values of n. On the other hand Homomorphism is co-recursively
enumerable, by a compactness argument: if A does not map homomorphically to B then some
finite substructure of A does not map to B either, and one can detect this by enumerating all finite
substructures of A and using Theorem 15 below.

I Remark 14. We might also consider natural variants of (Definable) Homomorphism, where one
asks about existence of an injective homomorphism, or a strong homomorphism, or an embedding.
Theorems 15–20, stated below, apply to all these variants as well. J

Below we show that both Definable homomorphism and Homomorphism are undecidable in general.
However, when one of the input structures has finite universe, both problems are decidable:

I Theorem 15. Definable homomorphism and Homomorphism are decidable if one of the input
structures has a finite universe. J

On the other hand, the general version of the homomorphism problem is undecidable:

I Theorem 16. Homomorphism is undecidable, even if one of the input structures is fixed. J
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The fixed input structure is understood existentially; in particular, there exists a definable structure B
such that it is undecidable, for a given definable structure A over the same signature, whether there is
a homomorphism A→ B.

Theorem 16 is proved by a reduction from a classical quarter-plane tiling problem [1]. The
following example illustrates a phenomenon used in the proof: a homomorphism can determine an
infinite ordered sequence of atoms, and thus to enumerate coordinates within the quarter-plane.

I Example 17. Consider a signature with a single binary relation symbol R. For a chosen atom
a0 ∈ A, define structures A and B over this signature as follows:

A = A RA = , B = A− {a0} RB = ,

Note that A is ∅-definable and B is {a0}-definable. Considered as graphs, A and B are isomorphic
to the countably infinite clique. However, no homomorphism h : A → B is definable. To see this,
suppose towards contradiction that an S -definable homomorphism h actually exists for some finite S .
We will exploit the fact that the S -definition of h is necessarily invariant under every bijection π of
atoms such that π(a) = a for all a ∈ S .

Since A is a clique and B has no self-loops, h must be injective. Pick the atom a1 = h(a0). Clearly
a1 , a0, since a0 < B. This means that a1 ∈ S ; indeed, if a1 < S then the S -definition of (the graph
of) h would be invariant under a renaming π of atoms with π(a0) = a0 and π(a1) , a1, which cannot
be since h is a function. Now consider a2 = h(a1). Again, a2 , a0. Moreover we have a2 , a1,
since a1 , a0 and h is injective. Moreover, a2 ∈ S by the same argument as for a1. This proceeds
by induction, showing that infinitely many distinct atoms must belong to S , which contradicts the
finiteness of S .

More importantly, each homomorphism h : A → B determines an infinite sequence of distinct
atoms a0, a1, a2, . . . such that h(ai) = ai+1 for each i ∈ N. J

As it turns out, Definable Homomorphism is even harder to decide than Homomorphism:

I Theorem 18. Definable Homomorphism is undecidable even if

(i) a source structure A over a finite signature is fixed; or
(ii) a target structure B is fixed. J

Theorem 18 yields (2) of Theorem 3, and is proved by reduction from periodic and ultimately periodic
variants of the tiling problem.

Example 17 shows a situation where definable homomorphisms do not exist, but non-definable
ones do, and each of them induces an infinite sequence of atoms. In the following example definable
homomorphisms do exist, and each of them determines a finite cycle of atoms. This observation is
the core of the proof of Theorem 18, much as Example 17 is the core of Theorem 16.

I Example 19. Consider a signature with a single binary relation symbol R. Define structures A
and B over this signature as follows (for readability we write ab to denote an ordered pair (a, b)):

A = A B = { ab | a, b ∈ A, a , b }

RA = , RB = { (ab, cd) | a, b, c, d ∈ A, a , b, c , d, a , c }

Note that there are many non-definable homomorphisms from A to B. For example, for any enumera-
tion a0, a1, a2, . . . of all atoms, one may put h(an) = anan+1 for each n ∈ N.

However, definable homomorphisms h : A→ B also exist. For example, there is an S -definable
one for S = {1, 2, 3}:

h(x) = x1 h(1) = 12 h(2) = 23 h(3) = 31
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where x < S . Note how the values of h on S encode a cycle of atoms of length 3. This is a
general phenomenon. Indeed, consider any S -definable homomorphism h : A → B, for some
finite S = {a1, . . . , an} ⊆ A. Denote ei = h(ai) for i = 1..n. Each ei is of the form a jak for some
1 ≤ j , k ≤ n. Indeed, if some ei = bc (or ei = cb) for some b < S , then the S -definition of (the graph
of) h would be invariant under a renaming π of atoms with π(ai) = ai and π(b) , b, which cannot be
since h is a function.

One may view the ei as edges of a directed graph with nodes {a1, . . . , an}. This graph has n nodes,
n edges, no self-loops, and, looking at the definition of RB, no two distinct edges have the same
source. In other words, the graph is the graph of a function without fixpoints on {a1, . . . , an}, therefore
it contains a cycle of length at least 2. In other words, there is a subset of S of size at least 2 that is
mapped to a set of the form {aia j, a jak, . . . , amai}. J

The two negative results in Theorems 16 and 18 are complemented by a positive one:

I Theorem 20. Homomorphism is decidable for finite signatures. J

This gives (3) of Theorem 3. Theorem 20 is implicit in the work of Bodirsky, Pinsker and Tsankov [11],
where it is proved in a special case when A = Bn, for n ≥ 1, and B is a reduct of a finitely bounded
Ramsey structure A (cf. Section 5). Our self-contained proof of Theorem 20, given in Section 4,
instead of using the machinery of canonical mappings goes by a direct reduction to the case when
the target structure is finite, which is decidable as shown in [23]. Our reduction slightly generalizes
a reduction due to Bodirsky and Mottet [7] in the special case of the target structure being a reduct
ofA (both reductions needA to be a finitely bounded homogeneous structure).

Theorems 11–20 settle the decidability landscape for the homomorphism problem almost entirely.
One remaining open problem is the decidability status of Definable Homomorphism for a fixed target
structure B over a finite signature. We discuss this and other minor remaining problems in Section 5,
and in Appendices C and D.

3.3 Homomorphism extension problem

Theorem 20 may be a little surprising in light of Theorem 16. Indeed, Remark 7 allows one to view
an arbitrary definable Σ-structure as a definable structure AΣ over a finite signature. Homomorphisms
A → B correspond to those homomorphisms AΣ → BΣ that are the identity on the subset Σ of the
universe of AΣ. Thus by Theorem 16 we obtain undecidability, even for finite signatures, of the
following slight generalization of Homomorphism:

Problem: Homomorphism Extension
Input: Definable structures A and B over Σ and a definable partial mapping f : A→ B.
Decide: Is there a homomorphism from A to B extending f ?

The above remark proves (4) of Theorem 3:

I Theorem 21. Homomorphism Extension is undecidable for finite signatures. J

4 Homomorphism problem for finite signatures

Throughout this section, we assume that Σ is a finite signature. For simplicity, assume that A is
the pure set; in Section 5 we discuss how the results generalize to other underlying structures. We
consider the homomorphism problem for structures over Σ which are definable overA. For simplicity,
we assume that the input structures A and B are ∅-definable – the proof easily generalizes to arbitrary
definable structures over a finite signature.

Here is the main result of this section:
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I Theorem 22. Given a ∅-definable structure B over a finite signature, one can compute a finite
structure B′ such that:

CSP(B) is polynomial-time reducible to CSP(B′),
CSPdef(B) is polynomial-time reducible to CSPdef(B′).

Note that Theorem 22 implies Theorem 20, as finite structures B′ are a special case of locally
finite ones, and decidability of the homomorphism problem for locally finite target structures has been
shown in [23]. Moreover, Theorem 22 implies Theorem 4, since as shown in [23], for every finite
template B′, the complexity of CSPdef(B′) is exponentially larger than the complexity of CSP(B′).

Theorem 22 is a slight extension of results implicit in the work of Bodirsky, Pinsker and
Tsankov [11] that provided a decision procedure for testing the existence of a homomorphism
from A = Bn to B, where B is assumed to be a reduct ofA (with further assumptions aboutA, which
apply also in our case, as discussed in Section 5). Instead, we allow both A and B to be arbitrary
definable structures overA (in particular, they need not be reducts). Our reduction in Theorem 22 is
based on a reduction due to Bodirsky and Mottet [7], generalized to the case of definable structures
rather than reducts (recall from Remark 10 that according to our definition, definable structures
correspond to structures which interpret inA via first-order interpretations).

Proof of Theorem 22. The remaining part of this section is devoted to demonstrating Theorem 22.
In the sequel we fix a ∅-definable structure B over the signature Σ (assumed to be finite). We show
how to effectively construct a finite structure B′ as described in the theorem.

First we observe that without loss of generality we may assume that the universe B of B is a subset
ofAk, for some k. To see this, apply Lemma 9 to obtain B̄ ⊆ Ak and a surjection g : B̄→ B, both
definable and computable from B. Then compute a definable structure B̄ with universe B̄ over the
same signature as B, where every relation symbol is interpreted in B̄ as the inverse image under g
of its interpretation in B. Finally, observe that there is a homomorphism from A to B if, and only if
there is a homomorphism from A to B̄. Thus from now on we assume that B ⊆ Ak, for some k.

We now define some notation. For n ∈ N, denote {1, . . . , n} by [n]. For a set C, numbers m, n ∈ N
and an injective, monotone function i : [m] → [n], consider a projection mapping πi : Cn → Cm

onto m coordinates induced by i in the obvious way, i.e., πi(c1, . . . , cn) = (ci(1), . . . , ci(m)). Let C be
a structure with universe C and let r ≥ 2 be an integer at least as large as the maximal arity of the
relations in C. We define a structure C≤r with universe C≤r = C ∪C2 ∪ · · · ∪Cr, as follows. If R is a
relation symbol of arity k in the signature of C, then the signature of C≤r contains a unary symbol UR.
If S ⊆ Ck is the interpretation of R in C, then the interpretation of UR in C≤r is the set S ⊆ Ck ⊆ C≤r,
treated as a unary relation. Moreover, for m ≤ n ≤ r and each monotone injection i : [m]→ [n], there
is a binary projection relation Πi ⊆ Cn ×Cm in C≤r which is the graph of the projection πi.

We use standard notions of group actions and orbits. The group Aut(A) acts on Ak, where an
automorphism ofA acts coordinatewisely on elements ofAk. Note that this action preserves B ⊆ Ak,
since B is ∅-definable. For the same reason, automorphisms of Aut(A) preserve the relations of
B. Reassuming, Aut(A) acts on the structure B by automorphisms. Similarly, Aut(A) acts on the
structure B≤r, inducing a quotient relational structure B≤r/Aut(A) over the same signature. The
elements of B≤r/Aut(A) are orbits of B≤r under the action of Aut(A); in other words, elements of
B≤r/Aut(A) are atomic types of k-tuples of atoms (an atomic type of a tuple of elements (a1, . . . , ak) ∈
Ak specifies all equalities among the elements a1, . . . , ak). Relation symbols are interpreted in
B≤r/Aut(A) existentially, as expected. A crucial but obvious observation is that the quotient structure
B≤r/Aut(A) is finite, by the following lemma.

I Lemma 23. The group Aut(A) acts oligomorphically on B, i.e., the action splits Bn into finitely
many orbits, for every n ≥ 1.
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We now define the structure B′ promised in Theorem 22 as B≤r/Aut(A), where r ≥ 3 is a fixed
number at least as large as the maximal arity of the relations in Σ. As required, the structure B′ is
finite. It remains to prove the two items of Theorem 22. Both reductions are shown in the same way.
Let A be given, where A is either finite or ∅-definable. Define A′ as A≤r. Note that if A is ∅-definable,
then so is A′. Moreover, (the definition of) A′ is computable from A in polynomial time, for a fixed
signature Σ. To complete the reductions, it remains to prove the following:

I Claim 24. There is a homomorphism A→ B if, and only if there is a homomorphism A′ → B′.

The “only if” direction is immediate; from a given homomorphism h : A→ B, a homomorphism
h′ : A′ → B′ is obtained by taking the pointwise extension h≤r : A≤r → B≤r of h (also a homomorph-
ism), and then post-composing h≤r with the quotient homomorphism from B≤r to B≤r/Aut(A).

We now prove the “if” direction. Fix a homomorphism f : A≤r → B≤r/Aut(A). Recall that
B ⊆ Ak. Consider the set D = (A × {1, . . . , k})/∼, where the equivalence relation ∼ is defined
as follows. Take (a1, . . . , an) ∈ An, for n ≤ r. Then f (a1, . . . , an) ∈ Bn/Aut(A) corresponds to an
atomic type of (n · k)-tuples of atoms. In particular for n = 2, the atomic type concerns tuples
(x1

1, . . . , x
k
1, x

1
2, . . . , x

k
2) and for each 1 ≤ i, j ≤ k and 1 ≤ l,m ≤ 2, specifies a relation xi

l = x j
m or

xi
l , x j

m. Put (a1, i) ∼ (a2, j) in A× {1, . . . , k} if (a1, i) = (a2, j) or the atomic type specifies the relation
xi

1 = x j
2. This defines an equivalence relation on A×{1, . . . , k}, where r ≥ 3 is essential for transitivity;

it is also important here that f is a homomorphism and hence preserves projections. Since the set D
is at most countable, there is an injective function e : D→ A. We define a function h : A→ Ak, by
composing the abstraction function [_]∼ : A × {1, . . . , k} → D with the function e:

h(a) = (e([(a, 1)]∼), . . . , e([(a, k)]∼)).

Note that h(a) ∈ B for every a ∈ A. It follows by construction that the function h : A → B is a
homomorphism from A to B. J

5 Concluding remarks

We investigated the homomorphism problem for definable relational structures. Our contribution is a
detailed decidability border in the landscape of different variants of the problem.

Most of our proofs work, or can be easily adapted to the variant of the problem where one asks
about the existence of an injective homomorphism, or a strong homomorphism, or an embedding.
The only exceptions are Theorems 16 and 18 for the case where the target structure B is fixed. Our
proofs there work for the case of injective homomorphisms, but not for strong homomorphisms or
embeddings, and the decidability of these cases remain open.

Underlying structure A. We briefly describe the assumptions on the structure A for which the
results presented in this paper still hold.

The definitions and lemmas in Section 2 hold for an arbitrary structureA. However, one needs to
specify how inputs are represented, specifically, the parameters involved in the input. To represent
all definable sets over A, we should assume that there is an effective enumeration of its universe.
Furthermore, to effectively perform tests on definable sets one needs to assume that the structure is
decidable: given any first-order formula φ over the signature ofA with n free variables, and an n tuple
ā of elements ofA, it must be decidable if φ, ā |= A. For simplicity we assume that the signature of
A is finite, to avoid questions concerning the encoding of relation symbols.

Theorems 16, 18 and 21 hold for every infinite structureA. For Theorems 16 and 21 this is clear,
as every structure definable over the pure set is also definable over arbitrary infiniteA, and existence
of a homomorphism does not depend onA. For Theorem 18 this is less clear, since the existence of
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definable homomorphisms depends onA. However, an inspection of the proof shows that the result
holds for arbitraryA.

The ∅-definable homomorphism problem considered in Theorem 11 is decidable (with the same
proof) as long as the following conditions hold:

A is ω-categorical, i.e., it is the only countable model of its first-order theory. An equivalent
condition, due to the Ryll-Nardzewski-Engeler-Svenonius theorem [21], is thatA is countable and
Aut(A) acts oligomorphically onA.
The number of orbits ofAn under the action of Aut(A) is computable from a given n ∈ N.

We call such structures effectively ω-categorical. Any effectively ω-categorical structure is (iso-
morphic to) a decidable structure, so every definable set can be represented. Theorem 11 can be easily
generalized so that arbitrary definable structures A,B are given on input, as well as a finite set S ⊆ A,
and the algorithm determines whether there exists an S -definable homomorphism from A to B.

Regarding Theorem 15, in the case when the source structure A is assumed to be finite, it is
sufficient thatA is a decidable structure. In the case when the target structure B is finite, and arbitrary
homomorphisms are considered, the assumptions under which the proof from [23] works are that
Aut(A) is extremely amenable or, equivalently, that A is a Ramsey structure [22]. Examples of
Ramsey structures include (Q,≤) and the ordered random graph, by [27].

We do not know how to generalize to other atoms the case where only definable homomorphisms
to a finite B are considered.

Regarding Theorems 4, 20 and 22, the proofs presented in Section 4 work under the following
assumptions:

The structure A is definable over a decidable Ramsey structure A. For the second item of
Theorem 4, we need some additional mild complexity assumptions aboutA, e.g. that its first-order
theory is decidable in NEXPTIME (for most reasonable structures it is in PSPACE). It is shown
in [11] that ifA is a Ramsey structure, then extendingA by finitely many constants still yields a
Ramsey structure. Clearly, this preserves decidability of the structure. From this it follows that the
assumption made in Section 4 that the relations of A and B are ∅-definable is not relevant, since if
they are S -definable overA for some finite S ⊆ A, then they are ∅-definable overA extended by
elements of S as constants.
The structure B is definable over a structure B which is homogeneous and finitely bounded. We say
that a structure B over a signature Γ is finitely bounded if there is a finite set F of finite Γ-structures
such that for every finite Γ-structure A, A embeds into B iff no structure from F embeds into A.
For example, the pure set is finitely bounded, as witnessed by an empty family F . This property is
crucial for the proof of Claim 24. It is straightforward to generalize this claim to a finitely bounded
homogeneous structure (see [11]). Any finitely bounded homogeneous structure is effectively
ω-categorical, and thus decidable. Moreover, any expansion of a finitely bounded homogeneous
structure by a constant is homogeneous and finitely bounded [7].
We do not know whether the finite boundedness condition can be dropped, while assuming that B
is effectively ω-categorical.

Open problems. Perhaps the most significant open question that remains is the decidability of
the isomorphism problem: decide whether two definable structures A,B (say, over the pure set) are
isomorphic, or whether there is a definable isomorphism between them. An equivalent formulation of
the former question is the orbit problem: given a definable structure A and two elements x, y ∈ A,
decide whether there is an automorphism of A which maps x to y.

This is related to an open problem from [11]: decide whether a given relation R is first-order
definable in a given structure A. Indeed, a unary predicate R ⊆ A is first-order definable in A iff it is
preserved by all automorphisms of A, iff no x ∈ R and y ∈ A − R lie in the same orbit of Aut(A).
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A Proofs from Section 2

A.1 Proof of Lemma 9

If X is described by a single set-builder expression of the form (1), then take Y to be the set defined by
the same expression, with e replaced by (a1, . . . , an), where a1, . . . , an are the free variables of e; then
Y is a definable subset of An. Let f : Y → X be the function whose graph is { ((a1, . . . , an), e) | φ },
which is clearly definable and surjective.

If X = X1 ∪ · · · ∪ Xr is a union of set-builder expressions, then for each Xi construct a definable
surjective function fi : Yi → Xi as above. By embeddingAm intoAn for m ≤ n, we can assume that
there is a single exponent n ∈ N such that each Yi is a subset of An. The last step is to replace the
disjoint union of the Yi’s by a single subset Y ofAk, for some k. This can be done by taking m large
enough, so thatAm partitions into r disjoint nonempty, ∅-definable subsets U1, . . . ,Ur. Finally, take
Y =

⋃r
i=1 Yi × Ui and f =

⋃r
i=1 gi, where gi : Yi × Ui → Xi first projects onto Yi, and then applies fi.

Then Y ⊆ An+m and f : Y → X is surjective and definable by Lemma 6. J

A.2 Proof of Remark 10

We sketch one direction: if a relational structure A over a finite signature is definable overA, then it
interprets in A. Indeed, let f : B → A be a surjective definable mapping obtained from Lemma 9,
with B ⊆ Ak. Lift the structure of A to a structure B with universe B, by taking the inverse images of
the relations:

σB = {(x1, . . . , xk) : ( f (x1), . . . , f (xk)) ∈ σA}.

This is a definable set, by Lemma 6. Moreover, f is a homomorphism from B to A. As a result, A is
isomorphic to B/∼, where ∼ is the kernel of f , i.e., x ∼ y iff f (x) = f (y). Again by Lemma 6, ∼ is a
definable subset of B × B ⊆ A2k. Since B ⊆ Ak and ∼ ⊆ A2k are definable, there are formulas φdom

and φ= which define them. Similarly, for each symbol σ ∈ Σ, σB ⊆ Bl, where l is the arity of σ, so
there is a formula φσ defining σB. The formulas φdom, φ=, (φσ)σ∈Σ define an interpretation of B/∼ in
A, and, as noted above, B/∼ is isomorphic to A.

The opposite direction (every structure A which interprets inA is definable) is straightforward,
since the usual expressions defining the universe of the structure A and its relations, are allowed
by Lemma 6. In particular, the universe of A is defined as the quotient of Ak under a definable
equivalence relation, where k is the dimension of the interpretation. J

B Proofs from Section 3

B.1 Proof of Theorem 15

[Proof sketch] If the source structure A has a finite universe, say A = {a1, . . . , an}, then the two
problems coincide, as every homomorphism A→ B is definable. Both problems reduce to validity of
the following generalized first-order formula in B

∃x1, . . . , xn

∧
1≤k≤l,1≤i1...ik≤n

∀ρ ∈ Σk ρ(ai1 , . . . , aik )→ ρ(xi1 , . . . , xik ),

which in turn reduces to validity of a first-order formula inA as observed in Section 2, and is thus
decidable.

Both problems are also decidable if the target structure B has a finite universe. Structures with
finite universe is a special case of a locally finite structures, and thus decidability of Homomorphism
follows from [23]. To see decidability of Definable Homomorphism, for simplicity assume that
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A and B are ∅-definable. We claim that the problem reduces to ∅-definable Homomorphism and
hence is decidable by Theorem 11 (the general case of a definable B with a finite universe is shown
analogously). Indeed, suppose f is an S -definable homomorphism from A to B. Consider the
following modification of the defining expression of f : change all occurrences of terms v = a, for
a ∈ S , to ⊥; and all occurrences of terms v , a, for a ∈ S , to >. As B is assumed to be finite and
∅-definable, the modified expression still defines a function from A to B, and the function is clearly
∅-definable. As A is ∅-definable, the function is a homomorphism as required. J

C Homomorphism problem for infinite signatures

This section contains the proof of Theorem 16. We consider first the case when the source structure is
fixed, and the target structure is the sole input. Thus, given a definable structure A over a definable
signature Σ, we consider the following problem:

Problem: Hom(A,-)
Input: A definable structure B over Σ

Decide: Is there a homomorphism from A to B?

I Remark 25. Recall Example 17. A similar effect can be observed for ∅-definable A and B.
Consider

A = A B = {ab | a, b ∈ A, a , b}

RA = , RB = {(ab, ac) | a, b, c ∈ A, a , b , c , a}

(Here ab is simplified syntax for (a, b).) Note that for any homomorphism h : A→ B, all atoms in A
are mapped to pairs that share the same first component (call it a0). A reasoning similar to Example 17
shows that this determines a sequence of distinct atoms a0, a1, a2, . . . such that h(ai) = a0ai+1 for each
i ∈ N.

I Theorem 26. There exists a ∅-definable structure A for which the problem Hom(A,-) is undecid-
able.

Proof. We reduce a quarter-plane tiling problem defined as follows. For a finite set K 3 K, L, . . . of
colors, and for relations ΓH ,ΓV ⊆ K × K , a quarter-plane tiling is a function γ : N2 → K such that

(γ(i, j), γ(i + 1, j)) ∈ ΓH and (γ(i, j), γ(i, j + 1)) ∈ ΓV

for i, j ∈ N. By a well-known result of Berger [1], it is undecidable whether there exists a quarter-plane
tiling for given K , ΓH and ΓV .

Consider the (infinite but definable) signature Σ with:

a unary predicate symbol Pa for each a ∈ A, and
binary relation symbols Π1, Π2, R and T .

Define a structure A over Σ by:

A = A∪A2 PAa = {a} for a ∈ A

ΠA1 = {((a, b), a) | a, b ∈ A} ΠA2 = {((a, b), b) | a, b ∈ A}

RA = {(a, b) | a, b ∈ A, a , b} TA = A2 ×A2

Note that RA relates only atoms, TA relates only (and all) pairs of atoms, and ΠA1 , ΠA2 relate pairs
of atoms to their components. Clearly, A is ∅-definable.
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Fix an atom a0 ∈ A. Denote

B0 = {ab | a, b ∈ A, b , a0}.

Note that the set B0 is {a0}-definable. Elements of B0 are pairs of atoms, but we write ab instead of
(a, b), to distinguish them from pairs of atoms used in A. The two kinds of pairs will serve different
purposes in the encoding of the quarter-plane tiling problem. Intuitively, a pair (a, b) in A will encode
a point in the quarter-plane with coordinates a and b, while a pair ab in B0 will model the fact that b
encodes the successor of a in both axes of the quarter-plane.

Formally, given an instance K , ΓH and ΓV of the quarter-plane tiling problem, define a {a0}-
definable Σ-structure B:

B = B0 ∪ (B2
0 × K)

PBa = {ab ∈ B0 | b ∈ A} for a ∈ A

ΠB1 = {((ab, cd,K), ab) | ab, cd ∈ B0,K ∈ K}

ΠB2 = {((ab, cd,K), cd) | ab, cd ∈ B0,K ∈ K}

RB = {(ab, cd) | ab, cd ∈ B0, b , d}

TB = {((ab, cd,K), (e f , gh, L)) |

((b = e) ∧ (c = g)→ (K, L) ∈ ΓH)

∧ ((a = e) ∧ (d = g)→ (K, L) ∈ ΓV )}

We shall now prove that K , ΓH and ΓV admit a quarter-plane tiling if and only if there is a homo-
morphism h : A→ B.

For one direction, assume a quarter-plane tiling γ : N2 → K . Consider any enumeration of all
atoms a0, a1, a2, . . . with a0 as the first element. Define h : A→ B by:

h(ai) = aiai+1

h(ai, a j) = (aiai+1, a ja j+1, γ(i, j)).

It is easy to check that h is a homomorphism. Indeed, Π1, Π2 and all predicates Pa are preserved imme-
diately. So is R, since ai , a j implies ai+1 , a j+1. For T to be preserved, for any (ai, a j), (ak, al) ∈ A2,
we need to check that(

(aiai+1, a ja j+1, γ(i, j)), (akak+1, alal+1, γ(k, l)
)
∈ TB.

If k = i + 1 and l = j then (γ(i, j), γ(k, l)) ∈ ΓH since γ is a tiling. If k = i and l = j + 1 then
(γ(i, j), γ(k, l)) ∈ ΓV , for the same reason. In all other cases the condition holds trivially, by definition
of TB.

For the other direction, consider any homomorphism h : A→ B. Interpretations of the predicates
Pa in A and B ensure that for each a ∈ A, necessarily h(a) = ab for some b , a0. Moreover, by the
interpretations of Π1 and Π2, for each a, b ∈ A

h(a, b) = (h(a), h(b),K)

for some K ∈ K .
Consider Σ, A and B restricted to the relation symbol R. The above implies that h restricts to

a homomorphism from A to B0 that always returns its argument on the first component. This is
essentially the same situation as in Example 17, and for reasons explained there, there must be an
infinite sequence of distinct atoms a0, a1, a2, . . . such that h(ai) = aiai+1 for each i ∈ N.
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Define γ : N2 → K so that γ(i, j) is the color K such that

h(ai, a j) = (aiai+1, a ja j+1,K).

This is a quarter-plane tiling. Indeed, since

((ai, a j), (ai+1, a j)) ∈ TA

then necessarily(
(aiai+1, a ja j+1, γ(i, j)), (ai+1ai+2, a ja j+1, γ(i + 1, j)

)
∈ TB

which, by definition of TB, implies that (γ(i, j), γ(i + 1, j)) ∈ ΓH . The condition for ΓV follows
analogously. J

I Remark 27. The problem Hom(A,-), for A as in the proof of Theorem 26, remains undecidable
even if one restricts input structures B to be ∅-definable. To see this, Remark 25 is useful. Technically,
in the proof above one replaces B0 with

Be
0 = {abc | a, b, c ∈ A, a , c},

redefines PBa , ΠB1 , ΠB2 and TB so that they ignore the first components of triples from Be
0, and changes

RB so that it only relates triples with the same first component:

RB = {(abc, ade) | abc, ade ∈ Be
0, c , e}

The resulting structure B is ∅-definable and, using Remark 25 instead of Example 17, the proof of
Theorem 26 works analogously. J

Another variant of the homomorphism problem keeps a target structure B fixed, and treats the
source structure as input:

Problem: Hom(-,B)
Input: A definable structure A over Σ

Decide: Is there a homomorphism from A to B?

It easily follows from Theorem 26 that this problem cannot be solvable in any practical sense: even if
Hom(-,B) were decidable for every B, there could be no way to compute an algorithm to solve this
problem, given a description of B. In fact, a stronger negative result holds:

I Theorem 28. There exists a definable structure B for which the problem Hom(-, B) is undecidable.

Proof. We proceed much as in the proof of Theorem 26, by a reduction from a seeded version of
the quarter-plane tiling problem defined as follows. Given K , ΓH and ΓV , for a finite sequence of
colors K0,K1, . . . ,Kn ∈ K (a seed), a legal tiling γ : N2 → K is seeded if γ(i, 0) = Ki for every
i ∈ {0, 1, . . . , n}.

It is easy to see that there exist fixedK , ΓH and ΓV such that it is undecidable whether a given seed
admits a seeded tiling. Indeed, in Wang’s proof of undecidability of the constrained tiling problem
(see e.g. [17, App. A]), where tile sets encode Turing machines, it is enough to consider a set that
encodes a universal Turing machine, and represent an input word for the machine as the seed.

Fix some atom a0 ∈ A and consider B defined as in the proof of Theorem 26, for the specific K ,
ΓH and ΓV as above. Additionally, extend the signature with an infinite family of predicate symbols
{Qa | a ∈ A}, and a finite family of predicate symbols {OK | K ∈ K}. Interpret these in B as:

QBa = {ba ∈ B0 | b ∈ A} for a ∈ A,

OBK = {(ab, cd,K) | ab, cd ∈ B0} for K ∈ K .
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(In particular, QBa0
= ∅.) The structure B is {a0}-definable.

Given a seed K0,K1, . . . ,Kn, consider a structure A over the extended signature as in the proof of
Theorem 26. Pick any n + 2 distinct atoms a0, a1, . . . , an+1 starting with a0. Extend A by:

QAai+1
= {ai} for 0 ≤ i ≤ n,

QAa = ∅ for a < {a1, . . . , an+1},

OAK = {(ai, a0) | i ≤ n, Ki = K} for K ∈ K .

The structure A is {a0, a1, . . . , an+1}-definable.
Homomorphisms from A to B then correspond to quarter-plane tilings for K , ΓH and ΓV seeded

by K0, . . . ,Kn. To see this, proceed as in the proof of Theorem 26, but note additionally that due
to the interpretation of the Pa and Qa in A and B, for any h : A → B it holds that h(ai) = aiai+1

for 0 ≤ i ≤ n. In other words, the infinite sequence of atoms determined by h as in the proof of
Theorem 26, must begin with a0, a1, . . . , an+1. Finally, by the interpretation of OK in A and B, the
tiling γ derived from h satisfies γ(i, 0) = Ki for 0 ≤ i ≤ n, as requested. J

I Remark 29. The structure B in Theorem 28 can be made ∅-definable, using the technique of
Remarks 25 and 27. However, nonempty support of input structuresA used in the proof of Theorem 28
seems harder to avoid, as in the reduction, its size is unbounded. We leave open the question whether
there exists a B for which Hom(-,B) is undecidable when restricted to ∅-definable input structures.

D Definable homomorphism problem

This section contains the proof of Theorem 18. First, given a definable structure A over a finite
signature Σ, consider the problem:

Problem: Def-Hom(A,-)
Input: A definable structure B over Σ

Decide: Is there a definable homomorphism from A to B?

Example 17 shows a situation where definable homomorphisms do not exist, but non-definable
ones do, and each of them induces an infinite sequence of atoms. In Example 19 definable homo-
morphisms do exist, and each of them determines a finite cycle of atoms. This observation is the core
of the following undecidability theorem, much as Example 17 was the core of Theorem 26.

I Theorem 30. There exists an ∅-definable structure A over a finite signature for which the problem
Def-Hom(A,-) is undecidable.

Proof. The proof is similar to that of Theorem 26, with Example 19 replacing Example 17 as the
core source of undecidability.

We reduce a periodic tiling problem defined as follows. For a finite set K 3 K, L, . . . of colors and
relations ΓH , ΓV ⊆ K ×K , we say that a tiling γ : N2 → K is periodic if there is a number n ≥ 1 such
that γ(i, j) = γ(i + n, j) = γ(i, j + n) for i, j ∈ N. It is well known [20] that it is undecidable whether a
periodic tiling exists for given K , ΓH and ΓV .

Consider a signature Σ with four binary relation symbols Π1, Π2, R and T . Define a structure A
over Σ as in the proof of Theorem 26, minus the interpretation of predicates Pa, which are now absent
from the signature.
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Given an instance K , ΓH and ΓV of the periodic tiling problem, define a Σ-structure B by:

B = {ab | a , b ∈ A}

∪ {(ab, cd,K) | a , b, c , d ∈ A,K ∈ K}

ΠB1 = {((ab, cd,K), ab) | a , b, c , d ∈ A,K ∈ K}

ΠB1 = {((ab, cd,K), cd) | a , b, c , d ∈ A,K ∈ K}

RB = {(ab, cd) | a , b, c , d, a , c ∈ A}

TB = {((ab, cd,K), (e f , gh, L)) |

(e = b ∧ d = h =⇒ (K, L) ∈ ΓH)

∧ (d = g ∧ b = f =⇒ (K, L) ∈ ΓV )}

We shall now prove that K , ΓH and ΓV admit a periodic tiling if and only if there is a definable
homomorphism h : A→ B.

For the “if” part, consider any S -definable homomorphism h : A → B, for a finite set S ⊆ A.
Interpretations of Π1 and Π2 in A and B ensure that for each a ∈ A, necessarily h(a) = bc for some
b , c ∈ A. Moreover, for each a, b ∈ A, there is h(a, b) = (h(a), h(b),K) for some K ∈ K .

Consider Σ, A and B restricted to the relation symbol R. The above implies that h restricts to
an S -definable homomorphism from A to {ab | a , b ∈ A}. This is essentially as in Example 19,
and for reasons explained there, there must be a sequence (a0, a1, . . . , an−1) of atoms from S , with
2 ≤ n ≤ |S |, such that all pairs a0a1, a1a2, . . . , an−2an−1, an−1a0 are values of h on some atoms from
S . Denote those atoms b0, . . . , bn−1 ∈ S , so that

h(b0) = a0a1, h(b1) = a1a2, . . . , h(bn−1) = an−1a0.

Note that we make no claims as to whether some bi are equal to a j, and to which ones. This is
irrelevant for the following.

For j ≥ n, define a j = ai, where i is the residue of j modulo n. Define γ : N2 → K so that γ(i, j)
is the color K such that

h(bi, b j) = (aiai+1, a ja j+1,K).

This is a legal periodic tiling. Indeed, since TA is the full relation on pairs of atoms, for each i, j ∈ N
we must have

((aiai+1, a ja j+1, γ(i, j)), (ai+1ai+2, a ja j+1, γ(i+1, j))) ∈ TB

((aiai+1, a ja j+1, γ(i, j)), (aiai+1, a j+1a j+2, γ(i, j+1))) ∈ TB

hence (γ(i, j), γ(i + 1, j)) ∈ ΓH , (γ(i, j), γ(i, j + 1)) ∈ ΓV and the tiling is legal.
For the converse, let γ : N2 → K be a periodic tiling with period n. Without loss of generality,

n ≥ 2. Pick any n atoms a0, . . . , an−1 ∈ A. Define

h(x) = xa0

h(ai) = aiai+1

h(x, y) = (xa0, ya0, γ(0, 0))

h(ai, y) = (aiai+1, ya0, γ(i + 1, 0))

h(x, a j) = (xa0, a ja j+1, γ(0, j + 1))

h(ai, a j) = (aiai+1, a ja j+1, γ(i + 1, j + 1))

where x, y < {a0, . . . , an−1}. Let S = {a0, . . . , an−1}.
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The function h is clearly S -definable. Moreover, it is a homomorphism from A to B. Indeed,
relations Π1, Π2 and R are preserved immediately by definition. To check that T is preserved, we
need to demonstrate that h maps every pair of elements ofA2 to a pair related by TB. Consider the
value of h on some arbitrarily chosen pair of elements ofA2, say

(ab, cd,K) and (e f , gh, L).

We must show that the implications in the definition of TB hold.
By definition of h, the value of h on elements ofA2 is always of the form (xai, ya j, γ(i, j)), for

some i, j ∈ {0, . . . , n−1}, and for some atoms x, y that will be irrelevant for the present analysis. In
particular, we know that b, d, f , h ∈ {a0, . . . , an−1}. Choose i, j ∈ {0, . . . , n−1} so that b = ai and
d = a j.

We only concentrate on the first implication in the definition of TB, as the other one is shown
analogously. Suppose b = e and d = h. Then f = ai+1 (by the definition of h), and we obtain

(ab, cd) = (xai, ya j) (e f , gh) = (aiai+1, za j),

for some atoms x, y, z. We infer K = γ(i, j) and L = γ(i + 1, j), hence (since γ is a tiling) (K, L) ∈ ΓH

as required. J

I Remark 31. Note that the structure B constructed in the proof above is always ∅-definable, so the
problem Def-Hom(A,-) remains undecidable on inputs restricted to ∅-definable structures.

As in the case of arbitrary homomorphisms, one can consider a dual variant of the definable
homomorphism problem, for a fixed target Σ-structure B:

Problem: Def-Hom(-,B)
Input: A definable structure A over Σ

Decide: Is there a definable homomorphism from A to B?

At the price of considering infinite signatures, one can repeat the development of Section C to prove:

I Theorem 32. There exists an ∅-definable structure B for which the problem Def-Hom(-,B) is
undecidable.

Proof. We apply the technique used in the proof of Theorem 28 to modify the proof of Theorem 30,
with appropriate changes.

This time, the reduction is from a seeded ultimately-periodic tiling problem. For a finite set
K 3 K, L, . . . of colors and relations ΓH ,ΓV ⊆ K × K , an ultimately periodic tiling is a function
γ : N2 → K such that for all 0 ≤ i, j,

(γ(i, j), γ(i + 1, j)) ∈ ΓH and

(γ(i, j), γ(i, j + 1)) ∈ ΓV ,

and such that for some numbers n (the head) and m (the period),

γ(i, j) = γ(i + n, j) for all i ≥ m, j ∈ N

γ(i, j) = γ(i, j + n) for all j ≥ m, i ∈ N.

Additionally, a tiling is seeded by K0,K1, . . . ,Kk ∈ K if γ(i, 0) = Ki for every i ∈ {0, 1, . . . , k}.
It is not difficult to see that there exist fixed K , ΓH and ΓV such that it is undecidable whether a

given seed admits a seeded ultimately periodic tiling. The argument is similar to the one in the proof
of Theorem 28, with the additional observation that while in Wang’s encoding of Turing machines
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(see [17, App. A]), arbitrary tilings correspond to infinite runs, it is easy to modify the encoding so
that ultimately periodic tilings correspond to finite accepting runs.

Consider B defined as in the proof of Theorem 30 for the specific K , ΓH and ΓV for which the
seeded ultimately periodic tiling problem is undecidable. Additionally, extend the signature with an
infinite family of predicate symbols {Pa,Qa | a ∈ A}, and a finite family of predicates {OK | K ∈ K}.
Interpret these in B as in the proof of Theorems 26 and 28:

PBa = {ab ∈ B0 | b ∈ A} for a ∈ A,

QBa = {ba ∈ B0 | b ∈ A} for a ∈ A,

OBK = {(ab, cd,K) | ab, cd ∈ B0} for K ∈ K .

The structure B is ∅-definable.
Given a seed K0,K1, . . . ,Kk, consider a structure A over the extended signature as in the proof of

Theorem 26. Pick any sequence of n + 2 distinct atoms a0, a1, . . . , an+1 and extend A as in the proof
of Theorem 28. The structure A is {a0, a1, . . . , an+1}-definable.
K , ΓH and ΓV admit an ultimately periodic tiling seeded by K0, . . . ,Kn if and only if there is a

homomorphisms fromA to B. To see this, proceed as in the proof of Theorem 30, but note additionally
that due to the interpretation of the Qa in A and B, for any h : A→ B there must be

h(ai) = aiai+1 for 0 ≤ i ≤ n

Moreover, all a0, . . . , an+1 must be in every support S of h. Looking back at Example 19, notice that
not only the graph considered there must contain a cycle, but every node in the graph determines a
unique directed path that starts from it, and ultimately ends in a cycle. This means that the sequence
a0a1, a1a2, . . . anan+1 must extend to a sequence of edges that ends in a cycle of length n ≥ 2, and
every edge (pair of atoms) in that sequence is a value of h on some atom from S .

Using this, proceed as in the proofs of Theorems 28 and 30. In particular, a tiling with head
n and period m determines a homomorphism supported by n + m + 1 atoms. Note also that every
homorphism h : A → B does determine a periodic tiling, but that tiling is not necessarily seeded
by K0, . . . ,Kn. For a seeded tiling one needs to resort to an ultimately periodic tiling, since there is
no guarantee that edges a0a1, a1a2, . . . for the atoms a0, a1, . . . fixed in the definition of A, lie on the
cycle determined by h. J

I Remark 33. We do not know whether Def-Hom(-,B) remains undecidable for some structure B
over a finite signature, and/or when inputs are restricted to ∅-definable structures. Note, however, that
by Theorem 30 there exists an ∅-definable structure A over a finite signature for which Def-Hom(A,-)
is undecidable. J

IRemark 34. Homomorphisms constructed in the proofs of Theorems 26, 28, 30 and 32, are injective.
Therefore the respective variants of the homomorphism problem remain undecidable when one asks
about existence of an injective homomorphism. In Theorems 26 and 30, those homomorphisms are
even embeddings, i.e., they reflect relations and predicates as well as preserve them. Therefore the
existence of embeddings of fixed structures is undecidable. However, homomorphisms in the proofs
of Theorems 28 and 32 are not embeddings, as they do not reflect predicates Qa and OK . Decidability
of the existence of embeddings into fixed definable structures therefore remains open.
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