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Constraint Satisfaction Problem

B = (B; R1,R2, . . . ,Rn) - a relational structure

Ri ⊆ Bri

Notation: (x, y) ∈ R ⇔ R(x, y)
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h : A→ B - homomorphism iff

(a1, . . . , ar) ∈ RA
i ⇒ (h(a1), . . . , h(ar)) ∈ RB

i
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Constraint Satisfaction Problem

B = (B; R1,R2, . . . ,Rn) - a fixed finite template

Problem: CSP(B)
Input: a finite structure A
Decide: Is there a homomorphism from A to B?
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Examples

B = ({0, 1}; R1,R0) - linear equations mod 2

R1 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 1 mod 2}
R0 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 0 mod 2}

A = ({a, b, c}; R0(a, b, c),R1(a, a, b),R1(a, c, c))

a + b + c = 0

a + a + b = 1

a + c + c = 1
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Examples

B = ({0, 1, 2}; 6=) - three-colorability

B = ({0, 1}; R0,R1,R2,R3) - 3-SAT

R2 = {0, 1}3 \ {(1, 1, 0)}, etc...
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Homomorphic Equivalence

B, C - templates

kkkkkkkkkkkk
h : B→ C

g : C→ B
homomorphisms

A maps homomorphically to B iff A maps homomorphically to C

A −→ B w h j−−→ C

Fact: CSPs of homomorphically equivalent structures are the same.
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Pp-definability

B = ({0, 1}; R1,R0) - linear equations mod 2

R1 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 1 mod 2}
R0 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 0 mod 2}

R(x, y)⇔ ∃z R0(z, z, z) ∧ R0(x, y, z) - pp-definition

R = {(x, y) ∈ {0, 1}2 | x + y = 0 mod 2}

C = ({0, 1}; R1,R0,R) - pp-definable in B

Fact: There is a polynomial time reduction from CSP(C) to CSP(B).

A = ({a, b}; R(a, b)}  A′ = ({a, b, c}; R0(c, c, c),R0(a, b, c)}
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Formulas

Formulas: (x ∧ y) ∨ z (negation normal form)

3-term: x ∧ y ∧ z (literals can repeat)

3-clause: x ∨ y ∨ z (literals can repeat)

k-DNF: disjunction of k-terms (Σ1,k)

k-CNF: conjunction of k-clauses (Π1,k)

Σt,k: disjunctions of formulas from Πt−1,k

Πt,k: conjunctions of formulas from Σt−1,k

Σt: sum of all Σt,k (depth t)
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Frege Proof System

Rules of Frege: axiom, cut, introduction of conjunction, weakening

A ∨ A
C ∨ A D ∨ A

C ∨ D
C ∨ A D ∨ B

C ∨ D ∨ (A ∧ B)

C
C ∨ A

A proof of A from a set of formulas C - a sequence of formulas:

from C or

obtained from previous formulas using the rules

Fact. Frege is sound and implicationally complete.

Frege refutation - ends with an empty formula

size of a proof - number of symbols
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Example Refutation

C = {q, q ∨ p, p ∨ r, r}

0

p

q q ∨ p

p

p ∨ r r
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Proof Complexity of CSPs

CSP template B

Size of Frege proof that an instance A is unsatisfiable?
Polynomial? Exponential?

Size of Frege proofs using only formulas of depth d?

Using only k-clauses? Possible?

C pp-definable/homomorphically equivalent to B

“Small” proofs for B imply “small” proofs for C?
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Encoding

C = ({0, 1}; R1,R0,R)

R1 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 1 mod 2}
R0 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 0 mod 2}

R = {(x, y) ∈ {0, 1}2 | x + y = 0 mod 2}

A = ({a, b}; R(a, b)}

CNF(A,C):

X(a, 0) ∨ X(a, 1) X(b, 0) ∨ X(b, 1)

X(a, 0) ∨ X(a, 1) X(b, 0) ∨ X(b, 1)

X(a, 0) ∨ X(b, 1) X(a, 1) ∨ X(b, 0)

CNF(A,C) is satisfiable⇔ there is a homomorphism from A to C
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Encoding

C = ({0, 1}; R1,R0,R)

R1 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 1 mod 2}
R0 = {(x, y, z) ∈ {0, 1}3 | x + y + z = 0 mod 2}

R = {(x, y) ∈ {0, 1}2 | x + y = 0 mod 2}

A = ({a, b}; R(a, b)}

CNF(A,C):

X(a, 0) ∨ X(a, 1) X(b, 0) ∨ X(b, 1) |C|-clauses
X(a, 0) ∨ X(a, 1) X(b, 0) ∨ X(b, 1) 2-clauses
X(a, 0) ∨ X(b, 1) X(a, 1) ∨ X(b, 0) maxar(C)-clauses

CNF(A,C) is satisfiable⇔ there is a homomorphism from A to C
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Closure Under Reductions

Fix: C pp-definable in B

Polynomial-time computable transformation maps instances A of
CSP(C) to instances A′ of CSP(B):

A′ is satisfiable⇔ A is satisfiable

size of A′ is linear in the size of A

Theorem
Frege refutation of CNF(A′,B) of size s using formulas from Σt,k

⇓

Frege refutation of CNF(A,C) of size polynomial in the size of A′
and s using formulas from Σt,l where l is polynomial in k
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Closure Under Reductions

Fix: C pp-definable in B

Polynomial-time computable transformation maps instances A of
CSP(C) to instances A′ of CSP(B):

A′ is satisfiable⇔ A is satisfiable

size of A′ is linear in the size of A

Corollary
Frege refutation of CNF(A′,B) of size s using k-DNFs

⇓

Frege refutation of CNF(A,C) of size polynomial in the size of A′
and s using l-DNFs where l is polynomial in k
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Example

C = ({0, 1}; R1,R0,R) B = ({0, 1}; R1,R0)

R(x, y)⇔ ∃z R0(z, z, z) ∧ R0(x, y, z)

A = ({a, b}; R(a, b)}  A′ = ({a, b, c}; R0(c, c, c),R0(a, b, c)}

Σt,k-Frege refutation of CNF(A′,B) of size s

Substitution:

X(c, 0) := (X(a, 0) ∧ X(b, 0)) ∨ (X(a, 1) ∧ X(b, 1))

X(c, 1) := 0

Lemma. Each formula from CNF(A′,B) after substitution is a logical
consequence of a bounded number of formulas from CNF(A,C).
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Proof Complexity of CSPs

CSP template B

Size of Frege proof that an instance A is unsatisfiable?
Polynomial? Exponential?

Size of Frege proofs using only formulas of depth d?

Using only k-clauses? Possible?

C pp-definable/homomorphically equivalent to B

“Small” proofs for B imply “small” proofs for C?
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Bounded-width

B has bounded width iff CSP(B) is solvable by local consistency

Lemma. If B has bounded width then CSP(B) has Frege refutations
using only k-clauses.

Polynomial size refutations.

Polynomial time algorithm.

Theorem. Otherwise CSP(B) does not have Frege refutations of
bounded depth and subexponential size.

For every t there exists δ such that for each big enough n there is an
n-variable instance of CSP(B) whose Σt-Frege refutations require
size at least 2nδ .
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Bounded-width

B has bounded width iff CSP(B) is solvable by local consistency

Lemma. If B has bounded width then CSP(B) has Frege refutations
using only k-clauses.

Polynomial size refutations.

Polynomial time algorithm.

Theorem. Otherwise CSP(B) does not have Frege refutations of
bounded depth and subexponential size.

For every t there exists δ such that for each big enough n there is an
n-variable instance of CSP(B) whose Σt-Frege refutations require
size at least 2nδ .
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Linear Equations

G - non-trivial finite Abelian group

B(G, 3) = (G; R1, . . . ,Rn)

Ri = {(g1, g2, g3) | z1g1 + z2g2 + z3g3 = g}

Theorem [Barto, Kozik, Bulatov]. The following are equivalent:

B does not have bounded width,

B(G, 3) is pp-interpretable in B.
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Proof Idea

Theorem. B(G, 3) has no Frege refutations of bounded depth and
subexponential size.

known for G = Z2 (Ben-Sasson 2002)

Tseitin formulas based on expander graphs

B has no bounded width
⇓

B(G, 3) is pp-interpretable in B
⇓

refutations for CSP(B) translate to refutations for CSP(B(G, 3))
⇓

CSP(B) cannot have “small size” refutations
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Gap Theorem

Theorem
Exactly one of the following holds:

either B has Frege refutations using k-clauses,

or B has no Frege refutations of bounded depth and
subexponential size.
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Beyond Bounded Width

Theorem
CSP(B(Z2, 3)) have Frege refutations of polynomial size.

closed under “standard CSP reductions”
⇓

has an algebraic characterization

Open Problem. Characterize the class of CSPs that have Frege
refutations of polynomial size.
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Conclusions

for most propositional proof systems:

polynomial size proofs = bounded width;

Frege goes beyond bounded width, how much?

similar results for semi-algebraic proof systems;

is proof complexity of approximating MAX CSP preserved by
reductions?

efficient proofs that A′ is “far from satisfiable” transform into
efficient proofs that A is “far from satisfiable”?
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Thank you
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