Proof Complexity of Constraint Satisfaction Problems joint work with Albert Atserias

Joanna Ochremiak

Université Paris Diderot - Paris 7

> Aktuelle Themen in Logik und Datenbanktheorie, Berlin, 3rd May 2017

Constraint Satisfaction Problem

$\mathbb{B}=\left(B ; R_{1}, R_{2}, \ldots, R_{n}\right)$ - a relational structure
$R_{i} \subseteq B^{r_{i}}$
Notation: $(x, y) \in R \Leftrightarrow R(x, y)$
$\mathbb{A}=\left(A ; R_{1}^{\mathbb{A}}, R_{2}^{\mathbb{A}}, \ldots, R_{n}^{\mathbb{A}}\right) \quad \mathbb{B}=\left(B ; R_{1}^{\mathbb{B}}, R_{2}^{\mathbb{B}}, \ldots, R_{n}^{\mathbb{B}}\right)$
$h: A \rightarrow B$ - homomorphism iff

$$
\left(a_{1}, \ldots, a_{r}\right) \in R_{i}^{\mathbb{A}} \Rightarrow\left(h\left(a_{1}\right), \ldots, h\left(a_{r}\right)\right) \in R_{i}^{\mathbb{B}}
$$

Constraint Satisfaction Problem

$\mathbb{B}=\left(B ; R_{1}, R_{2}, \ldots, R_{n}\right)$ - a fixed finite template

Problem: $\operatorname{CSP}(\mathbb{B})$

Input: a finite structure \mathbb{A}
Decide: Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Examples

$$
\begin{aligned}
\mathbb{B}= & \left(\{0,1\} ; R_{1}, R_{0}\right) \text { - linear equations mod } 2 \\
& R_{1}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
& R_{0}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\} \\
\mathbb{A}= & \left(\{a, b, c\} ; R_{0}(a, b, c), R_{1}(a, a, b), R_{1}(a, c, c)\right) \\
& a+b+c=0 \\
& a+a+b=1 \\
& a+c+c=1
\end{aligned}
$$

Examples

- $\mathbb{B}=(\{0,1,2\} ; \neq)$ - three-colorability
- $\mathbb{B}=\left(\{0,1\} ; R_{0}, R_{1}, R_{2}, R_{3}\right)$-3-SAT $R_{2}=\{0,1\}^{3} \backslash\{(1,1,0)\}$, etc...

Homomorphic Equivalence

\mathbb{B}, \mathbb{C} - templates

$$
\begin{aligned}
& h: B \rightarrow C \\
& g: C \rightarrow B
\end{aligned} \quad \text { homomorphisms }
$$

\mathbb{A} maps homomorphically to \mathbb{B} iff \mathbb{A} maps homomorphically to \mathbb{C}

$$
\mathbb{A} \longrightarrow \mathbb{B} \xrightarrow{\mathrm{h}} \mathbb{C}
$$

Fact: CSPs of homomorphically equivalent structures are the same.

Pp-definability

$\mathbb{B}=\left(\{0,1\} ; R_{1}, R_{0}\right)-$ linear equations $\bmod 2$

$$
\begin{aligned}
& R_{1}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
& R_{0}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\}
\end{aligned}
$$

$R(x, y) \Leftrightarrow \exists z R_{0}(z, z, z) \wedge R_{0}(x, y, z) \quad$ - pp-definition

$$
R=\left\{(x, y) \in\{0,1\}^{2} \mid x+y=0 \bmod 2\right\}
$$

$\mathbb{C}=\left(\{0,1\} ; R_{1}, R_{0}, R\right) \quad$ - pp-definable in \mathbb{B}
Fact: There is a polynomial time reduction from $\operatorname{CSP}(\mathbb{C})$ to $\operatorname{CSP}(\mathbb{B})$.
$\mathbb{A}=(\{a, b\} ; R(a, b)\} \quad \mathbb{A}^{\prime}=\left(\{a, b, \mathbf{c}\} ; R_{0}(c, c, c), R_{0}(a, b, c)\right\}$

Formulas

Formulas: $(x \wedge \bar{y}) \vee z$ (negation normal form)
3-term: $x \wedge \bar{y} \wedge z$ (literals can repeat)
3-clause: $x \vee \bar{y} \vee z$ (literals can repeat)
k-DNF: disjunction of k-terms $\left(\Sigma_{1, k}\right)$
k-CNF: conjunction of k-clauses $\left(\Pi_{1, k}\right)$
$\Sigma_{t, k}$: disjunctions of formulas from $\Pi_{t-1, k}$
$\Pi_{t, k}$: conjunctions of formulas from $\Sigma_{t-1, k}$
$\Sigma_{t}:$ sum of all $\Sigma_{t, k}($ depth $t)$

Frege Proof System

Rules of Frege: axiom, cut, introduction of conjunction, weakening

$$
\overline{A \vee \bar{A}} \quad \frac{C \vee A \quad D \vee \bar{A}}{C \vee D} \quad \frac{C \vee A \quad D \vee B}{C \vee D \vee(A \wedge B)} \quad \frac{C}{C \vee A}
$$

A proof of A from a set of formulas \mathcal{C} - a sequence of formulas:

- from \mathcal{C} or
- obtained from previous formulas using the rules

Fact. Frege is sound and implicationally complete.
Frege refutation - ends with an empty formula
size of a proof - number of symbols

Example Refutation

$$
\mathcal{C}=\{q, \bar{q} \vee p, \bar{p} \vee r, \bar{r}\}
$$

Proof Complexity of CSPs

CSP template \mathbb{B}

- Size of Frege proof that an instance \mathbb{A} is unsatisfiable? Polynomial? Exponential?
- Size of Frege proofs using only formulas of depth d ?
- Using only k-clauses? Possible?
\mathbb{C} pp-definable/homomorphically equivalent to \mathbb{B}
- "Small" proofs for \mathbb{B} imply "small" proofs for \mathbb{C} ?

Encoding

$\mathbb{C}=\left(\{0,1\} ; R_{1}, R_{0}, R\right)$

$$
\begin{aligned}
R_{1} & =\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
R_{0} & =\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\} \\
& R=\left\{(x, y) \in\{0,1\}^{2} \mid x+y=0 \bmod 2\right\}
\end{aligned}
$$

$\mathbb{A}=(\{a, b\} ; R(a, b)\}$
$\operatorname{CNF}(\mathbb{A}, \mathbb{C}):$

- $X(a, 0) \vee X(a, 1) \quad X(b, 0) \vee X(b, 1)$
- $\overline{X(a, 0)} \vee \overline{X(a, 1)} \overline{X(b, 0)} \vee \overline{X(b, 1)}$
- $\overline{X(a, 0)} \vee \overline{X(b, 1)} \overline{X(a, 1)} \vee \overline{X(b, 0)}$
$\operatorname{CNF}(\mathbb{A}, \mathbb{C})$ is satisfiable \Leftrightarrow there is a homomorphism from \mathbb{A} to \mathbb{C}

Encoding

$\mathbb{C}=\left(\{0,1\} ; R_{1}, R_{0}, R\right)$

$$
\begin{aligned}
R_{1} & =\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
R_{0} & =\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\} \\
& R=\left\{(x, y) \in\{0,1\}^{2} \mid x+y=0 \bmod 2\right\}
\end{aligned}
$$

$\mathbb{A}=(\{a, b\} ; R(a, b)\}$
$\operatorname{CNF}(\mathbb{A}, \mathbb{C}):$

- $X(a, 0) \vee X(a, 1) \quad X(b, 0) \vee X(b, 1) \quad|C|$-clauses
- $\overline{X(a, 0)} \vee \overline{X(a, 1)} \overline{X(b, 0)} \vee \overline{X(b, 1)} \quad$ 2-clauses
- $\overline{X(a, 0)} \vee \overline{X(b, 1)} \overline{X(a, 1)} \vee \overline{X(b, 0)} \quad \operatorname{maxar}(\mathbb{C})$-clauses
$\operatorname{CNF}(\mathbb{A}, \mathbb{C})$ is satisfiable \Leftrightarrow there is a homomorphism from \mathbb{A} to \mathbb{C}

Closure Under Reductions

Fix: \mathbb{C} pp-definable in \mathbb{B}
Polynomial-time computable transformation maps instances \mathbb{A} of $\operatorname{CSP}(\mathbb{C})$ to instances \mathbb{A}^{\prime} of $\operatorname{CSP}(\mathbb{B})$:

- \mathbb{A}^{\prime} is satisfiable $\Leftrightarrow \mathbb{A}$ is satisfiable
- size of \mathbb{A}^{\prime} is linear in the size of \mathbb{A}

Theorem
Frege refutation of $\operatorname{CNF}\left(\mathbb{A}^{\prime}, \mathbb{B}\right)$ of size s using formulas from $\Sigma_{t, k}$

$$
\Downarrow
$$

Frege refutation of $\operatorname{CNF}(\mathbb{A}, \mathbb{C})$ of size polynomial in the size of \mathbb{A}^{\prime} and s using formulas from $\Sigma_{t, l}$ where l is polynomial in k

Closure Under Reductions

Fix: \mathbb{C} pp-definable in \mathbb{B}
Polynomial-time computable transformation maps instances \mathbb{A} of $\operatorname{CSP}(\mathbb{C})$ to instances \mathbb{A}^{\prime} of $\operatorname{CSP}(\mathbb{B})$:

- \mathbb{A}^{\prime} is satisfiable $\Leftrightarrow \mathbb{A}$ is satisfiable
- size of \mathbb{A}^{\prime} is linear in the size of \mathbb{A}

Corollary

Frege refutation of $\operatorname{CNF}\left(\mathbb{A}^{\prime}, \mathbb{B}\right)$ of size s using k-DNFs

Frege refutation of $\operatorname{CNF}(\mathbb{A}, \mathbb{C})$ of size polynomial in the size of \mathbb{A}^{\prime} and s using l-DNFs where l is polynomial in k

Example

$$
\begin{aligned}
& \mathbb{C}=\left(\{0,1\} ; R_{1}, R_{0}, R\right) \quad \mathbb{B}=\left(\{0,1\} ; R_{1}, R_{0}\right) \\
& R(x, y) \Leftrightarrow \exists z R_{0}(z, z, z) \wedge R_{0}(x, y, z) \\
& \mathbb{A}=(\{a, b\} ; R(a, b)\} \quad \rightsquigarrow \quad \mathbb{A}^{\prime}=\left(\{a, b, \mathbf{c}\} ; R_{0}(c, c, c), R_{0}(a, b, c)\right\}
\end{aligned}
$$

$\Sigma_{t, k}$-Frege refutation of $\operatorname{CNF}\left(\mathbb{A}^{\prime}, \mathbb{B}\right)$ of size s
Substitution:

$$
\begin{aligned}
& X(c, 0):=(X(a, 0) \wedge X(b, 0)) \vee(X(a, 1) \wedge X(b, 1)) \\
& X(c, 1):=0
\end{aligned}
$$

Lemma. Each formula from $\operatorname{CNF}\left(\mathbb{A}^{\prime}, \mathbb{B}\right)$ after substitution is a logical consequence of a bounded number of formulas from $\operatorname{CNF}(\mathbb{A}, \mathbb{C})$.

Proof Complexity of CSPs

CSP template \mathbb{B}

- Size of Frege proof that an instance \mathbb{A} is unsatisfiable? Polynomial? Exponential?
- Size of Frege proofs using only formulas of depth d ?
- Using only k-clauses? Possible?
\mathbb{C} pp-definable/homomorphically equivalent to \mathbb{B}
- "Small" proofs for \mathbb{B} imply "small" proofs for \mathbb{C} ?

Bounded-width

\mathbb{B} has bounded width iff $\operatorname{CSP}(\mathbb{B})$ is solvable by local consistency
Lemma. If \mathbb{B} has bounded width then $\operatorname{CSP}(\mathbb{B})$ has Frege refutations using only k-clauses.

- Polynomial size refutations.
- Polynomial time algorithm.

Theorem. Otherwise $\operatorname{CSP}(\mathbb{B})$ does not have Frege refutations of bounded depth and subexponential size.

Bounded-width

\mathbb{B} has bounded width iff $\operatorname{CSP}(\mathbb{B})$ is solvable by local consistency
Lemma. If \mathbb{B} has bounded width then $\operatorname{CSP}(\mathbb{B})$ has Frege refutations using only k-clauses.

- Polynomial size refutations.
- Polynomial time algorithm.

Theorem. Otherwise $\operatorname{CSP}(\mathbb{B})$ does not have Frege refutations of bounded depth and subexponential size.

For every t there exists δ such that for each big enough n there is an n-variable instance of $\operatorname{CSP}(\mathbb{B})$ whose Σ_{t}-Frege refutations require size at least $2^{n^{\delta}}$.

Linear Equations

G - non-trivial finite Abelian group
$\mathbb{B}(G, 3)=\left(G ; R_{1}, \ldots, R_{n}\right)$
$R_{i}=\left\{\left(g_{1}, g_{2}, g_{3}\right) \mid z_{1} g_{1}+z_{2} g_{2}+z_{3} g_{3}=g\right\}$

Theorem [Barto, Kozik, Bulatov]. The following are equivalent:

- \mathbb{B} does not have bounded width,
- $\mathbb{B}(G, 3)$ is pp-interpretable in \mathbb{B}.

Proof Idea

Theorem. $\mathbb{B}(G, 3)$ has no Frege refutations of bounded depth and subexponential size.

- known for $G=\mathbb{Z}_{2}$ (Ben-Sasson 2002)
- Tseitin formulas based on expander graphs
\mathbb{B} has no bounded width
\Downarrow
$\mathbb{B}(G, 3)$ is pp-interpretable in \mathbb{B}
\Downarrow
refutations for $\operatorname{CSP}(\mathbb{B})$ translate to refutations for $\operatorname{CSP}(\mathbb{B}(G, 3))$
\Downarrow
$\operatorname{CSP}(\mathbb{B})$ cannot have "small size" refutations

Gap Theorem

Theorem

Exactly one of the following holds:

- either \mathbb{B} has Frege refutations using k-clauses,
- or \mathbb{B} has no Frege refutations of bounded depth and subexponential size.

Beyond Bounded Width

Theorem
$\operatorname{CSP}\left(\mathbb{B}\left(\mathbb{Z}_{2}, 3\right)\right)$ have Frege refutations of polynomial size.
closed under "standard CSP reductions"
\Downarrow
has an algebraic characterization

Open Problem. Characterize the class of CSPs that have Frege refutations of polynomial size.

Conclusions

- for most propositional proof systems:
polynomial size proofs $=$ bounded width;
- Frege goes beyond bounded width, how much?
- similar results for semi-algebraic proof systems;
- is proof complexity of approximating MAX CSP preserved by reductions?
efficient proofs that \mathbb{A}^{\prime} is "far from satisfiable" transform into efficient proofs that \mathbb{A} is "far from satisfiable"?

Thank you

