Proof Complexity of Constraint Satisfaction Problems joint work with Albert Atserias

Joanna Ochremiak

Université Paris Diderot - Paris 7

Aktuelle Themen in Logik und Datenbanktheorie, Berlin, 3rd May 2017

Constraint Satisfaction Problem

$$\mathbb{B} = (B; R_1, R_2, \dots, R_n)$$
 - a relational structure

 $R_i \subseteq B^{r_i}$

Notation: $(x, y) \in R \iff R(x, y)$

$$\mathbb{A} = (A; R_1^{\mathbb{A}}, R_2^{\mathbb{A}}, \dots, R_n^{\mathbb{A}}) \quad \mathbb{B} = (B; R_1^{\mathbb{B}}, R_2^{\mathbb{B}}, \dots, R_n^{\mathbb{B}})$$

$$h: A \to B \text{ - homomorphism iff}$$

$$(a_1, \dots, a_r) \in R_i^{\mathbb{A}} \implies (h(a_1), \dots, h(a_r)) \in R_i^{\mathbb{B}}$$

 $\mathbb{B} = (B; R_1, R_2, \dots, R_n) \text{ - a fixed finite template}$ **Problem:** CSP(\mathbb{B}) **Input:** a finite structure \mathbb{A} **Decide:** Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Examples

$$\mathbb{B} = (\{0, 1\}; R_1, R_0) \text{ - linear equations mod } 2$$
$$R_1 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 1 \mod 2\}$$
$$R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\}$$

$$A = (\{a, b, c\}; R_0(a, b, c), R_1(a, a, b), R_1(a, c, c))$$

$$a + b + c = 0$$

$$a + a + b = 1$$

$$a + c + c = 1$$

100

- >

Homomorphic Equivalence

\mathbb{B},\mathbb{C} - templates

$$\begin{array}{l} h \colon B \to C \\ g \colon C \to B \end{array} \qquad \text{homomorphisms} \end{array}$$

A maps homomorphically to $\mathbb B$ iff A maps homomorphically to $\mathbb C$

$$\mathbb{A} \longrightarrow \mathbb{B} \xrightarrow{h} \mathbb{C}$$

Fact: CSPs of homomorphically equivalent structures are the same.

Pp-definability

 $\mathbb{B} = (\{0, 1\}; R_1, R_0) \text{ - linear equations mod } 2$ $R_1 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 1 \mod 2\}$ $R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\}$ $R(x, y) \Leftrightarrow \exists z \, R_0(z, z, z) \land R_0(x, y, z) \quad \text{-pp-definition}$ $R = \{(x, y) \in \{0, 1\}^2 \mid x + y = 0 \mod 2\}$ $\mathbb{C} = (\{0, 1\}; R_1, R_0, R) \quad \text{-pp-definable in } \mathbb{B}$

Fact: There is a polynomial time reduction from $\text{CSP}(\mathbb{C})$ to $\text{CSP}(\mathbb{B})$. $\mathbb{A} = (\{a, b\}; R(a, b)\} \quad \rightsquigarrow \quad \mathbb{A}' = (\{a, b, \mathbf{c}\}; R_0(c, c, c), R_0(a, b, c)\}$

Formulas

Formulas: $(x \land \overline{y}) \lor z$ (negation normal form)

3-term: $x \wedge \overline{y} \wedge z$ (literals can repeat)

3-clause: $x \lor \overline{y} \lor z$ (literals can repeat)

k-DNF: disjunction of *k*-terms $(\Sigma_{1,k})$

k-CNF: conjunction of *k*-clauses $(\Pi_{1,k})$

 $\Sigma_{t,k}$: disjunctions of formulas from $\Pi_{t-1,k}$

 $\Pi_{t,k}$: conjunctions of formulas from $\Sigma_{t-1,k}$

 Σ_t : sum of all $\Sigma_{t,k}$ (depth *t*)

Frege Proof System

Rules of Frege: axiom, cut, introduction of conjunction, weakening

$$\frac{1}{A \vee \overline{A}} \qquad \frac{C \vee A \quad D \vee \overline{A}}{C \vee D} \qquad \frac{C \vee A \quad D \vee B}{C \vee D \vee (A \wedge B)} \qquad \frac{C}{C \vee A}$$

A proof of A from a set of formulas C - a sequence of formulas:

- from \mathcal{C} or
- obtained from previous formulas using the rules

Fact. Frege is sound and implicationally complete.

Frege refutation - ends with an empty formula

size of a proof - number of symbols

Example Refutation

$$\mathcal{C} = \{q, \ \overline{q} \lor p, \ \overline{p} \lor r, \ \overline{r}\}$$

Proof Complexity of CSPs

CSP template \mathbb{B}

- Size of Frege proof that an instance A is unsatisfiable? Polynomial? Exponential?
- Size of Frege proofs using only formulas of depth d?
- Using only *k*-clauses? Possible?
- ${\mathbb C}$ pp-definable/homomorphically equivalent to ${\mathbb B}$
 - "Small" proofs for \mathbb{B} imply "small" proofs for \mathbb{C} ?

Encoding

$$\mathbb{C} = (\{0,1\}; R_1, R_0, R)$$

$$R_1 = \{(x, y, z) \in \{0,1\}^3 \mid x + y + z = 1 \mod 2\}$$

$$R_0 = \{(x, y, z) \in \{0,1\}^3 \mid x + y + z = 0 \mod 2\}$$

$$R = \{(x, y) \in \{0,1\}^2 \mid x + y = 0 \mod 2\}$$

$$\mathbb{A} = (\{a, b\}; R(a, b)\}$$

 $CNF(\mathbb{A}, \mathbb{C})$:

•
$$X(a,0) \lor X(a,1)$$
 $X(b,0) \lor X(b,1)$

•
$$X(a,0) \lor X(a,1)$$
 $X(b,0) \lor X(b,1)$

• $X(a,0) \lor X(b,1)$ $X(a,1) \lor X(b,0)$

 $\text{CNF}(\mathbb{A},\mathbb{C})$ is satisfiable \Leftrightarrow there is a homomorphism from \mathbb{A} to \mathbb{C}

Encoding

 $\text{CNF}(\mathbb{A},\mathbb{C})$ is satisfiable \Leftrightarrow there is a homomorphism from \mathbb{A} to \mathbb{C}

Closure Under Reductions

Fix: \mathbb{C} pp-definable in \mathbb{B}

Polynomial-time computable transformation maps instances \mathbb{A} of $CSP(\mathbb{C})$ to instances \mathbb{A}' of $CSP(\mathbb{B})$:

- \mathbb{A}' is satisfiable $\Leftrightarrow \mathbb{A}$ is satisfiable
- size of \mathbb{A}' is linear in the size of \mathbb{A}

Theorem

Frege refutation of $CNF(\mathbb{A}', \mathbb{B})$ of size s using formulas from $\Sigma_{t,k}$

 \Downarrow

Frege refutation of $CNF(\mathbb{A}, \mathbb{C})$ of size polynomial in the size of \mathbb{A}' and s using formulas from $\Sigma_{t,l}$ where l is polynomial in k

Closure Under Reductions

Fix: \mathbb{C} pp-definable in \mathbb{B}

Polynomial-time computable transformation maps instances \mathbb{A} of $CSP(\mathbb{C})$ to instances \mathbb{A}' of $CSP(\mathbb{B})$:

- \mathbb{A}' is satisfiable $\Leftrightarrow \mathbb{A}$ is satisfiable
- size of \mathbb{A}' is linear in the size of \mathbb{A}

Corollary

Frege refutation of $CNF(\mathbb{A}', \mathbb{B})$ *of size s using k-DNFs*

Frege refutation of $CNF(\mathbb{A}, \mathbb{C})$ of size polynomial in the size of \mathbb{A}' and s using *l*-DNFs where *l* is polynomial in *k*

 \mathbb{I}

Example

$$\mathbb{C} = (\{0, 1\}; R_1, R_0, R) \quad \mathbb{B} = (\{0, 1\}; R_1, R_0)$$

$$R(x, y) \Leftrightarrow \exists z R_0(z, z, z) \land R_0(x, y, z)$$

$$\mathbb{A} = (\{a, b\}; R(a, b)\} \quad \rightsquigarrow \quad \mathbb{A}' = (\{a, b, \mathbf{c}\}; R_0(c, c, c), R_0(a, b, c)\}$$

$$\Sigma_{t,k}\text{-Frege refutation of CNF}(\mathbb{A}', \mathbb{B}) \text{ of size s}$$
Substitution:
$$Y(c, 0) \coloneqq (Y(a, 0) \land Y(b, 0)) \lor (Y(a, 1) \land Y(b, 1))$$

$$\begin{aligned} X(c,0) &\coloneqq (X(a,0) \land X(b,0)) \lor (X(a,1) \land X(b,1)) \\ X(c,1) &\coloneqq 0 \end{aligned}$$

Lemma. Each formula from $CNF(\mathbb{A}', \mathbb{B})$ after substitution is a logical consequence of a bounded number of formulas from $CNF(\mathbb{A}, \mathbb{C})$.

Proof Complexity of CSPs

CSP template \mathbb{B}

- Size of Frege proof that an instance A is unsatisfiable? Polynomial? Exponential?
- Size of Frege proofs using only formulas of depth d?
- Using only *k*-clauses? Possible?
- ${\mathbb C}$ pp-definable/homomorphically equivalent to ${\mathbb B}$
 - "Small" proofs for \mathbb{B} imply "small" proofs for \mathbb{C} ?

Bounded-width

 $\mathbb B$ has bounded width iff $CSP(\mathbb B)$ is solvable by local consistency

Lemma. If \mathbb{B} has bounded width then $CSP(\mathbb{B})$ has Frege refutations using only *k*-clauses.

- Polynomial size refutations.
- Polynomial time algorithm.

Theorem. Otherwise $CSP(\mathbb{B})$ does not have Frege refutations of bounded depth and subexponential size.

Bounded-width

 $\mathbb B$ has bounded width iff $CSP(\mathbb B)$ is solvable by local consistency

Lemma. If \mathbb{B} has bounded width then $CSP(\mathbb{B})$ has Frege refutations using only *k*-clauses.

- Polynomial size refutations.
- Polynomial time algorithm.

Theorem. Otherwise $CSP(\mathbb{B})$ does not have Frege refutations of bounded depth and subexponential size.

For every *t* there exists δ such that for each big enough *n* there is an *n*-variable instance of CSP(\mathbb{B}) whose Σ_t -Frege refutations require size at least $2^{n^{\delta}}$.

G - non-trivial finite Abelian group

 $\mathbb{B}(G,3) = (G; R_1, \dots, R_n)$ $R_i = \{(g_1, g_2, g_3) \mid z_1g_1 + z_2g_2 + z_3g_3 = g\}$

Theorem [Barto, Kozik, Bulatov]. The following are equivalent:

- \mathbb{B} does not have bounded width,
- $\mathbb{B}(G,3)$ is pp-interpretable in \mathbb{B} .

Proof Idea

Theorem. $\mathbb{B}(G,3)$ has no Frege refutations of bounded depth and subexponential size.

- known for $G = \mathbb{Z}_2$ (Ben-Sasson 2002)
- Tseitin formulas based on expander graphs

```
\mathbb{B} \text{ has no bounded width} \\ \Downarrow \\ \mathbb{B}(G,3) \text{ is pp-interpretable in } \mathbb{B} \\ \Downarrow \\ \text{refutations for } \operatorname{CSP}(\mathbb{B}) \text{ translate to refutations for } \operatorname{CSP}(\mathbb{B}(G,3)) \\ \Downarrow \\ \operatorname{CSP}(\mathbb{B}) \text{ cannot have "small size" refutations} \\ \end{bmatrix}
```

Theorem

Exactly one of the following holds:

- either \mathbb{B} has Frege refutations using k-clauses,
- or \mathbb{B} has no Frege refutations of bounded depth and subexponential size.

Theorem $CSP(\mathbb{B}(\mathbb{Z}_2,3))$ have Frege refutations of polynomial size.

closed under "standard CSP reductions" ↓ has an algebraic characterization

Open Problem. Characterize the class of CSPs that have Frege refutations of polynomial size.

Conclusions

• for most propositional proof systems:

polynomial size proofs = bounded width;

- Frege goes beyond bounded width, how much?
- similar results for semi-algebraic proof systems;
- is proof complexity of approximating MAX CSP preserved by reductions?

efficient proofs that \mathbb{A}' is "far from satisfiable" transform into efficient proofs that \mathbb{A} is "far from satisfiable"?

Thank you