Deciding FO-definable CSP instances joint work with Bartek Klin, Eryk Kopczyński and Szymon Toruńczyk

Joanna Ochremiak

University of Warsaw (moving to UPC Barcelona)

Dagstuhl, 24 July 2015

$$\mathbb{A} = \{a, b, c, \ldots\}$$
 - countably infinite set of *atoms*

Graph colorability

G - an **infinite**, undirected graph:

- vertices indexed by ordered pairs of distinct atoms: x_{ab} , x_{ad} , ...
- edges: $x_{ab} x_{bc}$, where *a* and *c* are distinct

Subgraph of G:

Question: Is the infinite graph G three-colorable?

Systems of linear equations over \mathbb{Z}_2

- *E* an **infinite** system of linear equations over \mathbb{Z}_2
 - variables indexed by ordered pairs of distinct atoms: x_{ab} , x_{ad} , ...
 - equations:

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct $x_{ab} + x_{bc} + x_{ca} = 0$, where *a*, *b* and *c* are distinct

Question: Does the system *E* have a solution?

Systems of linear equations over \mathbb{Z}_2

Constraint Satisfaction Problem

- A CSP *instance* $\mathbb{I} = (V, T, C)$:
 - a set of variables: $V = \{x, y, \ldots\}$
 - a set of their possible values: *T*
 - a set of constraints: \mathcal{C}

Constraint Satisfaction Problem

G - an infinite, undirected graph:

- vertices indexed by ordered pairs of distinct atoms: *x_{ab}*, *x_{ad}*, ...
- edges: $x_{ab} x_{bc}$, where *a* and *c* are distinct

Question: Is this graph three-colorable?

 \mathbb{I}_G - a CSP instance:

- variables: vertices $V = \{x_{ab} \mid a, b \in \mathbb{A} \text{ distinct}\}$
- values: possible colors $T = \{1, 2, 3\}$
- constraints: $C = \{ ((x_{ab}, x_{bc}), R) | a, b, c \in \mathbb{A} \text{ distinct} \}$

For each edge $x_{ab} - x_{bc}$ there is a constraint: $((x_{ab}, x_{bc}), R)$ $R = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}.$

Question: Is there a solution?

Classical Constraint Satisfaction Problem

 $\mathbb{T} = (T, R_1, R_2, \dots, R_n)$ - a fixed finite template

Problem: $CSP_{fin}(\mathbb{T})$ **Input:** a finite CSP instance I over T **Decide:** Does I have a solution?

What kind of instances do we consider?

Definable instances

- variables indexed by tuples of atoms
- constraints defined by a first-order formula over $(\mathbb{A}, =)$

Set of variables in \mathbb{I}_G : $\{x_{ab} \mid a, b \in \mathbb{A}, a \neq b\}.$

Definable instances

- variables indexed by tuples of atoms
- constraints defined by a first-order formula over $(\mathbb{A}, =)$

Set of variables in \mathbb{I}_G : $\{x_{ab} \mid a, b \in \mathbb{A}, a \neq b\}.$

Set of constraints in \mathbb{I}_G : { $((x_{ab}, x_{bc}), R) | a, b, c \in \mathbb{A}, a \neq b \land a \neq c \land b \neq c$ }.

 $\mathbb{T} = (T, R_1, R_2, \dots, R_n)$ - a fixed finite template **Problem:** $\text{CSP}_{inf}(\mathbb{T})$ **Input:** a definable CSP instance \mathbb{I} over \mathbb{T} **Decide:** Does \mathbb{I} have a solution?

Complexity

С	Exp(C)
Р	Exp
NP	NExp
L	PSpace

Theorem. If $CSP_{fin}(\mathbb{T})$ is C-complete then $CSP_{inf}(\mathbb{T})$ is Exp(C)-complete.

3-colorability of finite graphs – NP-complete ↓ 3-colorability of definable graphs – NExp-complete

Theorem. It is decidable whether a definable instance \mathbb{I} over a finite template \mathbb{T} has a solution.

Uses Ramsey theorem and topological dynamics.

Proof idea: Look for regular solutions.

Atom permutations

Aut(\mathbb{A} , =) acts on set of variables in \mathbb{I}_G : { $x_{ab} \mid a, b \in \mathbb{A}, a \neq b$ }.

 π - a permutation of atoms $\pi(x_{ab}) = x_{\pi(a)\pi(b)}$

Atom permutations

Aut(\mathbb{A} , =) acts on set of variables in \mathbb{I}_G : { $x_{ab} \mid a, b \in \mathbb{A}, a \neq b$ }.

 π - a permutation of atoms $\pi(x_{ab}) = x_{\pi(a)\pi(b)}$

Atom permutations

Aut(\mathbb{A} , =) acts on set of variables in \mathbb{I}_G : { $x_{ab} \mid a, b \in \mathbb{A}, a \neq b$ }.

 π - a permutation of atoms $\pi(x_{ab}) = x_{\pi(a)\pi(b)}$

Aut(
$$\mathbb{A}, =$$
) acts on the set of assignments $f : V \to T$
 $f \qquad x \mapsto t$
 $\pi \cdot f \qquad \pi(x) \mapsto t$

fixpoint \leftrightarrow *invariant* assignment

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

There is no invariant solution.

Fix a linear order on atoms (\mathbb{A}, \leq) isomorphic to (\mathbb{Q}, \leq) .

Aut(\mathbb{A}, \leq) acts on the set of assignments $f: V \to T$

fixpoint \leftrightarrow *monotone-invariant* assignment

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $\mathrm{Aut}(\mathbb{A},\leq)$

e < b < a < c < d

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

 $x_{ab} + x_{ba} = 1$, where *a* and *b* are distinct

- There are finitely many monotone-invariant assignments $f: V \rightarrow T$.
- Monotone-invariant assignments *f* : *V* → *T* can be represented in a finite way (by first order formulas using ≤).

Fact. It is decidable whether a definable instance \mathbb{I} over a finite template \mathbb{T} has a monotone-invariant solution.

$\text{CSP}_{inf}(\mathbb{T})$ is decidable

Theorem. A definable instance \mathbb{I} has a solution if and only if it has a monotone-invariant solution.

Theorem. A definable instance \mathbb{I} has a solution if and only if it has a monotone-invariant solution.

Proof. Sol(\mathbb{I}, \mathbb{T}) – the set of solutions (possibly empty)

Theorem. A definable instance \mathbb{I} has a solution if and only if it has a monotone-invariant solution.

Proof. Sol(\mathbb{I}, \mathbb{T}) – the set of solutions (possibly empty) Aut(\mathbb{A}, \leq) acts on Sol(\mathbb{I}, \mathbb{T}) (solutions are mapped to solutions)

Theorem. A definable instance \mathbb{I} has a solution if and only if it has a monotone-invariant solution.

Proof. Sol(\mathbb{I}, \mathbb{T}) – the set of solutions (possibly empty) Aut(\mathbb{A}, \leq) acts on Sol(\mathbb{I}, \mathbb{T}) (solutions are mapped to solutions) Sol(\mathbb{I}, \mathbb{T}) $\subseteq \mathbb{T}^{\mathbb{I}}$ – a compact space

Corollary. It is decidable whether a definable instance \mathbb{I} over a finite template \mathbb{T} has a solution.

Complexity

С	Exp(C)
Р	Exp
NP	NExp
L	PSpace

Theorem. If $CSP_{fin}(\mathbb{T})$ is C-complete then $CSP_{inf}(\mathbb{T})$ is Exp(C)-complete.

Locally Finite Constraint Satisfaction Problem

A template $\mathbb{T} = \{T, R_1, R_2, ...\}$ is *locally finite* is every relation of \mathbb{T} is finite.

Locally Finite Constraint Satisfaction Problem

 $\mathbb{T} = \{T, R_1, R_2, \ldots\}$ - locally finite, definable template

Problem: $CSP_{inf}(\mathbb{T})$ **Input:** a definable CSP instance \mathbb{I} over \mathbb{T} **Decide:** Does \mathbb{I} have a solution?

Theorem. For any definable, locally finite template \mathbb{T} , it is decidable whether a given definable instance \mathbb{I} over \mathbb{T} has a solution.

Open: What about definable instances over arbitrary definable tamplates?

Locally Finite Constraint Satisfaction Problem

 $\mathbb{T} = \{T, R_1, R_2, \ldots\}$ - locally finite, definable template

Problem: $CSP_{fin}(\mathbb{T})$ **Input:** a finite CSP instance I over T **Decide:** Does I have a solution?

Generalized graph colorability

G - a finite, undirected graph We treat atoms as colors.

To each vertex we assign a set of *n* possible colors.

Question: Can this graph be colored with atoms such that no two adjacent vertices share the same color?

Generalized graph colorability

G - a finite, undirected graph We treat atoms as colors.

To each vertex we assign a set of *n* possible colors.

Question: Can this graph be colored with atoms such that no two adjacent vertices share the same color?

 $\mathbb{T} = \{T, R_1, R_2, \ldots\}$ - locally finite, definable template

Problem: $CSP_{fin}(\mathbb{T})$ **Input:** a finite CSP instance I over T **Decide:** Does I have a solution?

Obviously decidable.

What about the complexity?

Theorem [Larose, Zádori; Barto, Kozik] A finite template \mathbb{T} has bounded width (solvable in Datalog) if and only if an instance $\mathbb{I}_{\mathbb{T}}^{bw}$ over \mathbb{T} has a solution.

 $\mathbb{I}^{bw}_{\mathbb{T}}$ has a solution iff \mathbb{T} has certain polymorphisms.

Corollary. A locally finite template \mathbb{T} has bounded width (solvable in Datalog) if and only if an instance $\mathbb{I}_{\mathbb{T}}^{bw}$ over \mathbb{T} has a solution.

Thank you