Proof Complexity of Constraint Satisfaction Problems joint work with Albert Atserias

Joanna Ochremiak

Université Paris Diderot - Paris 7

Finite and Algorithmic Model Theory Dagstuhl, 7th September 2017

Proof Complexity of Constraint Satisfaction Problems,

Every unsatisfiable instance has a small refutation.

There exist unsatisfiable instances that require big refutations.

Standard CSP reductions.

Proof Complexity of Constraint Satisfaction Problems

Constraint Satisfaction Problems

Problem: $CSP(\mathbb{B})$ **Input:** a finite relational structure \mathbb{A} **Decide:** Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Examples

$$\mathbb{B} = (\{0, 1\}; R_1, R_0) \text{ - linear equations mod } 2$$
$$R_1 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 1 \mod 2\}$$
$$R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\}$$

$$A = (\{a, b, c\}; R_0(a, b, c), R_1(a, a, b), R_1(a, c, c))$$

$$a + b + c = 0$$

$$a + a + b = 1$$

$$a + c + c = 1$$

100

- >

Propositional Proof Systems

- $\ensuremath{\mathcal{C}}$ a set of propositional formulas
- ${\it E}$ a propositional formula
- A proof of *E* from the set C is a sequence of formulas:
 - from \mathcal{C} or
 - obtained from previous formulas using some rules.

Resolution

 $\mathcal C$ - a set of clauses (disjunctions of literals, e.g. $p \lor q \lor r)$ E - a clause

A resolution proof of *E* from the set C is a sequence of clauses:

- from \mathcal{C} or
- obtained from previous formulas using the rules:

$$\frac{C \lor p \quad D \lor \overline{p}}{C \lor D} \qquad \qquad \frac{C}{C \lor p}$$

Example

$$\mathcal{C} = \{q, \ \overline{q} \lor p, \ \overline{p} \lor r, \ \overline{r}\}$$

refutation - ends with a contradiction (proof of unsatisfiability)

Joanna Ochremiak

Proof Complexity of Constraint Satisfaction Problems,

"Succinct" resolution refutations

A template \mathbb{B} admits "succinct" resolution refutations:

Take any instance \mathbb{A} of $CSP(\mathbb{B})$ such that $\mathbb{A} \not\rightarrow \mathbb{B}$. \downarrow $CNF(\mathbb{A}, \mathbb{B})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B}$ (fixed encoding) \downarrow $CNF(\mathbb{A}, \mathbb{B})$ has a "succinct" resolution refutation \vdots

"succinct" \rightsquigarrow only clauses with at most *k* variables (Ptime algorithm)

Sum-of-Squares

Positivstellensatz [Krivine'64, Stengle'74].

Example.

$$q(x, y) = y + x^2 + 2 = 0, \quad p(x, y) = x - y^2 + 3 \ge 0$$

$$tq + s_1p + s = -1$$

 $t = -6, \quad s_1 = 2, \quad s = \frac{1}{3} + 2(y + \frac{3}{2})^2 + 6(x - \frac{1}{6})^2$

A template \mathbb{B} admits "succinct" SOS refutations:

Take any instance \mathbb{A} of $CSP(\mathbb{B})$ such that $\mathbb{A} \not\rightarrow \mathbb{B}$. \downarrow $INEQ(\mathbb{A}, \mathbb{B})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B}$ (fixed encoding) \downarrow $INEQ(\mathbb{A}, \mathbb{B})$ has a "succinct" resolution refutation \vdots

"succinct" \rightsquigarrow degree at most *d* (Ptime algorithm)

 $\mathcal{P}' \leq_{CSP} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}' .

DNF-resolution bounded-depth Frege Frege Sherali-Adams Sum-of-Squares bounded-degree Lovász-Schrijver Lovász-Schrijver

 $\mathcal{P}' \leq_{CSP} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}' .

DNF-resolution bounded-depth Frege

Sherali-Adams Sum-of-Squares

 $\mathcal{P}' \leq_{CSP} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}' .

Theorem [Chan]. Linear SOS degree lower bound for 3LIN(G).

Theorem [Ben-Sasson $+\epsilon$]. Exponential size lower bound for 3LIN(G), for bounded-depth Frege.

 $\mathcal{P}' \leq_{CSP} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}' .

Homomorphic Equivalence

\mathbb{B},\mathbb{C} - templates

$$\begin{array}{l} h \colon B \to C \\ g \colon C \to B \end{array}$$
 homomorphisms

A maps homomorphically to $\mathbb B$ iff A maps homomorphically to $\mathbb C$

$$\mathbb{A} \longrightarrow \mathbb{B} \xrightarrow{h} \mathbb{C}$$

Fact: CSPs of homomorphically equivalent structures are the same.

Pp-definability

$$\mathbb{B} = (B; R_1, R_2, \dots, R_n) \text{ - a template}$$
$$R'_1, \dots, R'_m \text{ - defined using } \exists, \land, = (pp-definition)$$
$$\mathbb{C} = (B; R'_1, \dots, R'_m) \text{ - pp-definable from } \mathbb{B}$$

Fact: There is a polynomial time reduction from $CSP(\mathbb{C})$ to $CSP(\mathbb{B})$.

Algebra

 $\mathcal{P}' \leq_{CSP} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP:

- homomorphic equivalence
- pp-interpretability
- adding constants to a core

Theorem. If $\mathcal{P}' \leq_{CSP} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}' .

Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under \leq_{CSP} has an algebraic characterisation.

Theorem [Bulatov; Zhuk]. CSPs solvable in PTime are characterised by f(y, x, y, z) = f(x, y, z, x).

DNF-resolution bounded-depth Frege Sherali-Adams Lasserre/SOS Frege bounded-degree Lovász-Schrijver Lovász-Schrijver

DNF-resolution bounded-depth Frege $f_3(x, x, y) = f_4(x, x, x, y)$ (WNU) Sherali-Adams [Kozik, Krokhin, Valeriote, Willard] Lasserre/SOS Frege bounded-degree Lovász-Schrijver Lovász-Schrijver

bounded-width resolution DNF-resolution bounded-depth Frege $f_3(x, x, y) = f_4(x, x, x, y)$ (WNU) Sherali-Adams [Kozik, Krokhin, Valeriote, Willard] Lasserre/SOS Frege bounded-degree Lovász-Schrijver Lovász-Schrijver

bounded-width resolution DNF-resolution bounded-depth Frege Sherali-Adams Lasserre/SOS Frege bounded-degree Lovász-Schrijver Lovász-Schrijver

Theorem [Grigoriev, Hirsch, Pasechnik; Atserias]. Unsatisfiable system of linear equations mod 2 with *n* variables and *m* equations has an LS refutation of degree 6 and size polynomial in *n* and *m*.

Standard CSP reductions.

Proof Complexity of Constraint Satisfaction Problems