Proof Complexity of Constraint Satisfaction Problems

 joint work with Albert AtseriasJoanna Ochremiak

Université Paris Diderot - Paris 7
Finite and Algorithmic Model Theory Dagstuhl, 7th September 2017

(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Every unsatisfiable instance has a small refutation.
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

There exist unsatisfiable instances that require big refutations.
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Standard CSP reductions.

Constraint Satisfaction Problems

Problem: CSP(\mathbb{B})

Input: a finite relational structure \mathbb{A}
Decide: Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Examples

$$
\begin{aligned}
\mathbb{B}= & \left(\{0,1\} ; R_{1}, R_{0}\right)-\text { linear equations mod } 2 \\
& R_{1}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=1 \bmod 2\right\} \\
& R_{0}=\left\{(x, y, z) \in\{0,1\}^{3} \mid x+y+z=0 \bmod 2\right\} \\
\mathbb{A}= & \left(\{a, b, c\} ; R_{0}(a, b, c), R_{1}(a, a, b), R_{1}(a, c, c)\right) \\
& a+b+c=0 \\
& a+a+b=1 \\
& a+c+c=1
\end{aligned}
$$

Examples

- $\mathbb{B}=(\{0,1,2\} ; \neq)$ - three-colorability
- $\mathbb{B}=\left(\{0,1\} ; R_{0}, R_{1}, R_{2}, R_{3}\right)$-3-SAT $R_{2}=\{0,1\}^{3} \backslash\{(1,1,0)\}$, etc...

Propositional Proof Systems

\mathcal{C} - a set of propositional formulas
E - a propositional formula
A proof of E from the set \mathcal{C} is a sequence of formulas:

- from \mathcal{C} or
- obtained from previous formulas using some rules.

Resolution

\mathcal{C} - a set of clauses (disjunctions of literals, e.g. $p \vee q \vee r$)
E - a clause

A resolution proof of E from the set \mathcal{C} is a sequence of clauses:

- from \mathcal{C} or
- obtained from previous formulas using the rules:

$$
\frac{C \vee p \quad D \vee \bar{p}}{C \vee D} \quad \frac{C}{C \vee p}
$$

Example

$$
\mathcal{C}=\{q, \bar{q} \vee p, \bar{p} \vee r, \bar{r}\}
$$

refutation - ends with a contradiction (proof of unsatisfiability)

"Succinct" resolution refutations

A template \mathbb{B} admits "succinct" resolution refutations:

Take any instance \mathbb{A} of $\operatorname{CSP}(\mathbb{B})$ such that $\mathbb{A} \nrightarrow \mathbb{B}$.
\downarrow
$\operatorname{CNF}(\mathbb{A}, \mathbb{B})$ satisfiable iff $\mathbb{A} \rightarrow \mathbb{B} \quad$ (fixed encoding)
\downarrow
$\operatorname{CNF}(\mathbb{A}, \mathbb{B})$ has a "succinct" resolution refutation \because
"succinct" \rightsquigarrow only clauses with at most k variables (Ptime algorithm)

Sum-of-Squares

Positivstellensatz [Krivine'64, Stengle'74].

$$
\begin{gathered}
q_{1}(\bar{x})=0, \ldots, q_{n}(\bar{x})=0, \quad p_{1}(\bar{x}) \geq 0, \ldots, p_{m}(\bar{x}) \geq 0 \text { unsat. in } \mathbb{R} \\
\mathbb{V}
\end{gathered}
$$

$$
\sum t_{i}(\bar{x}) q_{i}(\bar{x})+\sum s_{j}(\bar{x}) p_{j}(\bar{x})+s(\bar{x})=-1, \text { where } s \text { and } s_{j} \text { 's are sos }
$$

Example.
$q(x, y)=y+x^{2}+2=0, \quad p(x, y)=x-y^{2}+3 \geq 0$
$t q+s_{1} p+s=-1$
$t=-6, \quad s_{1}=2, \quad s=\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}$

"Succinct" SOS refutations

A template \mathbb{B} admits "succinct" SOS refutations:

Take any instance \mathbb{A} of $\operatorname{CSP}(\mathbb{B})$ such that $\mathbb{A} \nrightarrow \mathbb{B}$. $\stackrel{\downarrow}{\operatorname{INEQ}(\mathbb{A}, \mathbb{B}) \text { satisfiable iff } \mathbb{A}} \rightarrow \boldsymbol{B} \quad$ (fixed encoding)
$\operatorname{INEQ}(\mathbb{A}, \mathbb{B})$ has a "succinct" resolution refutation \because
"succinct" \rightsquigarrow degree at most d (Ptime algorithm)

Reductions

$\mathcal{P}^{\prime} \leq{ }_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution
bounded-depth Frege
Frege
Sherali-Adams
Sum-of-Squares
bounded-degree Lovász-Schrijver
Lovász-Schrijver

Reductions

$\mathcal{P}^{\prime} \leq{ }_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution
bounded-depth Frege
Sherali-Adams
Sum-of-Squares

Reductions

$\mathcal{P}^{\prime} \leq_{\text {CSP }} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution
bounded-depth Frege
Sherali-Adams
Sum-of-Squares

Lower Bounds

Theorem [Chan]. Linear SOS degree lower bound for $3 \operatorname{LIN}(G)$.

Theorem [Ben-Sasson $+\epsilon$]. Exponential size lower bound for $3 \operatorname{LIN}(G)$, for bounded-depth Frege.

Reductions

$\mathcal{P}^{\prime} \leq{ }_{C S P} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP
Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

DNF-resolution
bounded-depth Frege
Sherali-Adams
Sum-of-Squares

Homomorphic Equivalence

\mathbb{B}, \mathbb{C} - templates

$$
\begin{aligned}
& h: B \rightarrow C \\
& g: C \rightarrow B
\end{aligned} \quad \text { homomorphisms }
$$

\mathbb{A} maps homomorphically to \mathbb{B} iff \mathbb{A} maps homomorphically to \mathbb{C}

$$
\mathbb{A} \longrightarrow \mathbb{B} \xrightarrow{\mathrm{h}} \mathbb{C}
$$

Fact: CSPs of homomorphically equivalent structures are the same.

Pp-definability

$\mathbb{B}=\left(B ; R_{1}, R_{2}, \ldots, R_{n}\right)$ - a template
$R_{1}^{\prime}, \ldots, R_{m}^{\prime}$ - defined using $\exists, \wedge,=(\mathrm{pp}-$ definition $)$
$\mathbb{C}=\left(B ; R_{1}^{\prime}, \ldots, R_{m}^{\prime}\right)-$ pp-definable from \mathbb{B}
Fact: There is a polynomial time reduction from $\operatorname{CSP}(\mathbb{C})$ to $\operatorname{CSP}(\mathbb{B})$.

Algebra

$\mathcal{P}^{\prime} \leq_{\text {CSP }} \mathcal{P}$ - "classical" reduction preserving the complexity of CSP:

- homomorphic equivalence
- pp-interpretability
- adding constants to a core

Theorem. If $\mathcal{P}^{\prime} \leq_{C S P} \mathcal{P}$ then "succinct" refutations for \mathcal{P} imply "succinct" refutations for \mathcal{P}^{\prime}.

Theorem [Jeavons et al.; Barto, Opršal, Pinsker]. Class of CSP templates closed under $\leq_{C S P}$ has an algebraic characterisation.

Theorem [Bulatov; Zhuk]. CSPs solvable in PTime are characterised by $f(y, x, y, z)=f(x, y, z, x)$.

Classes of CSPs with succint refutations in:

DNF-resolution
bounded-depth Frege
Sherali-Adams
Lasserre/SOS
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver

have algebraic characterisations.

Classes of CSPs with succint refutations in:

have algebraic characterisations.

Classes of CSPs with succint refutations in:

DNF-resolution bounded-depth Frege $\quad f_{3}(x, x, y)=f_{4}(x, x, x, y)$ (WNU)
Sherali-Adams
[Kozik, Krokhin, Valeriote, Willard]
Lasserre/SOS
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver

have algebraic characterisations.

Classes of CSPs with succint refutations in:
bounded-width resolution
DNF-resolution
bounded-depth Frege $\quad f_{3}(x, x, y)=f_{4}(x, x, x, y)$ (WNU)
Sherali-Adams
[Kozik, Krokhin, Valeriote, Willard]
Lasserre/SOS
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver
have algebraic characterisations.

Classes of CSPs with succint refutations in:

bounded-width resolution
DNF-resolution
bounded-depth Frege
Sherali-Adams
Lasserre/SOS
Frege
bounded-degree Lovász-Schrijver
Lovász-Schrijver

have algebraic characterisations.

Theorem [Grigoriev, Hirsch, Pasechnik; Atserias]. Unsatisfiable system of linear equations mod 2 with n variables and m equations has an LS refutation of degree 6 and size polynomial in n and m.
(CSP problem)

"Succinct" proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable?

Standard CSP reductions.

