Proof Complexity Meets Algebra

Albert Atserias, Joanna Ochremiak

ICALP' 17, Warsaw
11th July 2017

(CSP problem)
 \mathcal{P}
 (proof system)

Proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable.
(CSP problem)

\mathcal{P} 3-COL

(proof system)
\mathcal{S}
resolution

Proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable.
Resolution proofs of a graph being not 3-colorable.

(CSP problem)
 \mathcal{P}
 (proof system)

Proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable.

Standard CSP reductions.

Proof Systems

- propositional
- algebraic / semi-algebraic

Propositional Proof Systems

\mathcal{C} - a set of propositional formulas
E - a propositional formula
A proof of E from the set \mathcal{C} is a sequence of formulas:

- from \mathcal{C} or
- obtained from previous formulas using some rules.

Resolution

\mathcal{C} - a set of clauses (disjunctions of literals, e.g. $p \vee q \vee r$)
E - a clause
A resolution proof of E from the set \mathcal{C} is a sequence of clauses:

- from \mathcal{C} or
- obtained from previous formulas using the rules:

$$
\frac{C \vee p \quad D \vee \bar{p}}{C \vee D} \quad \frac{C}{C \vee p}
$$

Fact. Resolution is sound and implicationally complete.

Example

$$
\mathcal{C}=\{q, \bar{q} \vee p, \bar{p} \vee r, \bar{r}\}
$$

refutation - ends with an empty formula (proof of unsatisfiability)

Constraint Satisfaction Problems

CSP is a class of problems which contains:

- k-satisfiability,
- k-colorability,
- solving linear equations over finite fields,
- etc.

Goal: Understand proof complexity of problems in this class.

Proof Complexity of CSP

\mathcal{P} - problem from the CSP class

- Size of proofs that an instance of \mathcal{P} is unsatisfiable? Polynomial? Exponential?
- Size of proofs using only some kind of formulas?

Goal: Systematic approach via theory of reductions.

2-SAT

$$
(q \vee r) \wedge(\bar{r} \vee p) \wedge(\bar{p}) \quad\{q \vee r, \bar{r} \vee p, \bar{p}\}
$$

Fact. 2-SAT formulas have resolution refutations using only 2-clauses (clauses with at most 2 literals).

- polynomial size refutations
- polynomial time algorithm

3-SAT

Theorem [Beame et al.]. 3-SAT formulas do not have bounded depth Frege refutations of subexponential size.
bounded depth Frege - the maximum number of alternations between conjunctions and disjunctions in a formula is bounded

Efficient Algorithms for CSP

resolution using k-clauses

Datalog
\}
local consistency

Sum-of-Squares proof system
semidefinite programming relaxations

Reductions

$\mathcal{P} \leq_{C S P} \mathcal{P}^{\prime}$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P} \leq_{C S P} \mathcal{P}^{\prime}$ then "small" refutations for \mathcal{P}^{\prime} imply
"small" refutations for \mathcal{P}.

Gap Theorem

Theorem. Exactly one of the following holds for a CSP problem \mathcal{P} :

- either \mathcal{P} has resolution refutations using k-clauses,
- or \mathcal{P} has no Frege refutations of bounded depth and subexponential size.

Lemma. Unsatisfiable systems of linear equations over \mathbb{Z}_{q} have no Frege refutations of bounded depth and subexponential size.

If $\operatorname{LIN}\left(\mathbb{Z}_{q}\right) \leq_{C S P} \mathcal{P}$ then \mathcal{P} has no Frege refutations of bounded depth and subexponential size.

Otherwise \mathcal{P} has resolution refutations using k-clauses.

Efficient proofs for $\operatorname{LIN}\left(\mathbb{Z}_{q}\right)$

Lemma. Unsatisfiable systems of linear equations over \mathbb{Z}_{q} are hard for many proof systems.

Proof system which is well-behaved with respect to CSP reductions and has efficient unsatisfiability proofs for $\operatorname{LIN}\left(\mathbb{Z}_{q}\right)$?

Theorem. Bounded degree Lovász-Schrijver is such a proof system.
Question. Characterise CSPs with efficient proofs in bounded degree Lovász-Schrijver.

(CSP problem)
 \mathcal{P}
 (proof system)

Proofs in \mathcal{S} of the fact that an instance of \mathcal{P} is unsatisfiable.

Standard CSP reductions.

