Proof Complexity Meets Algebra

Albert Atserias, Joanna Ochremiak

ICALP'17, Warsaw 11th July 2017

Albert Atserias, Joanna Ochremiak

Proof Complexity Meets Algebra

Proofs in S of the fact that an instance of P is unsatisfiable.

Proofs in S of the fact that an instance of \mathcal{P} is unsatisfiable.

Resolution proofs of a graph being not 3-colorable.

Proofs in S of the fact that an instance of P is unsatisfiable.

Standard CSP reductions.

Proof Systems

- propositional
- algebraic / semi-algebraic

Propositional Proof Systems

- $\ensuremath{\mathcal{C}}$ a set of propositional formulas
- ${\it E}$ a propositional formula
- A proof of *E* from the set C is a sequence of formulas:
 - from \mathcal{C} or
 - obtained from previous formulas using some rules.

Resolution

 $\mathcal C$ - a set of clauses (disjunctions of literals, e.g. $p \lor q \lor r)$ E - a clause

A resolution proof of E from the set C is a sequence of clauses:

- from \mathcal{C} or
- obtained from previous formulas using the rules:

$$\frac{C \lor p \quad D \lor \overline{p}}{C \lor D} \qquad \qquad \frac{C}{C \lor p}$$

Fact. Resolution is sound and implicationally complete.

Example

$$\mathcal{C} = \{q, \ \overline{q} \lor p, \ \overline{p} \lor r, \ \overline{r}\}$$

refutation - ends with an empty formula (proof of unsatisfiability)

Constraint Satisfaction Problems

CSP is a class of problems which contains:

- *k*-satisfiability,
- *k*-colorability,
- solving linear equations over finite fields,
- etc.

Goal: Understand proof complexity of problems in this class.

Proof Complexity of CSP

- ${\mathcal P}$ problem from the CSP class
 - Size of proofs that an instance of \mathcal{P} is unsatisfiable? Polynomial? Exponential?
 - Size of proofs using only some kind of formulas?

Goal: Systematic approach via theory of reductions.

$(q \vee r) \wedge (\overline{r} \vee p) \wedge (\overline{p}) \quad \Longleftrightarrow \quad \{q \vee r, \ \overline{r} \vee p, \ \overline{p}\}$

Fact. 2-SAT formulas have resolution refutations using only 2-clauses (clauses with at most 2 literals).

- polynomial size refutations
- polynomial time algorithm

Theorem [Beame et al.]. 3-SAT formulas do not have bounded depth Frege refutations of subexponential size.

bounded depth Frege - the maximum number of alternations between conjunctions and disjunctions in a formula is bounded

Efficient Algorithms for CSP

resolution using k-clauses Datalog local consistency

Sum-of-Squares proof system \$ semidefinite programming relaxations

 $\mathcal{P} \leq_{CSP} \mathcal{P}'$ - "classical" reduction preserving the complexity of CSP

Theorem. If $\mathcal{P} \leq_{CSP} \mathcal{P}'$ then "small" refutations for \mathcal{P}' imply "small" refutations for \mathcal{P} .

Gap Theorem

Theorem. Exactly one of the following holds for a CSP problem \mathcal{P} :

- either \mathcal{P} has resolution refutations using *k*-clauses,
- or \mathcal{P} has no Frege refutations of bounded depth and subexponential size.

Lemma. Unsatisfiable systems of linear equations over \mathbb{Z}_q have no Frege refutations of bounded depth and subexponential size.

If $\text{LIN}(\mathbb{Z}_q) \leq_{CSP} \mathcal{P}$ then \mathcal{P} has no Frege refutations of bounded depth and subexponential size.

Otherwise \mathcal{P} has resolution refutations using *k*-clauses.

Lemma. Unsatisfiable systems of linear equations over \mathbb{Z}_q are hard for many proof systems.

Proof system which is well-behaved with respect to CSP reductions and has efficient unsatisfiability proofs for $LIN(\mathbb{Z}_q)$?

Theorem. Bounded degree Lovász-Schrijver is such a proof system.

Question. Characterise CSPs with efficient proofs in bounded degree Lovász-Schrijver.

Proofs in S of the fact that an instance of P is unsatisfiable.

Standard CSP reductions.