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Algorithm analysis through proof complexity

Objective: Identify tractable instances of hard problems.

Algorithms that compute:

an answer and

a certificate/proof that the answer is correct.

Approach: Study algorithms by analysing proof systems.
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The graph isomorphism problem

Input: graphs G and H
Question: are G and H isomorphic?
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Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,

Step 2: solve the system.

Step 2: determine if there EXISTS a solution.

Step 2: APPROXIMATELY determine if there exists a solution.

We only want to know if there EXISTS an isomorphism.
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Step 1: equations

Input: graphs G and H
Compute: a system of equations ISO(G,H)

x2
vw − xvw = 0 for every v ∈ V(G),w ∈ V(H)∑

w∈V(H) xvw − 1 = 0 for every v ∈ V(G)∑
v∈V(G) xvw − 1 = 0 for every w ∈ V(H)

xvwxv′w′ = 0 if (v, v′) ∈ E(G), (w,w′) 6∈ E(H)

xvwxv′w′ = 0 if (v, v′) 6∈ E(G), (w,w′) ∈ E(H)

SOLUTION ⇐⇒ ISOMORPHISM

Solving systems of polynomial equations is intractable.
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Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,

Step 2: solve the system.

Step 2: determine if there exists a solution.

Step 2: APPROXIMATELY determine if there exists a solution.

We only want to know if there EXISTS an isomorphism.

We can approximate using proof systems!
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Step 2: computing a proof

Step 2: computing a proof that there is no solution

always correct

Output:
if the algorithm finds a proof→ “no isomorphism”

otherwise→ “I do not know”

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output “no isomorphism”
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Proofs

Step 2: compute a proof that there is no solution

different type of proof↔ different algorithm

Algorithms: Techniques:

linear programming hierarchy of algorithms
Gröbner basis hierarchy of algorithms
semidefinite programming hierarchy of algorithms
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Semidefinite Proofs

{
x2 + y + 2 = 0
x− y2 + 3 = 0

A semidefinite proof that there is no solution:

−6·(x2 + y + 2)+2·(x− y2 + 3)+
1
3
+2
(

y +
3
2

)2

+6
(

x− 1
6

)2

= −1

arbitrary polynomials sum of squares of polynomials

degree of the proof→ max degree of polynomials on the left
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Finding Semidefinite Proofs
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Proofs

Step 2: compute a proof that there is no solution

restriction of semidefinite programming
finding a proof: linear inequalities

Algorithms: Techniques:

linear programming hierarchy of algorithms
Gröbner basis hierarchy of algorithms
semidefinite programming hierarchy of algorithms

degree of polynomials computing a generating set
in the proof in the ideal of polynomials
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Proofs

Step 2: compute a proof that there is no solution

restriction of semidefinite programming
finding a proof: linear inequalities

Algorithms: Techniques:

linear programming hierarchy of algorithms
Gröbner basis hierarchy of algorithms
semidefinite programming hierarchy of algorithms

computing a generating set degree of polynomials
in the ideal of polynomials in the proof
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Summary of the setting

Algebraic and mathematical-programming techniques:

Step 1: encode an instance as a system of equations,

Step 2: compute a proof that there is no solution

always correct
Output:

if the algorithm finds a proof→ “no isomorphism”

otherwise→ “I do not know”

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output “no isomorphism”
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Known before

Theorem [Babai, Kučera’80]. Linear programming degree 2
distinguishes almost all graphs.

outputs “I do not know”

It does not distinguish:
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Known before

For every pair of non-isomorphic graphs G and H:

Linear programming degree d distinguishes G and H.ww� [Berkholz, Grohe’15]

Gröbner basis degree d distinguishes G and H.ww� [Berkholz’18]

Semidefinite programming degree 2d distinguishes G and H.

Does semidefinite programming distinguish more graphs than
linear programming?
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Hope: yes!

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation
Linear programming: very bad approximation
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All algorithms are equally powerful!

For every pair of non-isomorphic graphs G and H:

Linear programming degree d distinguishes G and H.ww� [Berkholz, Grohe’15]

Gröbner basis degree d distinguishes G and H.ww� [Berkholz’18]

Semidefinite programming degree 2d distinguishes G and H.ww� this work

Linear programming degree cd distinguishes G and H.

constant independent from d
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All algorithms are equally powerful!

Theorem. For the graph isomorphism problem all three algorithmic
techniques are equally powerful, up to a constant factor loss in the
degree.

Proof: Finding a semidefinite proof is expressible in counting logic.

Remark: For linear programming and Gröbner basis, showed
independently in [Grädel, Grohe, Pago, Pakusa’18].
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Collapse

For every pair of non-isomorphic graphs G and H:

Semidefinite programming degree 2d distinguishes G and H.ww�
Counting logic Ccd

∞ω distinguishes G and H.~w� [Atserias, Maneva’13] [Malkin’14]

Linear programming degree cd distinguishes G and H.
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Finding semidefinite proofs in Cω
∞ω

Fact. Existence of semidefinite proofs reduces to feasibility of SDPs.

Is polytop ∩ cone of positive semidefinite matrices non-empty?

Theorem [Anderson, Dawar, Holm’15] [Dawar, Wang’17].
Approximate feasibility of bounded SDPs is expressible in FPC.

Key: The ellipsoid method for SDPs is expressible in FPC.

Theorem. The ellipsoid method for arbitrary class of bounded convex
sets is expressible in FPC.

Theorem. Feasibility of SDPs is expressible in Cω
∞ω.
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