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Joanna Ochremiak

University of Warsaw

Verification Seminar, Oxford
2nd June 2015

Joanna Ochremiak Locally Finite Constraint Satisfaction Problems,



Outline

1 Constraint Satisfaction Problems
Examples
Definition
Locally finite templates

2 Decidability of locally finite CSPs
Invariant solutions
Monotone-invariant solutions

3 Complexity

4 Descriptive complexity

Joanna Ochremiak Locally Finite Constraint Satisfaction Problems,



Atoms

A = {a, b, c, . . .} - countably infinite set of atoms

Joanna Ochremiak Locally Finite Constraint Satisfaction Problems,



Graph colorability

G - an infinite, undirected graph:

vertices indexed by ordered pairs of distinct atoms: xab, xad, ...

edges: xab — xbc, where a and c are distinct

Subgraph of G:

xab

xbc xca

Question: Is the infinite graph G three-colorable?
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Systems of linear equations over Z2

E - an infinite system of linear equations over Z2

variables indexed by ordered pairs of distinct atoms: xab, xad, ...

equations:

xab + xba = 1, where a and b are distinc

xab + xbc + xca = 0,where a, b and c are distinct

Question: Does system E have a solution?
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Systems of linear equations over Z2

ab+ba = 1
ab +bc+ca = 0

ba +ac+cb = 0
bc +cd +db = 0

ca +ae +ec = 0
ac +cd +da = 0

cb +be+ec = 0
db +be +ed = 0

ae +ed +da = 0
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 1
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Generalized graph colorability

G - a finite, undirected graph
We treat atoms as colors.
To each vertex we assign a set of n possible colors.

{a b}

{a c}

{b c} {d e}

{d e}

{b c}

Question: Can this graph be colored with atoms such that no two
adjacent vertices share the same color?

Joanna Ochremiak Locally Finite Constraint Satisfaction Problems,



Generalized graph colorability

G - a finite, undirected graph
We treat atoms as colors.
To each vertex we assign a set of n possible colors.

a {a b}

c{a c}

b{b c} d {d e}

e {d e}

c {b c}

Question: Can this graph be colored with atoms such that no two
adjacent vertices share the same color?
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Constraint Satisfaction Problem

A CSP instance I = (V,T, C):

a set of variables: V = {x, y, . . .}
a set of their possible values: T

a set of constraints: C

A constraint is ... a pair (x̄,R), where x̄ is an n-tuple of variables and
R is a n-ary relation over T .

A solution is an assignment which satisfies all the constraints.
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Graph colorability as a CSP instance

G - an infinite, undirected graph:

vertices indexed by ordered pairs of distinct atoms: xab, xad, ...

edges: xab — xbc, where a and c are distinct

Question: Is this graph three-colorable?

IG - a CSP instance:

variables: vertices V = {xab | a, b ∈ A distinct}
values: possible colors T = {1, 2, 3}
constraints: C = {

(
(xab, xbc),R

)
| a, b, c ∈ A distinct}

For each edge xab — xbc there is a constraint:
(
(xab, xbc),R

)
, where

R =
(
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

)
.

Question: Is there a solution?
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Constraint Satisfaction Problem

A CSP instance I = (V,T, C):

a set of variables: V = {x, y, . . .}
a set of their possible values: T

a set of constraints: C

A constraint is a pair (x̄,R), where x̄ is an n-tuple of variables and R is
an n-ary relation over T .

A solution is an assignment which satisfies all the constraints.
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Template

Let T = (T,R1,R2, . . .). An instance I is over the template T if all
relations in all constraints are from T.

Example
3-colorability is over T = ({1, 2, 3},R), where
R =

(
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

)
.
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Constraint Satisfaction Problem

Problem: CSP(T)
Instance: CSP instance I over T
Decide: Does I have a solution?

What kind of instances and
templates do we consider?
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Definable sets

Example
Set of variables in IG:
{xab | a, b ∈ A, a 6= b}.

π - a permutation of atoms
π(xab) = xπ(a)π(b)

Example
Set of constraints in IG:
C = {

(
(xab, xbc),R

)
| a, b, c ∈ A, a 6= b, a 6= c, b 6= c}.

π - a permutation of atoms
π
(
(xab, xbc),R

)
=
(
(xπ(ab), xπ(bc)),R

)
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Definable templates and instances

Templates and instances are
definable.
⇓

They can be treated as an input for algorithms.
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Locally finite templates

A template T = {T,R1,R2, . . .} is locally finite is every relation of T
is finite.
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Generalized graph colorability

x{a b}

{a c}

{b c} {d e}

{d e}

z {b c}

c1 =
(

x z ,R{a,b}{b,c}
)

R{a,b}{b,c} = {(a, b), (a, c), (b, c)}
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Generalized graph colorability

{a b}

{a c}

{b c} {d e}

v {d e}

z {b c}

c2 =
(

z v ,R{b,c}{d,e}
)

R{b,c}{d,e} = {(b, d), (b, e), (c, d), (c, e)}
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Generalized graph colorability

{a b}

{a c}

{b c} u {d e}

v {d e}

{b c}

c3 =
(

v u ,R{d,e}{d,e}
)

R{d,e}{d,e} = {(d, e), (e, d)}
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Locally Finite Constraint Satisfaction Problem

T - a definable, locally finite template

Problem: CSP(T)
Instance: a definable CSP instance I over T
Decide: Does I have a solution?

Is CSP(T) decidable?
Idea: Look for regular solutions.
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Linearly P-patched structure

Fix a finite graph P .

A linearly P-patched structure is a graph:

Covered by subgraphs (vertexwise and edgewise) called patches.

Each patch is isomorphic to P .

There is a linear order on patches.

Example
If P = then linearly P-patched structures are graphs with
a linear order on the set of edges.
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Linearly
∧

-patched structure

a

b c

d e

f g∧
<
∧

<
∧

<
∧

<
∧
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Isomorphism of linearly P-patched structures

Fix a finite graph P .

Problem: Isomorphism of linearly P-patched structures
Instance: A, B - linearly P-patched structures (vertices - atoms)
Decide: Are A and B isomorphic?

Problem: Isomorphism of linearly P-patched structures
Instance: CSP instance IBA
Decide: Does IBA have a solution?

All instances IBA are over a locally finite template TP .
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Isomorphism of linearly P-patched structures

A, PA
1 < PA

2 < . . . < PA
n

B, PB
1 < PB

2 < . . . < PB
n

CSP instance IBA:

variables: vi = (PA
i ,PB

i ) - pairs of corresponding patches,

values: isomorphisms fi : PA
i → PB

i ,

constraints: for a pair (vi, vj) a constraint ((vi, vj),R).

R says that (fi, fj) is an isomorphism from PA
i ∪ PA

j to PB
i ∪ PB

j
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Atom permutations

Example
Aut(A,=) acts on set of variables in IG:
{xab | a, b ∈ A, a 6= b}.

π - a permutation of atoms
π(xab) = xπ(a)π(b)

Example
Aut(A,=) acts on set of constraints in IG:
C = {

(
(xab, xbc),R

)
| a, b, c ∈ A, a 6= b, a 6= c, b 6= c}.

π - a permutation of atoms
π
(
(xab, xbc),R

)
=
(
(xπ(a)π(b), xπ(b)π(c)),R

)
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Invariant assignments

I = (V,T, C)

The group Aut(A,=) (atom permutations) acts on the set of
assignments f : V → T .

f x 7→ t
π · f π(x) 7→ π(t)

fixpoint ↔ invariant assignment

An assignment f : V → T is invariant if π · f = f for every
permutation π of atoms.
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Invariant assignments

Example
An infinite system of linear equations over Z2

variables indexed by ordered pairs of distinct atoms: xab, xad, ...

equations:

xab + xba = 0,where a and b are distinct

f (xab) = 0 for all pairs ab → invariant solution

f (xab) = 0 for all pairs except for cd and dc
f (xcd) = f (xdc) = 1 → not invariant solution
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Invariant solutions

Fact

There are finitely many invariant assignments f : V → T .

Invariant assignments f : V → T can be represented in a finite
way (by first order formulas using =).

Fact
For any definable, locally finite template T, it is decidable whether a
given definable instance I over T has an invariant solution.

Sadly, an instance can have a solution but no invariant one.
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Invariant solutions

Example
An infinite system of linear equations over Z2

variables indexed by ordered pairs of distinct atoms: xab, xad, ...

equations:

xab + xba = 1,where a and b are distinct

Solution:
for every set {a, b} of distinct atoms f (xab) = 1 and f (xba) = 0

There is no invariant solution.

Joanna Ochremiak Locally Finite Constraint Satisfaction Problems,



Monotone-invariant assignments

Fix a linear order on atoms isomorphic to (Q,≤).
The group Aut(A,≤) (monotone permutations) acts on the set of
assignments f : V → T . (the same way)

fixpoint ↔ monotone-invariant assignment

An assignment f : V → T is monotone-invariant if π · f = f for every
monotone permutation π of atoms.
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Monotone-invariant solutions

Fact

There are finitely many monotone-invariant assignments
f : V → T .

Monotone-invariant assignments f : V → T can be represented
in a finite way (by first order formulas using ≤).

Fact
For any definable, locally finite template T, it is decidable whether a
given definable instance I over T has a monotone-invariant solution.
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Locally finite CSPs are decidable

Theorem (Pestov)
Every continuous action of the topological group Aut(Q,≤) on a
compact Hausdorff space has a fixpoint.

Theorem
An instance I has a solution if and only if it has a monotone-invariant
solution.

Proof.
Sol(I,T) - the set of solutions (possibly empty)
Sol(I,T) is a compact Hausdorff space (because T is locally finite).
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Locally finite CSPs are decidable

Corollary
For any definable, locally finite template T, it is decidable whether a
given definable instance I over T has a solution.
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

0
Invariant:
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

1
Invariant:
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

Aut(A,≤)
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

e < b < a < c < dAut(A,≤)
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

e < b < a < c < dAut(A,≤)
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

1 0

Monotone-invariant:

e < b < a < c < dAut(A,≤)
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Locally finite CSPs are decidable

xab + xba = 1, where a and b are distinct

xabxba
xcd

xdc

xac
xca

xea xae

0 1

Monotone-invariant:

e < b < a < c < dAut(A,≤)
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Classical Constraint Satisfaction Problem

T - a finite template

Problem: CSP(T)
Instance: a finite CSP instance I over T
Decide: Does I have a solution?

Goal: Characterize CSP(T) solvable in PTime.

T - a definable, locally finite template

Problem: CSPfin(T)
Instance: a finite CSP instance I over T
Decide: Does I have a solution?

Can those characterizations be generalized to locally finite CSPs?
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Bounded width

wide class of templates solvable in PTime
↓

templates of bounded width

Theorem (Larose; Zádori; Barto; Kozik)
A finite template T has bounded width (solvable in Datalog) if and
only if an instance Ibw

T over T has a solution.

Ibw
T characterizes some algebraic properties of T called

polymorphisms
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Bounded width

Corollary
A locally finite template T has bounded width (solvable in Datalog) if
and only if an instance Ibw

T over T has a solution.

Ibw
T is a definable instance computable from T

⇓
Effective characterization of locally
finite templates of bounded width.
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Descriptive Complexity Theory

Descriptive complexity theory→ identify logics which are
equiexpressive with known complexity classes, over finite relational
structures.

Theorem (Fagin)
Existential second order logic ∃SO captures NP over finite structures.

Every property decidable in NP can be defined by an ∃SO
formula.

Any ∃SO formula defines an NP property.

Central open question: is there a (reasonable) logic which captures
PTime.
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Least Fixpoint Logic

LFP - extension of first order logic by a fixpoint operator
LFP+C - least fixpoint logic with counting

Theorem (Immerman; Vardi)
LFP = PTime over linearly ordered structures.

Theorem (Cai; Fürer; Immerman)
LFP+C 6= PTime over all structures.
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Linearly
∧

-patched structure

a

b c

d e

f g∧
<
∧

<
∧

<
∧

<
∧
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Isomorphism of linearly P-patched structures

Fix a finite graph P .

Problem: Isomorphism of linearly P-patched structures
Instance: A, B - linearly P-patched structures (vertices - atoms)
Decide: Are A and B isomorphic?

Problem: Isomorphism of linearly P-patched structures
Instance: CSP instance IBA
Decide: Does IBA have a solution?

All instances IBA are over a locally finite template TP .
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Least Fixpoint Logic

LFP - extension of first order logic by a fixpoint operator
LFP+C - least fixpoint logic with counting

LFP+C = LFP over linearly P-patched structures

P =

Theorem
LFP = PTime over linearly P-patched structures.

P = graph with 6 vertices

Theorem
LFP 6= PTime over linearly P-patched structures.
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Common generalization

Theorem
The following conditions are equivalent:

LFP = PTime over linearly P-patched structures,

TP has bounded width.

Moreover, TP is a locally finite template computable from P so the
second condition is decidable.
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