FO-Definable Constraint Satisfaction Problems joint work with Bartek Klin, Eryk Kopczyński Sławek Lasota and Szymon Toruńczyk

Joanna Ochremiak

UPC Barcelona / Simons Institute

{Symmetry, Logic, Computation}, Berkeley 9th November 2016

 $\mathbb{A} = \{a, b, c, \ldots\}$ - countably infinite set of *atoms*

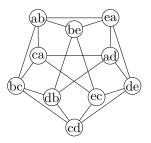
$\mathbb{A} = \{a, b, c, \ldots\} \text{ - countably infinite set of$ *atoms* $}$ $(\mathbb{N}, =) \text{ (Mikołaj's talk)}$

Graph Colorability

G - an **infinite**, undirected graph:

- vertices: pairs of distinct atoms: *ab*, *ad*, ...
- edges: ab bc, where a and c are distinct

Subgraph of *G*:



Question: Is the infinite graph G three-colorable?

Constraint Satisfaction Problem

$$\mathbb{T} = (T; R_1, R_2, \dots, R_n)$$
 - a fixed finite *template*

Problem: $CSP(\mathbb{T})$ **Input:** a finite structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

Constraint Satisfaction Problem

$$\mathbb{T} = (T; R_1, R_2, \dots, R_n)$$
 - a fixed finite *template*

Problem: $CSP(\mathbb{T})$ **Input:** a finite structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

Examples:

•
$$\mathbb{T} = (\{0, 1, 2\}; \neq)$$
 - three-colorability

•
$$\mathbb{T} = (\{0, 1\}; R_1, R_0)$$
 - linear equations mod 2
 $R_1 = \{(x, y) \in \{0, 1\}^2 \mid x + y = 1 \mod 2\}$
 $R_0 = \{(x, y, z) \in \{0, 1\}^3 \mid x + y + z = 0 \mod 2\}$

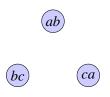
Definable Structures

- domain is a set of tuples of atoms
- relations are defined by first-order formulae over $(\mathbb{A}, =)$

Definable Structures

- domain is a set of tuples of atoms
- relations are defined by first-order formulae over $(\mathbb{A}, =)$

Domain of the graph *G*: $\{(a,b) \mid a, b \in \mathbb{A}, a \neq b\}.$

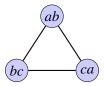


Definable Structures

- domain is a set of tuples of atoms
- relations are defined by first-order formulae over $(\mathbb{A}, =)$

Domain of the graph *G*: $\{(a,b) \mid a, b \in \mathbb{A}, a \neq b\}.$

Edge relation: $\{((a,b), (b,c)) | a, b, c \in \mathbb{A}, a \neq b \land a \neq c \land b \neq c\}.$



Equivalently:

• structures FO-interpretable in $(\mathbb{N}, =)$ (model theory)

 $\mathbb{T} = (T; R_1, R_2, \dots, R_n)$ - a fixed finite template **Problem:** CSP(\mathbb{T}) **Input:** a finite structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ? $\mathbb{T} = (T; R_1, R_2, \dots, R_n) \text{ - a fixed finite template}$ **Problem:** CSP_{def}(\mathbb{T}) **Input:** a definable structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

Systems of Linear Equations mod 2

$$\mathbb{T} = (\{0, 1\}; R_1, R_0)$$

- *E* an **infinite** system of linear equations over \mathbb{Z}_2
 - variables are ordered pairs of distinct atoms: *ab*, *ad*, ...
 - equations:

ab + ba = 1, where a and b are distinct ab + bc + ca = 0, where a, b and c are distinct

Question: Does the system *E* have a solution?

Systems of Linear Equations mod 2

Theorem [Klin, Kopczyński, O., Toruńczyk]. Given a definable structure \mathbb{I} and a finite structure \mathbb{T} , it is decidable whether there exists a homomorphism from \mathbb{I} to \mathbb{T} .

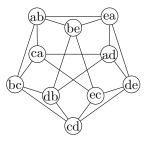
Theorem [Klin, Kopczyński, O., Toruńczyk]. Given a definable structure \mathbb{I} and a finite structure \mathbb{T} , it is decidable whether there exists a homomorphism from \mathbb{I} to \mathbb{T} .

Lemma. For a definable structure \mathbb{I} and a finite structure \mathbb{T} , tfae:

- there exists a homomorphism from \mathbb{I} to \mathbb{T} ,
- there exists a homomorphism from I to T which is constant on orbits under the action of monotone permutations of atoms.

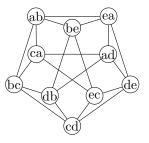
$\text{CSP}_{def}(\mathbb{T})$ for Finite \mathbb{T}

Question: Is the infinite graph *G* three-colorable?



$\text{CSP}_{def}(\mathbb{T})$ for Finite \mathbb{T}

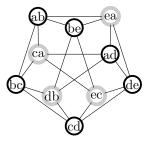
Question: Is the infinite graph *G* three-colorable?



Fix a linear order on atoms (\mathbb{A}, \leq) isomorphic to (\mathbb{Q}, \leq) . On atoms *a*, *b*, *c*, *d*, *e* it can be for example: a < b < c < d < e.

$\text{CSP}_{def}(\mathbb{T})$ for Finite \mathbb{T}

Question: Is the infinite graph *G* three-colorable?



Fix a linear order on atoms (\mathbb{A}, \leq) isomorphic to (\mathbb{Q}, \leq) . On atoms *a*, *b*, *c*, *d*, *e* it can be for example: a < b < c < d < e. ab + ba = 1, where a and b are distinct

Question: Does the system *E* have a solution?

ab + ba = 1, where a and b are distinct

Question: Does the system *E* have a solution?

•
$$(\mathbb{A}, =)$$
 - one orbit of variables

• (\mathbb{A},\leq) - two orbits of variables: $(\cdot<\cdot)$ and $(\cdot>\cdot)$

Complexity of $\text{CSP}_{def}(\mathbb{T})$

Theorem [Klin, Kopczyński, O., Toruńczyk]. If $CSP(\mathbb{T})$ is C-complete then $CSP_{def}(\mathbb{T})$ is Exp(C)-complete.

С	Exp(C)
Р	EXPTime
NP	NEXPTime
L	PSpace

Complexity of $\text{CSP}_{def}(\mathbb{T})$

Theorem [Klin, Kopczyński, O., Toruńczyk]. If $CSP(\mathbb{T})$ is C-complete then $CSP_{def}(\mathbb{T})$ is Exp(C)-complete.

C	Exp(C)
Р	EXPTime
NP	NEXPTime
L	PSpace

3-colorability of finite graphs – NP-complete ↓ 3-colorability of definable graphs – NEXPTIME-complete

 $\mathbb{T} = (T; R_1, R_2, \dots, R_n) \text{ - a fixed finite template}$ **Problem:** CSP_{def}(\mathbb{T}) **Input:** a definable structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

 $\mathbb{T} = (T; R_1, R_2, \dots, R_n) \text{ - a fixed definable template}$ **Problem:** CSP_{def}(\mathbb{T}) **Input:** a definable structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

Theorem [Klin, Lasota, O., Toruńczyk]. Given definable structures \mathbb{I} and \mathbb{T} , it is decidable whether there exists a homomorphism from \mathbb{I} to \mathbb{T} .

Theorem [Klin, Lasota, O., Toruńczyk]. Given definable structures \mathbb{I} and \mathbb{T} , it is decidable whether there exists a homomorphism from \mathbb{I} to \mathbb{T} .

Lemma. For any definable structure \mathbb{T} , the problem $\text{CSP}_{def}(\mathbb{T})$ is polynomial-time reducible to $\text{CSP}_{def}(\mathbb{T}')$, where \mathbb{T}' is a finite structure computable from \mathbb{T} . (generalization of [Bodirsky, Mottet; LICS'16])

Theorem [Klin, Lasota, O., Toruńczyk]. Given definable structures \mathbb{I} and \mathbb{T} , it is decidable whether there exists a homomorphism from \mathbb{I} to \mathbb{T} .

Lemma. For any definable structure \mathbb{T} , the problem $\text{CSP}_{def}(\mathbb{T})$ is polynomial-time reducible to $\text{CSP}_{def}(\mathbb{T}')$, where \mathbb{T}' is a finite structure computable from \mathbb{T} . (generalization of [Bodirsky, Mottet; LICS'16])

Corollary. For any definable structure \mathbb{T} , the problem $\text{CSP}_{def}(\mathbb{T})$ is in NEXPTIME.

 $\mathbb{T} = (T; R_1, R_2, \dots, R_n) \text{ - a fixed definable template}$ **Problem:** CSP_{def}(\mathbb{T}) **Input:** a definable structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

 $\mathbb{T} = (T; \{R_x\}_{x \in X_1}, \dots, \{R_x\}_{x \in X_n}) \text{ - a fixed definable template}$ **Problem:** CSP_{def}(\mathbb{T}) **Input:** a definable structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

$\text{CSP}_{def}(\mathbb{T})$ over a Definable Signature

Theorem [Klin, Lasota, O., Toruńczyk]. There exists a definable structure \mathbb{T} (over a definable signature) such that the problem $\text{CSP}_{def}(\mathbb{T})$ is undecidable.

• Decidability for structures definable over different atoms.

- Decidability for structures definable over different atoms.
- $\mathbb{T} = (T; R_1, R_2, \dots, R_n)$ a fixed definable template

Problem: $CSP(\mathbb{T})$ **Input:** a finite structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

- Decidability for structures definable over different atoms.
- $\mathbb{T} = (T; R_1, R_2, \dots, R_n)$ a fixed definable template

Problem: $CSP(\mathbb{T})$ **Input:** a finite structure \mathbb{I} (over the same signature) **Decide:** Is there a homomorphism from \mathbb{I} to \mathbb{T} ?

• **Isomorphism problem:** given definable structures A and B, decide whether they are isomorphic.

Thank you