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Limited access to data

Infinite alphabets that can only be accessed in limited ways.

equality only [Gabbay and Pitts 90s]

relational structure, e.g. ordered atoms [Bojańczyk et al. 2011]

What about atoms with algebraic structure?

origins in set theory [Fraenkel 20s, Mostowski 30s]
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Atoms

A - countably infinite set of atoms

Atoms - algebraic structure

(N,=) (Q,≤) (Q,≤,+1,−1)

together with its group of automorphisms

Atoms Automorphisms group
(N,=) all permutations
(Q,≤) monotone permutations
(Q,≤,+1,−1) monotone permutations that preserve x 7→ x + 1

The choice of atoms is a parameter of the notion of a nominal set.
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Finitely generated supports

X - a set equipped with an action of Aut(A)

A {{a, b} | a 6= b} A∗ A(n) (no repetitions)

A substructure of A is closed under applying functions.

A substructure S of A is a support of x ∈ X iff

π|S = id|S ⇒ x · π = x for all π ∈ Aut(A).

Equality atoms (N,=)
a ∈ A supported by {a}

Timed atoms (Q,≤,+1,−1)
a ∈ A supported by {. . . , a− 2, a− 1, a, a + 1, a + 2, . . .}
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Nominal sets

X is nominal iff every x ∈ X is supported by a finitely generated
substructure of A.

f : X → Y is equivariant iff

f (π(x)) = π(f (x)) for every x ∈ X and every π ∈ Aut(A).
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Examples

Equality atoms (N,=)

X = A(2) ⇒ (a, b) ∈ X supported by {a, b}

X = A∗ ⇒ abbcaa ∈ A∗ supported by {a, b, c}

Total order atoms (Q,≤)

X = the set of all open intervals ⇒ (0; 1) ∈ X supported by {0, 1}

Timed atoms (Q,≤,+1,−1)

X = the set of infinite words a1a2 . . . such that ai+1 = ai + 1 ⇒
a1a2 . . . ∈ X supported by a substructure generated by {a1}

Integer atoms (Z,≤) (automorphisms→ translations x 7→ x + k)

π|{0} = id |{0} ⇒ π = id ⇒ everything supported by {0}

In integer atoms every set is nominal!
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Least finitely generated supports

Equality atoms (N,=)

(1, 2, 3) ∈ N3 supported by:

{1, 2, 3},
{1, 2, 3, 4, 100, 123}.

supports ⇒ closed under adding atoms

Atoms are supportable iff every element of every nominal set has a
least finitely generated support.
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Least finitely generated supports

Equality atoms (N,=)

(1, 2, 3) ∈ N3 supported by:

{1, 2, 3}, ⇔ least finitely generated support!

{1, 2, 3, 4, 100, 123}.

supports ⇒ closed under adding atoms

Atoms are supportable iff every element of every nominal set has a
least finitely generated support.
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Orbit-finite sets

An orbit of x ∈ X is the set

{x · π | π is an automorphisms of atoms} ⊆ X.

An orbit-finite set is a finite union of orbits.

The orbit-finite sets play the role of finite sets.
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Examples

Equality atoms (N,=) N2 has two orbits

(1, 1) · Aut(N) (0, 2) · Aut(N)

Total order atoms (Q,≤) Q2 has three orbits

(1, 1) · Aut(Q) (2, 4) · Aut(Q) (8, 0) · Aut(Q)

Integer atoms (Z,≤) Z2 has infinitely many orbits

. . . (1,−1)·Aut(Z) (1, 0)·Aut(Z) (1, 1)·Aut(Z) (1, 2)·Aut(Z) . . .

A product of two orbit-finite sets might not be orbit-finite.

Can we guarantee that orbit-finite sets are well behaved?
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Homogeneous atoms
An algebraic structure is homogeneous if every isomorphism between
its finitely generated substructures extends to a full automorphism.

Integer atoms (Z,≤) - not homogeneous

Total order atoms (Q,≤) - homogeneous
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Structure representation

S ⊆ A - finitely generated substructure

X = the set of embeddings u : S→ A, where: u · π = π ◦ u

Equality atoms (N,=)

finite substructure of atoms: S = {1, 3}
set of embeddings ⇒ isomorphic to N(2)

set of embeddings is a nominal set→ an embedding is supported by
its image

set of embeddings has one orbit→ because the atoms are
homogeneous
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Structure representation

S ⊆ A - finitely generated substructure

H - some group of automorphisms of S (not necessarily all)

A structure representation [S,H] is the set of embeddings u : S→ A,
quotinted by the equivalence relation:

u ≡H v ⇔ u ◦ σ = v for some σ ∈ H,

with an action of the automorphisms group defined by:

[u]H · π = [π ◦ u]H.

This is also a single-orbit nominal set.
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Examples

Equality atoms (N,=)

finite substructure of atoms: S = {1, 3}
H = Aut(S) (the identity and transposition)

[S,H] ⇒ isomorphic to all size 2 subsets of atoms

Timed atoms (Q,≤,+1,−1)

finitely generated substructure of atoms:
S = {. . . ,−2,−1, 0, 1, 2, . . .}

H1 = {id} ≤ Aut(S)

[S,H1] ⇒ isomorphic to the set of atoms

H2 = Aut(S) = Z (translations)

[S,H2] ⇒ isomorphic to the interval [0, 1)
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Representation theorem
for homogeneous, supportable atoms

Representation theorem
Every single-orbit nominal set X is isomorphic to [S,H], where S is a
finitely generated substructure of atoms and H is some group of
automorphisms of structure S.

For relational atoms ⇒ proved by Bojańczyk, Klin and Lasota.
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Consequences

An algebraic structure is locally finite iff its finitely generated
substructures are finite.

For atoms that are locally finite:

There are countably many single-orbit nominal sets.

We can represent them in a finite way.

Timed atoms (Q,≤,+1,−1)
we also obtain finite representation ⇒ automorphisms groups of
finitely generated substructures of atoms are isomorphic to Z
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Future work

The theorem uses automorphism groups of finitely generated
substructures of atoms ⇒ can we represent them in a finite way?

Characterization of atoms that are ”well-behaved" ⇒ more
natural criteria that would be easier to verify.
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