Nominal sets over algebraic atoms

Joanna Ochremiak

RAMiCS'14, Marienstatt, 29 April 2014

Infinite alphabets that can only be accessed in limited ways.

- equality only [Gabbay and Pitts 90s]
- relational structure, e.g. ordered atoms [Bojańczyk et al. 2011]

What about atoms with algebraic structure?

origins in set theory [Fraenkel 20s, Mostowski 30s]

Atoms

A - countably infinite set of atoms

Atoms - algebraic structure

$$(\mathbb{N},=)$$
 (\mathbb{Q},\leq) $(\mathbb{Q},\leq,+1,-1)$

together with its group of automorphisms

Atoms	Automorphisms group
$(\mathbb{N},=)$	all permutations
(\mathbb{Q},\leq)	monotone permutations
$(\mathbb{Q}, \leq, +1, -1)$	monotone permutations that preserve $x \mapsto x + 1$

The choice of atoms is a parameter of the notion of a nominal set.

Finitely generated supports

- *X* a set equipped with an action of Aut(A)
- $A \qquad \{\{a,b\} \mid a \neq b\} \qquad A^* \qquad A^{(n)} \text{ (no repetitions)}$

A substructure of A is closed under applying functions.

A substructure *S* of *A* is a *support* of $x \in X$ iff

$$\pi|_S = \operatorname{id}|_S \Rightarrow x \cdot \pi = x \text{ for all } \pi \in \operatorname{Aut}(A).$$

Equality atoms $(\mathbb{N}, =)$ $a \in A$ supported by $\{a\}$ Timed atoms $(\mathbb{Q}, \leq, +1, -1)$ $a \in A$ supported by $\{\dots, a-2, a-1, a, a+1, a+2, \dots\}$ X is *nominal* iff every $x \in X$ is supported by a finitely generated substructure of A.

 $f: X \to Y$ is *equivariant* iff

 $f(\pi(x)) = \pi(f(x))$ for every $x \in X$ and every $\pi \in Aut(A)$.

Examples

Equality atoms $(\mathbb{N}, =)$ $X = A^{(2)} \Rightarrow (a, b) \in X$ supported by $\{a, b\}$ $X = A^* \Rightarrow abbcaa \in A^*$ supported by $\{a, b, c\}$ Total order atoms (\mathbb{Q}, \leq) X = the set of all open intervals $\Rightarrow (0; 1) \in X$ supported by $\{0, 1\}$ Timed atoms $(\mathbb{Q}, \leq, +1, -1)$

X = the set of infinite words $a_1a_2...$ such that $a_{i+1} = a_i + 1 \implies a_1a_2... \in X$ supported by a substructure generated by $\{a_1\}$

Integer atoms (\mathbb{Z}, \leq) (automorphisms \rightarrow translations $x \mapsto x + k$) $\pi|_{\{0\}} = \operatorname{id}|_{\{0\}} \Rightarrow \pi = \operatorname{id} \Rightarrow$ everything supported by $\{0\}$ In integer atoms every set is nominal!

Least finitely generated supports

Equality atoms $(\mathbb{N}, =)$

 $(1,2,3) \in \mathbb{N}^3$ supported by:

- {1,2,3},
- {1,2,3,4,100,123}.

supports \Rightarrow closed under adding atoms

Atoms are *supportable* iff every element of every nominal set has a least finitely generated support.

Least finitely generated supports

Equality atoms $(\mathbb{N}, =)$

- $(1,2,3) \in \mathbb{N}^3$ supported by:
 - $\{1, 2, 3\}, \qquad \equiv \text{ least finitely generated support!}$
 - {1, 2, 3, 4, 100, 123}.

supports \Rightarrow closed under adding atoms

Atoms are *supportable* iff every element of every nominal set has a least finitely generated support.

An *orbit* of $x \in X$ is the set

 $\{x \cdot \pi \mid \pi \text{ is an automorphisms of atoms}\} \subseteq X.$

An orbit-finite set is a finite union of orbits.

The orbit-finite sets play the role of finite sets.

Examples

Equality atoms $(\mathbb{N}, =)$ \mathbb{N}^2 has two orbits

 $(1,1) \cdot \operatorname{Aut}(\mathbb{N}) \quad (0,2) \cdot \operatorname{Aut}(\mathbb{N})$

Total order atoms (\mathbb{Q}, \leq) \mathbb{Q}^2 has three orbits

 $(1,1) \cdot \operatorname{Aut}(\mathbb{Q})$ $(2,4) \cdot \operatorname{Aut}(\mathbb{Q})$ $(8,0) \cdot \operatorname{Aut}(\mathbb{Q})$

Integer atoms (\mathbb{Z}, \leq) \mathbb{Z}^2 has infinitely many orbits

 $\dots (1,-1) \cdot Aut(\mathbb{Z}) (1,0) \cdot Aut(\mathbb{Z}) (1,1) \cdot Aut(\mathbb{Z}) (1,2) \cdot Aut(\mathbb{Z}) \dots$

A product of two orbit-finite sets might not be orbit-finite.

Can we guarantee that orbit-finite sets are well behaved?

Homogeneous atoms

An algebraic structure is *homogeneous* if every isomorphism between its finitely generated substructures extends to a full automorphism.

Integer atoms (\mathbb{Z}, \leq) - not homogeneous

Total order atoms (\mathbb{Q}, \leq) - homogeneous

Structure representation

 $S \subseteq A$ - finitely generated substructure

X = the set of embeddings $u: S \to A$, where: $u \cdot \pi = \pi \circ u$

Equality atoms $(\mathbb{N}, =)$ finite substructure of atoms: $S = \{1, 3\}$ set of embeddings \Rightarrow isomorphic to $\mathbb{N}^{(2)}$

set of embeddings is a nominal set \rightarrow an embedding is supported by its image

set of embeddings has one orbit \rightarrow because the atoms are homogeneous

Structure representation

 $S \subseteq A$ - finitely generated substructure

H - some group of automorphisms of *S* (not necessarily all)

A *structure representation* [S, H] is the set of embeddings $u: S \rightarrow A$, quotinted by the equivalence relation:

$$u \equiv_H v \quad \Leftrightarrow \quad u \circ \sigma = v \text{ for some } \sigma \in H,$$

with an action of the automorphisms group defined by:

$$[u]_H \cdot \pi = [\pi \circ u]_H.$$

This is also a single-orbit nominal set.

Examples

Equality atoms $(\mathbb{N}, =)$

finite substructure of atoms: $S = \{1, 3\}$ H = Aut(S) (the identity and transposition) $[S, H] \Rightarrow$ isomorphic to all size 2 subsets of atoms

Timed atoms $(\mathbb{Q}, \leq, +1, -1)$

finitely generated substructure of atoms: $S = \{..., -2, -1, 0, 1, 2, ...\}$ $H_1 = \{id\} \le Aut(S)$ $[S, H_1] \implies$ isomorphic to the set of atoms $H_2 = Aut(S) = \mathbb{Z}$ (translations)

 $[S, H_2] \Rightarrow$ isomorphic to the interval [0, 1)

Representation theorem

for homogeneous, supportable atoms

Representation theorem

Every single-orbit nominal set X is isomorphic to [S, H], where S is a finitely generated substructure of atoms and H is some group of automorphisms of structure S.

For relational atoms \Rightarrow proved by Bojańczyk, Klin and Lasota.

Consequences

An algebraic structure is *locally finite* iff its finitely generated substructures are finite.

For atoms that are locally finite:

- There are countably many single-orbit nominal sets.
- We can represent them in a finite way.

Timed atoms $(\mathbb{Q}, \leq, +1, -1)$

we also obtain finite representation \rightrightarrows automorphisms groups of finitely generated substructures of atoms are isomorphic to \mathbb{Z}

Future work

- The theorem uses automorphism groups of finitely generated substructures of atoms ⇒ can we represent them in a finite way?