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Abstract. We present the first wait-free and self-stabilizing implementation of
a single-writer/single-reader regular register by single-writer/single-reader safe
registers. The construction is in two steps: one implements a regular register us-
ing 1-regular registers, and the other implements a 1-regular register using safe-
registers. In both steps, if the initial register is bounded then the implementation
uses only bounded registers.

1 Introduction

Lamport [10] defined three models of single-writer/multi-reader registers, differentiated
by the possible outcome of read operations that overlap concurrent write operations.
These three register types, in order of increasing power, are called safe, regular, and
atomic. Program design is easier assuming atomic registers rather than regular registers
but the hardware implementation of an atomic register is costlier than the implemen-
tation of a regular register. Safe registers, which capture the notion of directly sensing
the hardware, are cheaper still. This motivated Lamport and other researchers to find
wait-free constructions for assembling atomic registers from regular ones and regu-
lar registers from safe ones. One natural extension to this research arises from asking
whether these implementations of strong registers from weaker ones can be made self-
stabilizing.
This paper addresses this question. The core contribution is an implementation of a
single-writer/single-reader regular register using single-writer/single-reader safe regis-
ters. The implementation is both self-stabilizing and wait-free. To implement a single-
writer/single-reader regular register ofM bits, our construction uses 9 single-writer/sin-
gle-reader safe registers of M bits and 12 single-writer/single-reader safe registers of 2
bits. Thus, if a program uses only bounded regular registers then it can be implemented
using bounded safe registers.

Related research. A body of research [2, 5, 11, 3], initiated by Lamport [10], gave
constructions of strong registers types from weaker ones. By combining these results,
even the strongest register being considered (a multi-writer/multi-reader atomic regis-
ter) has a wait-free construction from a collection of the weakest (single-writer/single-
reader safe bits). The fault-tolerance sought in all these constructions was wait-freedom;
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none of these original constructions addressed self-stabilization. More recently, Abra-
ham et.al. [1] introduced 1-regular registers, which lie between safe and regular regis-
ters, and presented a wait-free implementation of a regular register by 1-regular regis-
ters. This construction is also not self-stabilizing and relies on timestamps to distinguish
the latest value, thus requiring 1-regular registers of unbounded size.

Hoepman, Papatriantafiou and Tsigas [8] presented self-stabilizing versions of some
of these well-known constructions. For instance, they present a wait-free and self-
stabilizing implementation of a multi-writer/multi-reader atomic register using single-
writer/single-reader regular registers of unbounded size. Dolev and Herman [4] de-
signed a variant of Dijkstra’s self-stabilizing token circulation on unidirectional rings
that uses only regular registers. In contrast to the wait-free case, however, no self-
stabilizing construction of strong registers starting from only safe ones was known.

Algorithm 1 A binary regular register from a binary safe register
Shared registers:
The single-writer/single-reader binary register, R, is replaced by a single-writer/single-reader
binary safe register, Rs.
Code for writer:
τ (REGULAR-WRITE(R, new bit)) # old bit is a local binary variable #

if (old bit 6= new bit) then SAFE-WRITE(Rs, new bit); old bit←− new bit.
Code for reader:
τ (REGULAR-READ(R)):: return SAFE-READ(Rs).

Lamport’s wait-free implementation of a single-writer/single-reader regular binary reg-
ister from only one single-writer/single-reader safe binary register (Algorithm 1) is
straightforward – the safe register is over-written only if the new value is different from
what was most recently written. This simple idea does not work in the self-stabilizing
setting, because the value of old bit could be corrupted and thus not equal to the value
of the safe register. In fact, as established by Hoepman et.al. [8], there is no wait-free
and self-stabilizing implementation of a single-writer/single-reader regular binary reg-
ister with only one single-writer/single-reader safe binary register.

Outline of paper. The description of our implementation is separated into two pieces.
Section 3 presents an implementation of a single-writer/single-reader 1-regular register
by single-writer/single-reader safe registers. Section 4 implements a single-writer/single-
reader regular register by single-writer/single-reader 1-regular registers. Both of these
implementations are wait-free and self-stabilizing; hence, so is their composition. We
only sketch the proofs, trying to provide the essential insights for correctness. A lot of
detail is omitted, most notably, that needed to completely establish the correctness of
the second piece, which is the most intricate of the two. Our technical report [9] has the
complete proofs. Section 5 overviews how this work applies to network models of dis-
tributed computation, and how it relates to research on fault-tolerant compilers between
different variants of network models.



2 Definitions and Preliminaries

2.1 Model

Shared registers. Let R be a single-writer/multi-reader register that can contain any
value in domain T . R supports only the operations READ and WRITE. Each READ and
WRITE operation, o, has a time interval corresponding to the time between the invo-
cation of o, denoted inv(o), and the response of o, denoted resp(o). An operation o
happens-before operation o′ if resp(o) < inv(o′). If neither o happens-before o′ nor o′

happens-before o, then o and o′ overlap. Because there is only one writer, WRITE oper-
ations toR happen sequentially, so the happens-before relation is a total order on all the
WRITE operations. READ operations, however, may overlap each other and may overlap
a WRITE. Lamport [10] defined three kinds of such registers depending on the seman-
tics when READ and WRITE operations overlap. Register R is safe if each READ that
does not overlap any WRITE returns the value of the latest WRITE that happens-before
it, and otherwise returns any value in T . Register R is regular if it is safe and any READ
that overlaps a WRITE returns the value of either the latest WRITE that happens-before
it, or the value of some overlapping WRITE. Register R is atomic if it is regular, and if
any READ, r, overlaps a WRITE, w, and returns the value written by w, then any READ,
r′, that happens-after r must not return the value of any WRITE that happens-before w.
We also use another register type, which was defined by Abraham et.al. [1]. Register R
is 1-regular if it is safe and any READ with at most one overlapping WRITE returns the
value of either the latest WRITE that happens-before it, or the value of the overlapping
WRITE.

Systems, configurations and executions. Each of the two technical results of this
paper is an implementation of a single-writer/single-reader register (called the specified
register) using weaker single-writer/single-reader registers (called the target registers).
As discussed further in Section 5, the implementations extend to any system of such
shared registers, because the individual implementations are independent. Thus, the
specified system consists of just two processors, a writer p and a reader q, sharing
a single specified register. This system is implemented using several registers of the
target register type. Since our target registers are also single-writer/single-reader, they
can be partitioned into two sets. One contains the registers written by p and read by q;
the other contains the registers read by p and written by q.
A configuration of the system is an assignment of values to each of the the shared target
registers and the internal variables, including the program counter, of the writer and
reader implementations. In a computation step, a processor executes the next action of
its program. Each action is an invocation or a response of an READ or a WRITE on a
shared target register, or a read or a write of an internal variable.

2.2 Fault-tolerance

Wait-freedom. An operation on a shared object is wait-free if every invocation of the
operation completes in a finite number of steps of the invoking processor regardless of
the number of steps taken by any other processor. Wait-freedom provides robustness;



it implies that a stopping failure (or very slow execution) of any subset of processors
cannot prevent another processor from correctly completing its operation.

Self-stabilization. Let PS be a predicate defined on computations. A distributed sys-
tem is self-stabilizing to PS if and only if there is a predicate, L, on configurations such
that:

• L is attractor: Starting from any configuration, any computation reaches a config-
uration satisfying L. For any configuration C satisfying L, the successor configura-
tion reached by any computation step applied to C also satisfies L.

• correctness from L: Any computation starting from a configuration satisfying L
satisfies PS.

L is called the legitimacy predicate. Informally, an algorithm is self-stabilizing to a
behaviour specified by PS if, after a burst of transient errors of some components of a
distributed system (which leaves the system in an arbitrary configuration), the system
recovers and eventually returns to the specified behaviour.

2.3 Proof obligation of register implementations

The possible operations on a register are READ and WRITE.
Therefore, to implement a strong register,R, using only weaker registers requires defin-
ing two programs τ (READ(R)) and τ (WRITE(R, ·)) each accessing only registers of
the weaker type. Consider an execution E of the implementation. It consists of a se-
quence r1, r2, . . . of successive computation steps of τ (READ(R)) by the reader, and
a sequence w1, w2, . . . of successive steps of τ (WRITE(R, ·)) by the writer. Further-
more, r1 (respectively, w1) could begin part way through τ (READ(R)) (respectively,
τ (WRITE(R, ·)); there could be arbitrary initial values in registers; and the two se-
quences of computation steps could overlap arbitrarily.
The proof that an algorithm is a correct wait-free and self-stabilizing implementation of
a strong register is decomposed into four components:

Termination: Normally, establishing wait-freedom would require showing that any
execution of τ (READ(R)) or of τ (WRITE(R, ·)) terminates in a finite number of
steps. Since our algorithms must simultaneously be self-stabilizing, we need to
show the stronger requirement that any execution of any suffix of τ (READ(R)) or
of τ (WRITE(R, ·)), with any values in the registers, terminates.

Legitimate configurations: We define a predicate L̃ on the values of the target regis-
ters and on values of the internal variables used by τ (WRITE(R, ·)) and τ (READ(R)).

Attractor: We show that L̃ is an attractor.
Correctness: We show that every every execution of τ (READ(R)) that begins from

any configuration that verifies the predicate L̃, returns only values that are consis-
tent with the semantics of the stronger register, R.



3 Implementing 1-regular Registers from Safe Registers

Algorithm 2 A 1-regular register constructed from safe registers
Shared registers:
Each single-writer/single-reader 1-regular register,R, is replaced by 3 single-writer/single-reader
safe registers, R1, R2, R3.
Code for writer:
τ (1-REGULAR-WRITE(R, new state))

# line 1: # SAFE-WRITE(R1, new state);
# line 2: # SAFE-WRITE(R2, new state);
# line 3: # SAFE-WRITE(R3, new state).

Code for reader:
τ (1-REGULAR-READ(R))

# v1, v2, and v3 are local variables of the function. #
v3←−SAFE-READ(R3); v2←−SAFE-READ(R2); v1←−SAFE-READ(R1);
if (v3 = v2) then return v2 else return v1.

Theorem 1. Algorithm 2 is a wait-free and self-stabilizing implementation of 1-regular
register, R, using safe registers, provided 1-REGULAR-WRITE(R, ·) is executed at least
once after any transient fault.

Termination: It is immediate from the code that any execution of any suffix of either
τ (1-REGULAR-WRITE) or τ (1-REGULAR-READ) will terminate since each consists
of three read or write operations on safe registers.

Legitimate configurations: We define a predicate L̃eg1 on configurations that (in-
formally) captures the property that there is substantial agreement between the value of
the three shared safe registers R1, R2 and R3. This agreement is related to the value of
the writer’s program counter (denoted PC).
L1s ≡ [ R3 = R2 ∧ PC is in line 1 of τ (1-REGULAR-WRITE(R, ·)) ]
L2s ≡ [ R1 = ν ∧ PC is in line 2 of τ (1-REGULAR-WRITE(R, ν)) ]
L3s ≡ [ R1 = R2 = ν ∧ PC is in line 3 of τ (1-REGULAR-WRITE(R, ν)) ]
L0s ≡ [ R1 = R2 = R3 ∧ PC is not in τ (1-REGULAR-WRITE(R, ·)) ]
L̃eg1 ≡ L1s ∨ L2s ∨ L3s ∨ L0s.

Attractor: Once verified, L0s remains verified as long as the writer is not executing
τ (1-REGULAR-WRITE(R, ν)), since registers R1, R2, and R3 are only written inside
τ (1-REGULAR-WRITE(R, ν)). If L0s is verified and the PC enters line 1, then L1s

becomes verified because only the value of R1 is modified in line 1. When the PC
moves to line 2, R1 = ν. Thus, L2s becomes verified and remains so while PC stays in
line 2, because the value of R1 is not modified in line 2. When the PC enters line 3, R1
= R2 = ν. Thus L3s becomes verified and remains so while PC stays in line 3, because
only the value of R3 is modified. When the PC exits line 3, R1 = R2 = R3 = ν. Thus
L0s is verified. We conclude that L̃eg1 is closed.



At the end of a complete execution of τ (1-REGULAR-WRITE(R, ·)), L0s is verified; so
L̃eg1 is verified after one complete execution of τ (1-REGULAR-WRITE(R, ·)).
Correctness: Any execution of the transformed system consists of an arbitrary over-
lapping of two sequences: a sequence of executions of τ (1-REGULAR-WRITE(R, ·)) by
the writer and a sequence of executions of τ (1-REGULAR-READ(R)) by the reader. Let
E1 be any such execution that starts from a configuration c1 satisfying L̃eg1. Define
ghost(R) to be the value of R3 in configuration c1.
Let Rd be an execution of τ (1-REGULAR-READ(R)) by the reader in E1. We need
to show that Rd returns a value that could have been returned by the corresponding
operation 1-REGULAR-READ(R) on the original 1-regular register.
If Rd has two or more overlapping executions of τ (1-REGULAR-WRITE(R, ·)) by the
writer, then, by the definition of 1-regular registers, any value in the domain of the
register can be returned.
Suppose that Rd has at most one overlapping execution of τ (1-REGULAR-WRITE(R, ·)),
say W.
Case 1: W was preceded by W-prev, an execution of τ (1-REGULAR-WRITE(R, ·)).
Since the three safe registers are accessed in the opposite order by Rd and W, at most
one of the safe registers in {R1, R2, R3} could be being read by Rd while there is an
overlapping write to the same register by W. If the SAFE-READ ofR1 is overlapped then
v3 = v2, and the value written by W-prev is returned. If the read of R3 is overlapped
then v1 = v2, and the value written by W is returned. If the read of R2 is overlapped
then Rd returns either v2 = v3 (the value written by W-prev), or v1 (the value written
by W).
Case 2 : W is the first execution of τ (1-REGULAR-WRITE(R, ·)). This is similar to
Case 1, except that Rd returns either the value written by W or the value ghost(R).
Suppose that Rd has no overlapping execution of τ (1-REGULAR-WRITE(R, ·)). Then
L0 holds throughout the duration of Rd. So v3 is returned; and v3 is either the value
written by the most recent preceding execution of τ (1-REGULAR-WRITE(R, ·)) or
v3 = ghost(R).

4 Implementing Regular Registers from 1-regular Registers

4.1 Overview of Algorithm 3

If we could ensure that no more than one write could overlap a read operation, a 1-
regular register would suffice in place of a regular register. For a single-writer/single-
reader model, this observation suggests that we try to avoid overlap by having more
than one 1-regular register available for the writer and arranging communication from
the reader to direct the writer which one to use. To implement this idea, the regular
register R is implemented with three 1-regular copies. There is also a color with value
in {0, 1, 2} associated with R. The color value is written by the reader and read by
the writer (also using a 1-regular register). The writer implements a REGULAR-WRITE
to R by writing to the copy R[i] if it believes the current color is i. Three additional



1-regular registers are needed, Flag[i] where i ∈ {0, 1, 2}, which are used to help the
reader determine which of the three copies has the latest value.

Algorithm 3 A regular register constructed from 1-regular registers
Shared registers:
The single-writer/single-reader regular register, R is replaced by 7 single-writer/single-reader 1-
regular registers: R[c] and Flag[c] ∀c ∈ [0..2] each written by the writer and read by the reader,
and RC written by the reader and read by the writer.
⊕ denotes addition modulo 3.
Code for writer:
τ (REGULAR-WRITE(R, new state)) # color is a local variable of the procedure. #

# line 1: # color←−1-REGULAR-READ(RC);
1-REGULAR-WRITE(R[color], new state);

# line 2: # if (color 6= 2) then 1-REGULAR-WRITE(Flag[2], color);
# line 3: # if (color 6= 1) then 1-REGULAR-WRITE(Flag[1], color);
# line 4: # if (color 6= 0) then 1-REGULAR-WRITE(Flag[0], color).

Code for reader:
τ (REGULAR-READ(R)) # f [0..2], v[0..2], and c are local variables. #

for c←− 0 to 2 do
1-REGULAR-WRITE(RC, c);
f [c]←−1-REGULAR-READ(Flag[c]);
if f [c] 6= c⊕ 1 then f [c]←− c⊕ 2;
v[c]←−1-REGULAR-READ(R[f [c]]);

if (f [0] = f [1] = 2) then return(v[1]) else return(v[2]).

Consider a regular register with writer p and reader q. In a τ (REGULAR-WRITE(R, ·))
execution, p first reads RC to get a color i ∈ {0, 1, 2}. It then writes its new state to
R[i], and set both registers Flag[i⊕ 2] and Flag[i⊕ 1] to i thus making them “point
to” the register just written.
In an execution of τ (REGULAR-READ(R)), the reader q executes a loop three times.
In iteration i ∈ {0, 1, 2} of the loop, the reader q first writes i to RC, and then reads
Flag[i] to get a pointer value. Depending on the value returned, q reads either R[i⊕ 1]
or R[i⊕ 2]. Thus the reader q gets a pair of values f [i], v[i] in iteration i. Reader q
returns either v[1] or v[2] depending on the flag values read during iterations 0 and 1.

4.2 Sketch of Algorithm 3 Correctness

Theorem 2. Algorithm 3 is a wait-free and self-stabilizing implementation of regular
register, R, using 1-regular registers, provided REGULAR-WRITE(R, ·) is executed at
least once after any transient fault.

Termination: It is immediate from the code that any execution of any suffix of ei-
ther τ (REGULAR-WRITE(R, ·)) or τ (REGULAR-READ(R)) will terminate since each
consists of nine or fewer read or write operations on 1-regular registers.



Legitimate Configurations: Observe that the local variables are overwritten with
values that do not depend on their previous values. This leads to the intuition that,
after each is overwritten, the configuration is the same as one that could arise from a
complete fault-free execution. Define a legitimacy predicate L̃eg2 on the configurations
as follows.
L1r ≡ [ PC is in line 1 or is not in any line of τ (REGULAR-WRITE(R, ·))

∧ ∃ c ∈ {0,1,2} satisfying Flag[c⊕ 2] = Flag[c⊕ 1] = c ]
L2r ≡ [ PC is in line 2 of τ (REGULAR-WRITE(R, ν)) ∧ R[color] = ν ]
L3r ≡ [ PC is in line 3 of τ (REGULAR-WRITE(R, ν)) ∧ R[color] = ν ∧

((Flag[2] = color) ∨ (2 = color)) ]
L4r ≡ [ PC is in line 4 of τ (REGULAR-WRITE(R, ν)) ∧ R[color]= ν ∧

[(Flag[2] = color = 0 = Flag[1]) ∨ (Flag[2] = color = 1) ∨
(Flag[1] = color = 2)] ]

L̃eg2 ≡ L1r ∨ L2r ∨ L3r ∨ L4r

Attractor: It is easily confirmed from the code that L̃eg2 is verified after one com-
plete execution of τ (REGULAR-WRITE(R, ·)) and that once it is verified it remains
verified. So L̃eg2 is an attractor.

Correctness: We start with some notation to facilitate the correctness argument. Let
Rd denote an execution by the reader of τ (REGULAR-READ(R)) starting from a legiti-
mate configuration. Denote by Rd-loop(i) the interval within the execution of Rd when
the reader is executing iteration i of its loop, for i ∈ {0, 1, 2}. Let W denote an exe-
cution of τ (REGULAR-WRITE(R, ·)). Say that W writes with color j if the operation
1-REGULAR-READ(RC) done during the execution of W returns j.

Consider a computation E2 starting from a configuration c2 satisfying L̃eg2. Rather
than treat the starting point c2 separately, we define a ghost W that writes with a
color and value defined by the values of the 1-regular registers in c2. Specifically, if
in configuration c2, there is c ∈ {0, 1, 2} satisfying Flag[c⊕ 2]= Flag[c⊕ 1] = c
then define initialize value = R[c] and define initialize color = c. Otherwise define
initialize value = R[c′] where c′ = Flag[2], and define initialize color = c′. The
ghost W writes the value initialize value with color initialize color.

Define Set.i = { Flag[i], R[i⊕ 1], R[i⊕ 2] }. Say that W interferes with Rd-loop(i)
only if it both overlaps with Rd-loop(i) and it writes to at least one 1-regular register
that is read by the reader during Rd-loop(i).
We have to prove that a τ (REGULAR-READ(R)) satisfies the requirement of a regular
register. The proof has three main steps.

Step 1 At most one W can interfere with a given Rd-loop(i). As a consequence, by the
definition of 1-regular registers, 1-regular registers in Set.i for any i, satisfy the
stronger semantics of regular registers.

Step 2 The pair of values (f [i], v[i]) returned by Rd-loop(i) is the same as the pair
of values that would have been computed had Rd-loop(i) been executed instanta-
neously either (1) at the end of the most recent preceding W, or (2) at the end of the
interfering W.



Step 3 The final value returned by Rd is either the value of an overlapping or the most
recent preceding W.

Step 1: Observe from the code that Rd-loop(i) reads only from registers in Set.i,
and if the writer writes with color i, it does not access any registers in Set.i. Thus,
to interfere with Rd-loop(i), W must write with color j 6= i, implying it must begin
1-REGULAR-READ(RC) before Rd-loop(i) completes 1-REGULAR-WRITE(RC, i).
Also, it must overlap at least the first read, 1-REGULAR-READ(Flag[i]), by Rd-loop(i).
Because there is only one writer, there can be is at most one such W that spans this
interval. In the Fig. 1, W (writing with the color 2) interferes with Rd-loop(0).

1−RL−READ(R[f[0]])1−RL−READ(Flag[0])

Rd−loop(0)

1−RL−WRITE(RC, 0)

1−RL−WRITE(R[2],s2)
1−RL−READ(RC)

returns 2

W: write s2 with color 2

1−RL−WRITE(Flag[0],2)1−RL−WRITE(Flag[1],2)

Fig. 1. Illustration of step 1

Step 2: If no W interferes with Rd-loop(i), then by the definition of 1-regular regis-
ters, the pair (f [i], v[i]) computed in Rd-loop(i), will be the same as would be computed
had Rd-loop(i) been executed any time after the registers it accesses were last written,
which is no later than at the end of the most recent preceding W. Suppose, that some W
interferes with Rd-loop(i) and let W-prev denote the τ (REGULAR-WRITE(R, ·)) that
most recently precedes W. Notice that W first writes to the R 1-regular register and
then to the Flag 1-regular registers, whereas Rd-loop(i) first reads a Flag 1-register
and then anR 1-register. Suppose W writes with color k (k 6= i). The value f [i] is either
the value, say j, in Flag[i] at the end of W-prev, or the value k written by W to Flag[i].
Figure 2 illustrates this, for the case where j = 2 and k = 1. If f [i] = j and j 6= k then
the read of R[j] in Rd-loop(i) returns the value of R[j] at the end of W-prev because W
does not write to R[j]. If f [i] = k and j 6= k, then the read of R[k] in Rd-loop(i) will
return the value just written by W. If f [i] = j = k, then the read of R[k] in Rd-loop(i)
will return either the value written by W or by W-prev. In all cases, the pair of values
(f [i], v[i]) is the pair of values from either the end of W-prev or the end of W.

Step 3: Consider Rd-loop(c) of Rd, for some c ∈ {0, 1, 2}. The value, v[c], com-
puted by Rd-loop(c) is the value written by a real or ghost τ (REGULAR-WRITE(R, ·))
execution named W stale or it is the initial value of R[f [c]]. We denoted by t0 the end-
ing time of W stale if W stale exists otherwise t0 denoted the time t − 1 - assuming
that the ghost τ (REGULAR-WRITE(R, initialize value)) execution ends at time t. Let
W previous denote the latest execution of τ (REGULAR-WRITE(R, ·)) preceding Rd,
and t1 be its ending time. We will show that Rd will not return v[c] as its final value if



W−prev: write s2 with color 2

1−RL−WRITE(R[2],s2)

1−RL−READ(R[f[0]])

1−RL−WRITE(Flag[0],2)

W: write s1 with color 1

1−RL−WRITE(R[1],s1) 1−RL−WRITE(Flag[0],1)

 Rd−loop(0) returns (1,s1) or (2, s2)

1−RL−READ(Flag[0])1−RL−WRITE(RC,0)

Fig. 2. Illustration of step 2

t0 < t1. It will therefore follow that the final value returned by Rd is either the value of
an overlapping or the most recent preceding τ (REGULAR-WRITE(R, ·)) execution.
Let I(c) denote the interval from t0 to the beginning of Rd-loop(c).
R[f [c]] has not been overwritten during interval I(c). Any write with color f [c] writes
to R[f [c]]. Thus, all writes during I(c) do not have color f [c]. According to Rd-loop(c)
property, the flag value returned by Rd-loop(c) is the the value of f [c] at t1 or at t2
(where t2 is the end of the interfering W with Rd-loop(c)). Observe that if a write with
color j such that c 6= j 6= f [c] is done during I(c) then f [c] would be equal to j at t1
and at t2. Thus, all writes during I(c) have color c.
Observe from the code, that the final value returned by Rd is either v[1] (if f [0] =
f [1] = 2) or v[2] (otherwise). Assume that c > 0; let k be an integer such that 0 ≤ k <
c. Notice that the time interval I(k) is a prefix of I(c). If t0 < t1 then a write with color
c (ghost or real) occurs during I(k).
Rd-loop(k) property implies that Rd-loop(k) computes f [k] = c. If c = 2 then Rd
returns v[1] (f [0] = f [1] = 2) otherwise Rd returns v[2] (f [0] = 1).

Rd−loop(0) Rd−loop(1)

write s1 with color 1 write s2  with color 2 write s2’ with color 2

f[1]=2, v[1]=s2 or s2’

Rd returns s2 or s2’

f[0]=2 f[2]=1,v[2]=s1

Rd−loop(2)
W−stale W−previous

Fig. 3. Illustration of step 3.

We conclude that the final value returned by Rd is either the value of an overlapping or
the most recent preceding τ (REGULAR-WRITE(R, ·)) execution.
In Figure 4, a sequence of three τ (REGULAR-WRITE(R, ·)) executions is concurrent
with a τ (REGULAR-READ(R)).
The possible values returned by the τ (REGULAR-READ(R)) execution are indicated.

Combining the implementations. The composition of Algorithms 2 and 3 is a self-
stabilizing implementation of a single-writer/single-reader regular register using only
single-writer/single-reader safe registers. Also observe that both implementations are



write s0’ with color 0

Rd−loop(0) Rd−loop(2)

v[2]=s0, s0’, or s1

Rd−loop(1)

f[1]=0

write s1 with color 1write s0 with color 0

read returns s0, s0’ or s1

Fig. 4. Example of an execution

clearly wait-free — each transformation is straight-line code of at most 10 operations
on shared registers. Hence, their composition is also wait-free. The size of each shared
safe register used by the composition is 9M+24 bits whereM is the size of the regular
register being implemented. Thus, any self-stabilizing algorithm that uses only bounded
single-writer/single-reader regular registers, can be implemented with bounded single-
writer/single-reader safe registers.

5 Application to Network Simulations

A network that uses shared registers can be modelled as a graph where nodes represent
processors and there is an edge between two nodes if and only if the corresponding pro-
cessors communicate directly by reading or writing registers shared between them. Two
variants are defined by specifying whether the registers are single-writer/multi-reader
and located at the nodes (state models) or single-writer/ single-reader and located on
the edges (link models). By specifying either state or link communication, via shared
registers that are either safe, regular, or atomic, we arrive at six different register-based
network models. For a graph G, strength-location(G) denotes the network with topol-
ogy G and network model strength-location, where strength ∈ {safe, regular, atomic}
and where location ∈ {link, state}. For example, the regular-link model has single-
writer/single-reader regular registers located on the links of the network.
In a network model, two processors can share a register only if they share a edge inG. In
contrast, in the stronger globally shared memory model, even when the globally shared
memory contains only single-writer/single-reader registers, any pair of processors can
share registers.
The research cited earlier (Lamport and others) on wait-free implementations of strong
register types using weaker ones exploited globally shared memory for some of the
implementations of multi-reader (respectively, multi-writer) registers using only single-
reader (respectively, single-writer) registers. A natural generalization of this research
is to determine which of these implementations remain possible in the register-based
network model.
Our research seeks to answer this question as well as to generalize by adding self-
stabilization to the fault-tolerance requirement. Specifically, we ask whether it is pos-
sible to transform wait-free (respectively, self-stabilizing) algorithms for one of the
stronger network models into a wait-free (respectively, self-stabilizing) algorithms for
a weaker network model.



The implementations in this paper immediately answer one part of this question: there
is a wait-free and self-stabilizing implementation of algorithms designed for regular-
link(G) on safe-link(G), for any topology G.
By combining our previous work with either existing results or straightforward exten-
sions of known results, we can also answer all parts of the question concerning conver-
sions from atomic to regular strength. Specifically, 1) Previous research [7] presents a
self-stabilizing implementation of atomic-state(G) on regular-state(G), and proves that
no such wait-free implementation exists [6]. 2) Lamport (construction 5 of [10]) gave
a wait-free implementation of an atomic single-writer/single-reader register by regular
single-writer/single-reader registers. It is easily confirmed that this implementation is
also self-stabilizing, and constitutes a wait-free and self-stabilizing implementation of
atomic-link(G) on regular-link(G). 3) A natural way to transform an algorithm from a
state model into an algorithm for a link model is to implement a WRITE by sequentially
writing to each adjacent link. While this algorithm fails to preserve atomicity, it suf-
fices for regular (or safe) registers. It is straightforward to confirm that this naive idea
provides a wait-free and self-stabilizing implementation of regular-state(G) on regular-
link(G).
Given these previously known results and the contributions of this paper, the only re-
maining open piece of the general question is whether or not there is a wait-free and/or
self-stabilizing implementation of regular-state(G) on safe-state(G) for any graph G.
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