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Abstract

We present a proof of the decidability of home space property for linear sets of markings,
and extend this result to finite unions of linear sets having the same periods. We reduce
this property to the same one for submarkings, and finite unions of submarkings having
the same support. Decidability of home space property for this last class of sets is proved
by applying a new result characterizing the set of reachable markings by means of a finite
coinitial part of it.

Résumsé _

Nous présentons une preuve de la décidabilité de la propriété d’espace d’accueil pour
les ensembles linéaires. Ensuite, nous étendons ce résultat & 'unions finies d’ensembles
semi-linéaires ayant mémes périodes. Pour cela, nous réduisons cette propriété a la méme
dans le cas de sous-marquages, et d’unions finies de sous-marquages ayant méme support.
La décidabilité de la propriété d’espace d’accueil pour cette derni¢re classe d’ensemnbles
est prouvée en appliquant un nouveau résultat qui permet de caractériser 'ensernble des
marquages accessibles en construisant une partie coinitiale finie & lui.
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1. Introduction

We discuss in this paper the notion of home spaces [Mem 83]). Home spaces i.e. sets
of markings that can be reached from every reachable marking, are an important notion
for net analysis. Some interesting properties, such as the possibility to always reach some
special states (those where the process are idle, those where all the resources are free,
...) can be defined and studied by the notion of home space. On the other hand, some
classical properties as liveness can be expressed as particular cases of home states. Hence,
decidability of home space is a very interesting problem.

We will prove in this paper that we can decide if a finite union of linear sets having the
same periods is a home space, as a consequence of the decidability of reachability [Mayr 81],
[Kos 82],|Mayr 84|, [Lam 86]. For that we will prove that the fact that a submarking is a
home space is decidable. Then we will extend this result to finite unions of submarkings
having the same support. Finally we establish that the property “a linear set is a home
space”, is reducible to the property “a submarking is a home space”, and we extend this
reduction to finite unions of linear sets and submarkings having same support.

Before presenting these proofs we define the required background notions. In section
2, some standard notions on nets are recalled ; in section 3, we remind some properties
of linear sets and submarkings. In section 4, we focus on coinitial parts of certain sets,
and we present some algorithms to compute them. These algorithms are used in section 5
to prove the decidability of the fact a submarking is a home space, and then the proof is
extended to finite unions of submarkings having the same support. And finally in section
6 we establish that the property “a linear set is a home space” is decidable, extending it
afterwards to finite unions of linear sets having same periods.

2. Basic definitions and notations

In this section, we review some basic terminology on P/T systems ; see [BF 86 for
more details if necessary,
Def. 1 : A P/T system % is a tuple ¥ = (8, T, F, W, M) where (S, T, F) is a net, W :
F — N is the weight function and M, : § — N is the initial state.
Remark : Throughout this paper we will not impose finite capacities to places of S.

" Def. 2 The matrix C+ S 'x T = Z with C(p; t) = W(p, t) - W(t; p) forall pin'Sand t

in T, is called the incidence matrix of the system.
Next we present dot notation witch will be extremely useful for us.

vze S(\T z* = {y | (z,y) € F} ‘z={y| (y,z) € F}
VX CSNT X' =>z ‘r=) ‘'z
z€X zeX

Def. 8 : A marking of £, M, is a function M : 8§ — N.

Def. 4 : We say that a transition t € T is enabled at a marking M if and only if for all p
in *t M(p) = W{p, t}.

If t is enabled at M, we say that its firing produces M’, and we will denote it by M[t>M/,
where M’ is defined by M'(p) = M(p) + C(p, t}, for all p in S. This notation is extended
in a natural way to arbitrary transition sequences.

We say that M is reachable from M, if and only if there exists a transition sequence s such
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that My[s>M. The set of reachable markings from M, is denoted by [My >. We extend
this notion to arbitrary markings M : [M> denotes the set of markings reachable from M.
Def. 5 : Let HS be a set of markings. We say that HS is a home space of X [MV 87 if
andonly if VM€ [M >, 3IMeHS | Me [M>
If HS is a singleton, we call its unique element a home state.
As we said liveness can be defined as a particular case of home spaces.
Def. 6 : A given transition t € T is live for T if and only if the set of markings where t is
enabled is a home space of X. X is live if any transition of T is live for Z.
A partial ordering for markings, that we will use extensively throughout the rest of the
paper, can be defined in the following way.
Def. 7:
M>M iff VpeS M) >M(p)
M>M iff VpeS Mp)>M(p)
A very important property of this ordering for us will be the following :
Lemma 1 : All the infinite sequences of distinct elements of N¥ contain an infinite increas-
ing subsequence.

Proof : See |Dic 13|, [Rei 85]. O

3. Linear sets
Linear sets and semi-linear sets were introduced in [Par 61] in order to study some
problems from formal language theory.
Def. 8 : We say that E C N¥ is a linear set if there exists some M € N¥ and a finite set
{Ny, ..., N,} € N¥ such that
i=n
E={McN° |M=M+)> kN, with k;cN}
=1
M is called the base of E, and Ny, ..., N,, are said its periods. Semi-linear sets are the
finite unions of linear sets.

__ The following proposition has been recently proved by J.L. Lambert ; as this proof has

not been yet published we give it next.
Prop. 1 : Let T a P/T system. Let E C N® a linear set. We can decide it there is some
reachable marking in & (E N [Mo > # @).
Proof : We construct the system Ip from £ and E (see figure 1), adding to £ a new
transition t; for each period N; that “takes away from a marking the period value”, when
this is possible ; '

Vie{1l,..n} Vpe€S, W(p, t;) = Ni(p),  W(t, p) =0.

Thus is very easy to check a marking of E is reachable in ¥ if and only if the base of
E is reachable in ©5. The proof is finished, the reachability being decidable [Mayr 81],
[Kos 82], [Mayr 84], (Lam 86]. 0
Corollary 1 : Let & a P/T system and E C N° a semi-linear set, The following properties
are decidable :
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Figure 1: Construction of X g
aYEN[My>=0 b) [My> CE

t=m
Proof :a) If E = |J E;, with E; a linear set,
=1
wehave EN[My>=0@ ifandonlyif Vie{l,..,m} E N[{M>= 0.
b) We only have to use the fact that the complementary of a semi-linear set is a semi-linear
set [Gin 66]. O
Next we introduce submarkings, they are the sets of markings such that their elements
have the same number of tokens over some set of places [Hack 74]. They are used for the
local study of configurations.
Def. 8 : We say that E C N¥ is a submarking if and only if there is some subset S' of S,
and a family {¢,}esr of natural numbers such that

E={M¢eN|Vpe & Mp = c}

We will call 8’ the support of E, and we will say also that E is as submarking over S
Finally we say that two markings M and M’ agree over §' if and only if Vp € 8 M(p) =
M'(p), or equivalently they belong to the same submarking over S'.

Remark : Clearly submarkings are linear sets, and then reachability of submarkings is
.. decidable by prop. 1. o e e

Now we introduce sets E,(S') whose elements are the markings that have no more than

k tokens in the set of places S'.
Def. 10 : Let 8' a subset of 8, and k a positive number, We define the set of markings
Ek(S’) by .
Ef(SY={MecN°| > M(p)<k}
pES!

Prop. 2 : For all ' C S and k € N, E;(S') is a semi-linear set.

Proof :
Ce(S") = {{ep}pes | Z ¢p < k}
peS!
For all {¢,}pest € Ci(S'), we have ¢, < k, it is obvious that Cx(S') is a finite set ; and
it is clear also that E(S') is the union of the submarkings over S’ corresponding to the
elements of C¢(S'), and then it is a semi-linear set, O
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4. Computation of coinitial parts

A coinitial part of an ordered [Bou 77] is a part of the set such that any element of the
set has a minor in the part.
Def. 11 : Let (E, >) a poset, Let F C E. We say that F is a coinitial part of E if and only
if Vee E dJye F =z2>y.

We can compute a finite coinitial part of the set of reachable markings in the comple-
mentary of a given semi-linear set.
Prop. 8 : Given a system ¥ and a semi-linear set E C N5, we can compute a finite coinitial
part of the set [My > - E.
Proof : We present in figure 2 an algorithm to compute the desired coinitial part.

{E is a semi-linear set of markings}

A+—E; Fee0o;
while [My> ¢ A do
begin

Choice some M € [Mp > - A ;
Ae— AU{M eNS | M'>M};
F—FU{M};
end
{F is a coinitial part of (M, > - E}

Figure 2: Algorithm to compute coinitial part

In order to prove the correction of this algorithm please note the following facts :
o F C [My> —E is an invariant of while-loop.

e A = E |J{M e N°|M > M} is also an invariant of loop.
' meF

e “A is a linear set” is an invariant of algorithm ; then the condition of the loop can be
effectively checked each time, as shown by the corollary 1.

o If [My; > Z A, then we can effectively find some reachable marking M not in A by an
exhaustive search along N®. Determine that a given marking is reachable and is not in A,
is decidable.

Finally lemma 1 assures us that the algorithm terminates. Suppose that is not true, taking
F = {M,}neN, where M, is the element inserted in F in the n-th iteration. We would have
some ny < ng with My, > M,,, but this not possible because after the insertion of M, in
F, we would have also M, in A, and then it could not be selected as an element of [M, >
- Al

And when the algorithm stops we have

FC[My>—-E, and [My>cC E |J{M eN°|[M > M}
MeF




Decidability of home space property 6

Then F is a finite coinitial part of {My > - E. O
Coroliary 2 :
a) Whatever 8’ C S and k € N, a finite coinitial part of the set [My > - Ex(8') can be

computed.
b) for all E C N¥ semi-linear set, we can compute a finite coinitial part of the set [M; >

N E.

Proof : Just note that both E.(S') and the complementary of E are semi-linear sets. O
We need a coinitial part of the set of reachable markings in £,({S') such that the minor

of any marking agrees with it over §'. Such a coinitial part is computable.

Prop. 4 : For all 8' C S and k € N, a finite coinitial part of the set [Mp > N E(S')

verifying that

VMe[Mo>[E(S") IMeF|M>M and Vpe S M(p)=M{p)

is computable.

Proof : We know that E(S') is the finite union of a family of submarkings, whose support
is 8'. A finite coinitial part of the set of reachable markings in each of the elements of this
family can be computed. Then it is very easy to check that we can take as the requested
set I, the union of these coinitial parts. ]

5. Home spaces, submarkings
In this section we prove the decidability of the home space property for submarkings,
and finite unions of submarkings having the same support.
Prop. 5 : Let E C N° a submarking. A finite set of reachable markings F, such that E is
a home space if and only if E is reachable from every marking in F, is computable.
Proof : First we will compute the desired set of markings F. Afterwards we will check that
F is suitable. In order to compute F, we will study Ey(8') where 8' is the support of E
and k is the number of tokens in S’ that have the markings of E. We apply the prop. 4 in
order to get a finite coinitial part F' of the set [My > | E(8') having the property
YMe[M > ﬂEk(S') IMeF|M>M and Ype S M(p)=M{(p).

We apply also the corollary 2 to compute a finite coinitial part F" of [Mp > - Ex(8'). We

will take as I the union of F' and F".
Obviously F C [M, > ; in fact it is a finite coinitial part of [Mp >. Then we have that if
E is a home space, it is must be reachable from any marking of F. To prove the converse

result, we observe that

(Mo > = (Mo > (] Ea(S1))

leN

and we will see that for all M in [My > N E(S'), E can be reached from M if E can be
reached from any marking in F, by induction on1 &€ N.
If 1 < k we have M € E,(S"), and then we have some M' € F! C F such that M > M’ and
M' agrees with M over §'. By hypothesis, there exists s, a transition sequence those its
occurrence gives M| in E at M'. We have that s is enabled at M and its firing gives M,
that agrees with M over §', as M and M’ do too. As E is a submarking over §' we have
M| € E < M; € E,and so M € E. E is reachable from M.
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Let us take now M € [Mp > N E141(8') with 1 > k, and assume that foralll' <1, E can
be reached from any M' € [M; > N Eu(S’}). Of course, we assume M ¢ E;(8'), and then
M ¢ Ei(8'). So we will have some M' € F" C F, such that M > M'. Then, as before, we
take s whose firing at M’ gives M] in E, and we observe that s is enabled at M, and if M;
is reached marking after its firing, we have for all pin S :

M;(p) = M(p) + Mi(p) — M'(p)
and then in particular

>, Mi(p) = X M(p)+ D Mi(p) - > M'(p)

pes! peS?! peS! pes!

but as M| € E, E C Ex(8") and M' ¢ E.(8'), we have

> Mi(p) < > M'(p) and then Yo Mi(p) < > M(p)=1+1
pes! peS! peSs! pes!
- 8o we can apply the induction hypothesis to Mj, reaching E, and as M; € [M>, we conclude
that E is reachable from M. O
Prop. 6 : The property “a submarking is a home space” is decidable.
Proof : We only have to compute F as said in prop. 5, and then to check if E is reachable
from any marking in F, applying the decidability of the reachability of a submarking.
|
Next we extend these results to finite unions of submarkings with the same support.

Prop. 7: Let.U a finite union of submarkings having the same support. We can compute a
finite set of reachable markings F such that U is a home space if and only if U is reachable
from every marking of F.
Proof : We only will construct F. You can check following similar arguments to those used
in the proof of prop. 5, that it is a suitable set.

i=m
Let U= |J E' S§'isthe common support of E'.

i=1

pES?!

and consider the set E.(s') exactly as in the proof of the prop. 5. So F' will be a finite
coinitial part of the set [My > {1} E¢(S') verifying the property

VMe [My>{1E(S) IMecF|M>M and Vpe 88 M(p)=M(p)

and F” will be a finite coinitial part of the set [M; > - E;(S'). Finally F will be the union
of I and F*, O

Theorem 1 : The property “a finite union of submarkings having the same support is a
home space” is decidable.

Proof : It is an immediate consequence of the preceding proposition. O

6. Home spaces, linear sets

We will take k= max {>_ E'(p)|i€ {1,..,n}}
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In this section we will see that it is possible to decide if a given linear set is a home
space of a P/T system. For we will prove that this property is recursively equivalent to
the studied in the previous section “a submarking is a home space”.

Let us remind the definition of recursive equivalence of two properties.

Def. 12 : Let Py and P; two properties over universes U, and Y;. We say that P; is
reducible to P, if and only if there is some algorithm A transforming the objects of Y, in
objects of U, so that e; € U, verifies P, if and only if A(e;) verifies P,

Py, and P, are recursively equivalent if and only if P, is reducible to P; and P, is reducible
to P1.

Prop. 8 : If Py is reducible to P; and P, is decidable, then P; is decidable too.

Proof : Obvious. O

Given P/T system I, and a linear set E € N®, we will construct another system g
and a submarking E' over it, such that E is a home space of ¥ if and only if E' is a home
space of L.

Def, 18 : Let & = (S, T, F, W, My) a P/T system, and E € N a linear set with base M,
and periods Ny, ... , N,. We construct & = (Sg, Ts, Fg, WE, Mgo) and E' as described in
figure 3.

EE=(SUS_;§,TUT£;,FUFIE,WUW};;)
E={McN°|VpeS M(p)= M)}
S'E - {pls ey pﬂ}
T}g = C U B C= {61, ey cn} B = {b1, ey bn}
Vie{l,n|VpeP Wg(p, b:) = Ni(p) Wg(bi, p) = 0
Vi (L) Wh(pe, b) = Wh(bs, p7) = 1
Vijj€ [1, n} W::;(PJ, b,) =0 Wlli(bu p:f) =0 i
O S v 4% O = .[..1,..11] YpeP . . .Wk(p,mc;). =0 e Wé(ch.p)_.m. Ni(p).. ST

Vie [Is n] Wx(pi, C.) =1 Wg(e:, P;‘) =0
Vi, j€ [1, n] Wg(p;, ¢i) = Wi(ei, p;) = 0
VpES  Mgelp) = My(p) Vp€ESy Mgolp)=0

Figure 3; definition of L

With the help of figure 4 you will understand the idea of this construction. We add
a transition b; for each period N, that takes away the period value from the places in S,
Firing these transitions we can reach M, from any marking in E. But those transitions
could be fired in some other moment removing perhaps our possibility to reach E in the
future. To avoid this fact we introduce the places of S§ and the transitions of C. We put
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a token over p; each time b; is fired, and this will enable to fire ¢; one time in any moment
in the future. The firing of ¢; will turn round the effect of b;, making possible to recover a
reachable marking of [M; >5.

C D

bn

b c1

O

n Pn

Figure 4: Presentation of X

Probably .if you have understood how Tz works, you will see that the reduction (%,
E) — (Zg, E') transforms E a linear set in B’ a submarking conserving the home space
property. Nevertheless we will give next a formal proof of this result. For we will prove
before a sequence of properties of our transformation.
Property 1 : Let M be a marking of ¥g such that M(p;) = O for some p; € S;. Let s bea
transition sequence enabled at M. Then if we denote by occ(s, t} the number of occurrences
of t in s, we have that occ(s, ¢;) < oce(s, b;).
Proof : As b; and ¢; are the only transitions that take or put tokens over p;, more exactly
we have Wg(b;, p;) = 1 = Wi(p;, ;) and WE(p;, b;) = 0 = Wg(e,, i), you can check by an
straight forward induction that if s verifies M{s> M, we have occ(s, b;) = oce(s, ¢;) + M'(pi}.
|
Remark : Bach occurrence of a transition ¢; of C is preceded by a different occurrence of
Property 2 : Let M be a marking of £y such that for all p € S; we have M(p) = 0, and
let s such that M[s>M'. Then we have two transition sequences sy and sp such that s; €
T* and sp € B* verifying M[spsp > M.
Proof : By definition of g, it is very easy to conclude that V b;, b; € B,V ¢;, ¢; € C, V

81, $2 € (TNTE) andVte T

if s = sibits, with M[s>M' then we have s' = s11b;89 with Mls' >N
if s = 81b;b;8, with M(s>M' then we have s' = 81b;b;8, with Ms' >N
if s = $1bi¢;80 with M[s>M' then we have s' = s1¢;b;89 with M[s' >»
if s = 81b;¢:82 with M[s>M then we have s' = 8189 with Mis’ >M

You can check by an induction that the transitions of s can be reordered getting s’ that is
enabled at M and its occurrence gives M’ with ' = sgs] s € (TN C)* and s €
B*. By the property 1, we have s} € T™. 0

Property 8 : If M is a reachable marking of £, M’ given by M'(p) = M(p) for all p in 8,
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and M'(p) = 0 for all p in S§, is a reachable marking of Zg.
Proof : Let s a transition sequence allowing to reach M from M, in I. s is enabled at Mgo
in L g and its occurrence gives M'. 0

Property 4 : If M' is a reachable marking of Xy such that for all p in S M'(p} = 0 then
M given by M(p) = M!(p) for all p in 8, is a reachable marking of X.

Proof : It is a consequence of property 2. Let s’ be a transition sequence of £ g such that
Mpgqo[s' >M' ; there must be some other sequence s” such that Mge[s” >M’ and s” = sfs]
with s} € T* and s§ € B*. But then sj must be empty, because otherwise there would
be some token over the place of S, in the reached marking M'. But then if we consider s}

as a transition sequence of I, it is clear that Mp{s" > M. O
Lemma 2 : If E! is a home space of g, then E is a home space of X.

z )
{step 1)

Mo . M j MEBy — y M

!

M | M

(step 4) (step 2)
!

51 i 8! s € T7

M €E M" €B o

sh € B*(step 3)

Figure 5: E' is 2 home space of Zp = E is a home space of &

Proof : (syntesized in figure 5)
Let M be a reachable marking of . Then by property 3 we have that M’ given by M/(p) =
M(p) for all p in S, and M'(p) = O for any other place, is a reachable marking of ¥z. Then

gives M" at M', in £g. Applying the property 2 we can take s' = s}s} with s] € T* and
sy € B*. Let M" the marking reached after the firing of s] over M', We have forall pin 8

i=n

M (p) = M"(p) + 2_ oce(s, b)) - Ni(p)-

i=1

Now if we consider s} as a transition sequence for £, we have M{s] > M{ with M (p) = M"(p)
for any place p in 8, and since M" is an element of E' we conclude

i=n

M(p) = My(p) + Eocc(s"z,b,-) - Ni(p) for all pinS.
i=1

M} is an element of E, and consequently E is home space of %. O
Lemma 8 : f E is a home space of I, then E' is a home space of L.
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b, )
ME, 5 M’
(step 1)
ge C*
¢ (step 2)
M > My —  » M
S"
s (step 3)
(step 5) Y (Step 4) M, € B
Mew o0y 1
S"l = B*

Figure 6: E is a home space of ¥ => E' is a home space of Xg

Proof : (syntesized in figure 6)

Let M' be a reachable marking of %g. Let us consider the transition sequence s’ = s, ..., s},
where 8! € {¢;}* and |s}] = M'(p;). we can fire it at M/, to reach some marking M" with
M”(p;) = 0 for all p; in S§. Then, applying property 4, we have M € [M; >, in ¥ such
that M(p) = M”(p) for all p in S. Now since E is a home space of I, we have some s"
such that M[s" > M; with M; € E. Obviously s” is enabled at M' in X, and if M] is the
reached marking we have M{(p) = M;(p) for all p in 8. As M; € E, we have a tuple of
natural numbers &; such that '

i=n

forall pinS, M!(p) = My(p) + D _ ki . Ni(p).
i=1

Finally the transition sequence s™ = s¥, ..., s/ with s’ € {b;}* and |s}| = k; is enabled
at M, and it is clear that its occurrence gives M; with M;{p) = M,(p) for all p in S, then
M; € E". 0

- Theorem 2-:-We can decide if a given linear set is-a home space of a P /T systemu....

Proof : It follows from the two preceding lemmas that the property “a linear set is a home
space” is reducible to the property “a submarking is a home space”, and then the searched
result is immediate consequence of prop. 6 and prop. 8. a

Corollary 8 : Liveness of a transition of a P/T system is a decidable property.

Proof : Let t € T. We consider the linear set ; C N5 defined as follows
E,={MeN°|VpesS M(p)>W(pt)}

It is clear that t is enabled exactly at any marking in E,, and then t is live if and only if
E, is a home space, what is decidable by theorem 2. ]

This corollary was first proved by M. Hack [Hack 74| (more exactly he proved that
liveness and reachablity are recursively equivalent, some years before decidability of reach-
ability was proved). Nevertheless, it seems to us his proof is much more complicated than
ours.
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We conclude this section extending decidabilty of the problem “is a given linear set
a home space 7" to finite unions of linear sets having same periods (a restricted class of
semi-linear sets). To prove this fact we will reduce this property to the property “a finite
union of submarkings having the same support is a home space”. The reduction is an
straight forward generalization to that we have proved for linear sets, this is why we will
only present the propositions without giving proof.
Def. 14 : let & be a P/T system, Let E a finite union of linear sets having the same
periods :

j=m i=n
E=|JE; with E;={MeN°|M=M;+)>_k.N; with k; € N}
j=1 =1

We consider the system L, equal to any of the systems L, defined by the def. 13. Indeed
they all are equal, as in that definition the dependence from the given linear set comes
from its periods, but there is not any dependence from the base of the set. Then we define
E! by

j=m

E' = |J E} with Ej={MeN°|VpeS M(p) = M;(p)},

i=1
That obviously is a finite union of submarkings having the same support.
Lemma 4 : E is a home space of T if and only if E is a home space of L.
Theorem § : The property “a finite union of linear sets having the same periods is a home
space” is decidable,
Corollary 4 : The property “the set of integer solutions of a system of integer linear
equations is a home space” is decidable.

Proof : The set of integer solutions of a system of integer linear equations admits an integer
Hilbert base [Gor 73|, More precisely, this set is a finite union of linear sets having the

same periods. O

7. Conclusion
In this paper we have proved that the property of home space is decidable for linear

" set, and even for finite unions of linear sets having the samé peériods. For we presented an™ 7

algorithm to decide this property for submarkings, and extended it to cover finite unions
of submarkings having the same support, and we proved that the property for linear sets
(resp. finite unions of linear sets having the same periods) is reducible to the property for
submarkings (resp. finite unions of submarkings having the same support).

The decision procedure is too unefficient to be used in pratice, because it uses intensively
the known (but very complex !) algorithm to decide reachability. One of the authors
became interested on this problem looking for efficient algorithms to decide home spaces
in some particular, but in our opinion very interesed for applications [Joh 88].

This not the last word on the decidability of home spaces, A rather natural extension of
our results would concern arbitrary semi-linear sets. You can see that our restriction fixing
the same set of periods for all the linear sets generating the elements of the particular class
of semi-linear sets that we have studied is capital in order to get an effective algorithm to
decide home spaces, following our method. More exactly we could reduce the problem to
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the decidability of home spaces for arbitrary finite unions of submarkings. But we can not

extend the

reasonnings supporting the proofs of prop. 5 and prop. 7, to these finite unions

of submarkings because we only know that from any reachable marking we approach to
one of these submarkings. Unfortunately now we can not iterate this process in order to
finally reach one of them : it is possible that any step approaching us to one of them will
move us away from other. So the closest submarking could be always changing, making

impossible

any conclusion on the reachability of the union of the submarkings.
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