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1

Introduction

Presburger arithmetic [Pre29] is a decidable logic used in a large range of ap-
plications. As described in [Lat04], this logic is central in many areas includ-
ing integer programming problems [Sch87], compiler optimization techniques
[Ome], program analysis tools [BGP99, FO97, Fri00] and model-checking
[BFL04, Fas, Las]. Different techniques [GBD02] and tools have been devel-
oped for manipulating the Presburger-definable sets (the sets of integer vec-
tors satisfying a Presburger formula): by working directly on the Presburger-
formulas [Kla04] (implemented in Omega [Ome]), by using semi-linear sets
[GS66] (implemented in Brain [RV02]), or automata (integer vectors being
encoded as strings of digits) [WB95, BC96] (implemented in Fast [BFLP03],
Lash [Las] and Mona [KMS02]). Presburger-formulas and semi-linear sets
lack canonicity. As a direct consequence, a set that possesses a simple repre-
sentation could unfortunately be represented in an unduly complicated way.
Moreover, deciding if a given vector of integers is in a given set, is at least
NP-hard [Ber77, GS66]. On the other hand, a minimization procedure for au-
tomata provides a canonical representation. That means, the automaton that
represents a given set only depends on this set and not on the way we compute
it. For these reasons, autmata are well adapted for applications that require
a lot of boolean manipulations such as model-checking.

Whereas there exist efficient algorithms for computing an automaton that
represents the set defined by a given Presburger formula [Kla04, WB00, BC96],
the inverse problem of computing a Presburger-formula from a Presburger-
definable set represented by an automaton, called the Presburger synthesis
problem, was first studied in [Ler03] and only partially solved in exponential
time (resp. doubly exponential time) for convex integer polyhedrons [Lat04]
(resp. for semi-linear sets with the same set of periods [Lug04]). Presburger-
synthesis has many applications. For example, in software verification, we
are interested in computing the set of reachable states of an infinite state
system by using automata and in analyzing the structure of these sets with a
tool such as [Ome] which manipulates Presburger-formulas. The Presburger-
synthesis problem is also central to a new generation of constraint solvers
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for Presburger arithmetic that manipulate both automata and Presburger-
formulas [Lat04, Kla04].

The Presburger-synthesis problem is naturally related to the problem of
deciding whether an autamaton represents a Presburger-definable set, a well-
known hard problem first solved by Muchnik in 1991 [Muc91] with a quadruple
exponential time algorithm. To the best of our knowledge no better algorithm
for the full class of Presburger-definable sets has been proposed since 1991.

In this paper, given an automaton that represents a setX of integer vectors
encoded by the least significant digit first decomposition, we prove that we
can decide in polynomial time whether X is Presburger-definable. Moreover,
in this case, we provide an algorithm that computes in polynomial time a
Presburger-formula that defines X .



2

Notations

We provide in this chapter notations used in the sequel.

2.1 Sets, Functions, and Relations

We denote by Q, Q+, Z and N respectively the set of rational numbers, non-
negative rational numbers, integers, and non-negative integers.

The intersection, union, difference, and symmetric difference of two sets
A and B are written A ∩B, A ∪B, A\B, and A∆B = (A\B) ∪ (B\A).

The class of subsets (resp. the class of finite subsets) of a set E is denoted
by P(E) (resp. Pf(E)). The cardinal of a finite set X is written |X | ∈ N. A
partition C of a set E is a class of non-empty subsets of E such thatX1∩X2 = ∅
for any X1, X2 ∈ C and E =

⋃

X∈C
X .

The Cartesian product of two sets A and B is written A × B. The set
Xm is called the set of vectors with m ∈ N components in a set X . Given
an integer i ∈ {1, . . . ,m} and a vector x ∈ Xm, the i-th component of x is
written x[i] ∈ X .

The set of functions f : X → Y , also called sequences of elements in Y
indexed by X is written Y X . A function f ∈ XY is said injective if f(x1) 6=
f(x2) for any x1 6= x2 ∈ X , surjective if for any y ∈ Y there exists x ∈ X
such that y = f(x), and bijective or one-to-one if it is both injective and
surjective. A function f ∈ Y X is either denoted by f : X → Y , or it is
denoted by f = (fx)x∈X and in this last case Y is implicitly known. Given
a function f : X → Y and two sets A and B, we define f(A) and f−1(B)
respectively the image and the inverse image of A and B by f , given by
f(A) = {f(x); x ∈ X ∩ A} and f−1(B) = {x ∈ X ; f(x) ∈ B} (remark that
A is not necessary a subset of X and B is not necessary a subset of Y ).

An enumeration of a set E is an injective function f : N → E. A countable
set E is a set E that has an enumeration. Recall that a finite set is countable
and the class of finite subsets of a countable set is countable.
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Let V be a countable set of boolean variables. A boolean formula φ over the
boolean variables V is a formula in the grammar φ := v|φ∩ φ|φ∪ φ|φ\φ|φ∆φ
where v ∈ V . A boolean valuation ρ is a function that maps each boolean
variable v to a set ρ(v). Observe that a boolean valuation ρ can be naturally
extended to any boolean formula φ. Given a boolean formula φ(v1, . . . , vn)
where v1, ..., vn are the boolean variables occurring in φ and some sets E1, ...,
En, we denote by φ(E1, . . . , En) the unique set ρ(φ) where ρ is any valuation
such that ρ(vi) = Ei. A set E is called a boolean combination of sets in a class
C of sets if there exists a boolean formula φ(v1, . . . , vn) and some sets E1, ...,
En in C such that E = φ(E1, . . . , En).

Lemma 2.1. We can decide in polynomial time if a finite set E is a boolean
combination of sets in a finite class C of finite sets. Moreover, in this case
we can compute in polynomial time a boolean formula φ(v1, . . . , vn) and a
sequence E1, ..., En of sets in C such that E = φ(E1, . . . , En).

Proof. Let us consider an enumeration E1, ..., En of the sets in C and let X =
⋃n

i=1 Ei. Let us consider the function f : X × {1, . . . , n} → P(E) such that
f(x, i) is the unique set in {Ei, X∆Ei} that contains x. Let us also consider
the set Kx =

⋂n
i=1 f(x, i) and observe that E is a boolean combination of sets

in C if and only E =
⋃

e∈E Ke. ⊓⊔

A relation R is a subset of S1 × S2 where S1 and S2 are two sets. We
denote by s1Rs2 if (s1, s2) ∈ R. Such a relation is said one-to-one if there
exists a unique s2 ∈ S2 such that s1Rs2 for any s1 ∈ S1, and if there exists a
unique s1 ∈ S1 such that s1Rs2 for any s2 ∈ S2. The concatenation R1.R2 of
two relations R1 ⊆ S1×S2 and R2 ⊆ S2×S3 is the relation R1.R2 ⊆ S1×S3

defined by s1R1.R2s3 if and only if there exists s2 ∈ S2 such that s1R1s2
and s2R2s3. A binary relation R over a set S is a relation R ⊆ S1 × S2 such
that S1 = S = S2. Recall that a binary relation R over S is an equivalence
if R is reflexive (sRs for any s), symmetric (s1Rs2 if and only if s2Rs1
for any s1, s2 ∈ S), and transitive (s1Rs2 and s2Rs3 implies s1Rs3 for any
s1, s2, s3 ∈ S). Given an equivalence binary relation R over S, the equivalence
class of an element s ∈ S is the set of s′ ∈ S such that sRs′. Recall that
equivalence classes provide a partition of S.

2.2 Linear Algebra

The unit vector ej,m ∈ Qm where j ∈ {1, . . . ,m} is defined by ej,m[j] = 1 and
ej,m[i] = 0 for any i ∈ {1, . . . ,m}\{j}. The zero vector e0,m ∈ Qm is defined
by e0,m = (0, . . . , 0).

Vectors x+y and t.x are defined by (x+y)[i] = (x[i])+(y[i]) and (t.x)[i] =
t.(x[i]) for any i ∈ {1, . . . ,m}, x, y ∈ Qm, t ∈ Q. We naturally define A+B =
{a+ b; (a, b) ∈ A × B} and T.A = {t.a; (t, a) ∈ T × A} for any A,B ⊆ Qm
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and T ⊆ Q. For any a, b ∈ Qm and t ∈ Q, let us define a + B = {a} + B,
A+ b = A+ {b}, t.A = {t}.A and T.a = T.{a}.

The infinite norm of a vector x ∈ Qm is defined by ||x||∞ = maxi |x[i]|
where |x[i]| is the absolute value of x[i].

The dot product of two vectors x, y ∈ Qm is denoted by 〈x, y〉 =
∑m

i=1 x[i].y[i].
The greatest common divisor (gcd) of m ∈ N\{0} integers x1, ..., xm is

denoted by gcd(x1, . . . , xm). Recall that the gcd of of some integers can be
efficiently computed in polynomial time thanks to an Euclidean algorithm.

A rational number q ∈ Q can be canonically represented as a tuple (n, d) ∈
Z × (N\{0}) such that q = n

d
and gcd(n, d) = 1. The integer size(q) ∈ N is

defined as the least (for ≤) integer such that n, d ≤ 2size(q). The integer
size(x) ∈ N where x ∈ Qm is defined by size(x) =

∑m
i=1 size(x[i]). The integer

size(X) ∈ N where X ∈ Pf (Qm) is defined by size(X) =
∑

x∈X size(x).

A function f : Qm → Qm′

is said affine if for any i ∈ {1, . . . ,m}, there
exists vi ∈ Qm and ci ∈ Q such that f(x)[i] = ci + 〈vi, x〉 for any x ∈ Qm.

The set of matrices with n ∈ N rows and m ∈ N columns with coefficients
in a set X ⊆ Q is denoted by Mm,n(X). Its elements are denoted by M [i, j] ∈
X where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2.3 Alphabets, Graphs, and Automata

An alphabet Σ is a non-empty finite set. Given an alphabet Σ, we denote by
Σ+ the set of non-empty words over Σ. Given a non-empty word σ = b1 . . . bk
of k ∈ N\{0} elements bi ∈ Σ, and an integer i ∈ {1, . . . , k}, we denote by
σ[i] the element σ[i] = bi. We denote by ǫ the empty word. As usual Σ∗

denotes the set of words Σ+ ∪ {ǫ} and a language L is a subset of Σ∗. The
concatenation of σ1 ∈ Σ∗ and σ2 ∈ Σ∗ (resp. L1 ⊆ Σ∗ and L2 ⊆ Σ∗) is
denoted by σ1.σ2 (resp. L1.L2 = {σ1.σ2; (σ1, σ2) ∈ L1 × L2}). Given a word
σ ∈ Σ∗, we define as usual σi where i ∈ N and σ∗ = {σi; i ∈ N}. The length
of a word σ ∈ Σ∗ is denoted by |σ| ∈ N. The residue σ−1.L of a language
L ⊆ Σ∗ by a word σ ∈ Σ∗ is the language σ−1.L = {w ∈ Σ∗; σ.w ∈ L}.

A graph G labelled by Σ is a tuple G = (Q,Σ, δ) such that Q is the non
empty set of states , Σ is an alphabet and δ : Q × Σ → Q is the transi-
tion function. Two graphs G1 = (Q1, Σ, δ1) and G2 = (Q2, Σ, δ2) labelled
by Σ are said isomorph by a one-to-one relation R ⊆ Q1 × Q2, if we have
δ1(q1, b)Rδ2(q2, b) for any q1Rq2 and for any b ∈ Σ. As usual, the transition
function δ is uniquely extended into a function δ : Q × Σ∗ → Q such that
δ(q, ǫ) = q for any q ∈ Q and such that δ(q, σ1.σ2) = δ(δ(q, σ1), σ2). Given a

word σ ∈ Σ∗, we denote by
σ
−→ the binary relation over Q defined by q

σ
−→ q′

if and only if q′ = δ(q, σ). In this case, we say that there exists a path from a
state q to a state q′ labelled by σ. Such a path is called a cycle on q if q = q′

and σ 6= ǫ. Given a language L ⊆ Σ∗, the binary relation
L
−→ is defined by
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L
−→=

⋃

σ∈L

σ
−→. The binary relation → is defined by →=

Σ∗

−−→. A state q′ is said
reachable from a state q0 if q0 → q′. The notion of reachability is naturally
extended to the subsets of Q: a subset Q′ ⊆ Q is said reachable from a subset
Q0 ⊆ Q if the exists a state q′ ∈ Q′ reachable from a state q0 ∈ Q0. In this
case the set Q′ is said co-reachable from Q. A strongly connected component
Q′ is an equivalence class for the equivalence binary relation ⇄ defined over
Q by q ⇄ q′ if and only if q → q′ and q′ → q. A graph G is said finite if Q
is finite. In this case |G| = |Q| denotes the number of states of G, and the
integer size(G) ∈ N is defined by size(G) = |Σ|.|Q|.

An automaton A labelled by Σ is a tuple A = (k0,K,Σ, δ,KF ) such that
(K,Σ, δ) is a graph labelled by Σ, k0 ∈ K is the initial state and KF ⊆
K is the set of final states . Two automata A1 = (k0,1,K1, Σ, δ1,KF,1) and
A2 = (k0,2,K2, Σ, δ2,K2) labelled by Σ are said isomorph by a one-to-one
relation R ⊆ K1 × K2 if (K1, Σ, δ1) and (K2, Σ, δ2) are isomorph by R,
(k0,1, k0,2) ∈ R, and we have k1 ∈ KF,1 if and only if k2 ∈ KF,2 for any
(k1, k2) ∈ R. An automaton with a finite set of states K is said finite. In
this case, we denote by |A| the number of states |K| and the integer size(A)
is defined by size(A) = |Σ|.|K|. The language L(A) ⊆ Σ∗ recognized by an
automaton A labelled by Σ is defined by L(A) = {σ ∈ Σ∗; δ(q0, σ) ∈ KF }. A
language L ⊆ Σ∗ is said regular if it can be recognized by a finite automaton.
Recall that a language L ⊆ Σ∗ is regular if and only if the set of residues
{σ−1.L; σ ∈ Σ∗} is finite. In this case the automaton (L,K,Σ, δ,KF ) defined
by the set of states K = {σ−1.L; σ ∈ Σ∗}, the transition function δ(k, b) =
b−1.k which is in K since b−1.σ−1.L = (σ.b)−1.L and the final set of states
KF = {k ∈ K; ǫ ∈ k} is the unique (up to isomorphism) minimal (for the
number of states) automaton labelled by Σ that recognizes L.
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Finite Digit Vector Automata

In this chapter, the Finite Digit Vector Automata (FDVA) representation, a
state-based representation of set of integer vectors is presented.

3.1 Digit Vector Decomposition

In this paper, r denotes an integer in N\{0, 1} called basis of decomposition.
The set Σr = {0, . . . , r − 1} is called the set of r-digits and the set Sr =
{0, r−1} ⊆ Σr is called the set of r-signs . Given an integer m ∈ N\{0} called
dimension, we intensively used the alphabets Σr,m = Σm

r and Sr,m = Sm
r

whose the elements are respectively called the (r,m)-digit vectors and the
(r,m)-sign vectors . Naturally, a word over the alphabet Σr,m can also be seen
as a word over the alphabetΣr with a length multiple ofm. In order to simplify
notations, these words are identified. Moreover, given a word σ ∈ Σ∗

r,m, we
denote by |σ|m the length of σ seens as a word over the alphabet Σr,m and

defined by |σ|m = |σ|
m

, and given a word σ = b1 . . . bk of k ∈ N\{0} (r,m)-
digit vectors bi ∈ Σr,m and an integer i ∈ {1, . . . , k}, we denote by σ[i]m the
(r,m)-digit vector σ[i]m = bi.

A (r,m)-decomposition (σ, s) of an integer vector x ∈ Zm is a cou-
ple (σ, s) ∈ Σ∗

r,m × Sr,m corresponding to a least significant digit first de-
composition of x in basis r. More formally, we have x = ρr,m(σ, s) where
ρr,m : Σ∗

r,m × Sr,m → Zm is defined by the following equality:

ρr,m(σ, s) = r|σ|m .
s

1 − r
+

|σ|m
∑

i=1

ri−1.σ[i]m

Example 3.1. (011, 0) is a (2, 1)-decomposition of 6 = 21 + 22.

Example 3.2. (ǫ, 1), (1, 1), (11, 1), ..., (1 . . . 1, 1) are the (2, 1)-decompositions
of −1 and (ǫ, 0), (0, 0), ..., (0 . . . 0, 0) are the (2, 1)-decompositions of 0.
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Following notations introduced in [Ler04], function ρr,m can be defined
thanks to the unique sequence (γr,m,σ)σ∈Σ∗

r
of functions γr,m,σ : Zm → Zm

such that γr,m,σ1.σ2
= γr,m,σ1

◦γr,m,σ2
for any σ1, σ2 ∈ Σ∗

r , γr,m,ǫ is the identity
function, and such that γr,m,b(x) is defined for any (b, x) ∈ Σr × Zm by the
following equality:

γr,m,b(x[1], . . . , x[m]) = (r.x[m] + b, x[1], . . . , x[m− 1])

In fact, we deduce that for any (r,m)-decomposition (σ, s), we have the fol-
lowing equality since γr,m,w(x) = r.x+ w for any (w, x) ∈ Σr,m × Zm:

ρr,m(σ, s) = γr,m,σ(
s

1 − r
)

Function ρr,m can be used to associate to any language L ⊆ Σ∗
r,m × Sr,m,

the set of integer vectors X = ρr,m(L). Remark that ρr,m is a surjective
function (we have ρr,m(Σ∗

r,m × Sr,m) = Zm) because any vector x ∈ Zm

owns at least one (r,m)-decomposition. Hence, for any subset X ⊆ Zm, there
exists at least one language L such that X = ρr,m(L). However, intersection
of languages does not correspond to intersection of sets of integer vectors:
for instance, consider L1 = {(0, 0)} and L2 = {(0.0, 0)} and remark that
{0} = ρr,1(L1)∩ ρr,1(L2) 6= ρr,1(L1 ∩L2) = ∅. In order to avoid this problem,
we introduce the notion of saturated languages.

A language L ⊆ Σ∗
r,m × Sr,m is said (r,m)-saturated if for any (r,m)-

decompositions (σ1, s1) and (σ2, s2) of the same vector, we have (σ1, s1) ∈ L

if and only if (σ2, s2) ∈ L. Remark that Σ∗
r,m × Sr,m is a (r,m)-saturated

language such that ρr,m(Σ∗
r,m×Sr,m) = Zm, and L1#L2 is a (r,m)-saturated

language such that ρr,m(L1#L2) = ρr,m(L1)#ρr,m(L2) for any pair (L1,L2)
of (r,m)-saturated languages, and for any # ∈ {∪,∩, \, ∆}.

The (r,m)-decompositions of the same integer vector are characterized by
the following lemma 3.3.

Lemma 3.3. Two (r,m)-decompositions (σ1, s1) and (σ2, s2) represent the
same integer vector if and only if s1 = s2 and σ1.s

∗
1 ∩ σ2.s

∗
2 6= ∅.

Proof. Consider two (r,m)-decompositions (σ1, s1) and (σ2, s2) such that
there exists s ∈ Sr,m and k1, k2 ∈ N satisfying s1 = s = s2 and σ1.s

k1

1 = σ2.s
k2

2 ,
and let us prove that (σ1, s1) and (σ2, s2) represent the same vector. Just re-
mark that γr,m,s(

s
1−r

) = s
1−r

for any s ∈ Sr,m. Hence, an immediate induction
(over k1 and k2) shows that (σ1, s1) and (σ2, s2) represent the same vector.

For the converse, consider two (r,m)-decompositions (σ1, s1) and (σ2, s2)
that represent the same vector. Remark that for any (r,m)-decomposition
(σ, s) of an integer vector x ∈ Zm, we have s[i] = 0 if x[i] ∈ N and s[i] = r−1 if
x[i] ∈ Z\N for any i ∈ {1, . . . ,m}. Therefore, as (σ1, s1) and (σ2, s2) represents
the same vector, we deduce that there exists s ∈ Sr,m such that s1 = s = s2.
Consider k1 and k2 such that |σ1|+k1 = |σ2|+k2. From the first paragraph, we
deduce that (w1, s) and (w2, s) represent the same vector where w1 = σ1.s

k1

1

and w2 = σ2.s
k2

2 . By uniqueness of the (r,m)-decompositions with a fixed
length, we deduce that w1 = w2. ⊓⊔
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3.2 State-based Decomposition

A language of (r,m)-decompositions can be naturally represented by a state-
based representation. Our representation is obtain by considering the natural
one-to-one function from the set of (r,m)-decompositions to the set of words
in Σ∗

r,m.♦.Sr,m that associate to a (r,m)-decomposition (σ, s) the word σ.♦.s
where ♦ is an additional letter not in Σr.

Observe that an automaton A recognizing a language included inΣ∗
r,m.♦.Sr,m

can be decomposed into (1) a graph called Digit Vector Graph corresponding
to the part of A before a ♦ letter, and the part of A after a ♦ letter called a
final function.

Definition 3.4. A Digit Vector Graph (DVG) is a tuple G = (Q,m,K,Σr, δ)
where Q is the non empty set of principal states, r ∈ N\{0, 1} is the basis of
decomposition, m ∈ N\{0} is the dimension, and (K,Σr, δ) is a graph such
that Q ⊆ K and δ(Q,Σr,m) ⊆ Q.

A Finite Digit Vector Graph (FDVG) G is a DVG with a finite set of states
K. Given a FDVG G, the integer size(G) ∈ N is defined by size(G) = r.|K|.
The parallelization [G] of a DVG G = (Q,m,K,Σr, δ) is the graph [G] =
(Q,Σr,m, δ). We introduce DVG rather than graph labelled by Σr,m in order
to establish fine polynomial time complexity results that should be useless
with an exponential size in m of the alphabet Σr,m. Naturally any graph
labelled by Σr,m is equal to the parallelization of at least one DVG in basis r
and in dimension m.

Definition 3.5. A final function is a tuple F = (Q, f,m,K, Sr, δ,KF ) where
Q is the non empty set of principal states, r ∈ N\{0, 1} is the basis of
decomposition, m ∈ N\{0} is the dimension, (K,Sr, δ) is a finite graph,
f : Q→ K is a function mapping principal states to states in K, and KF ⊆ K
is the set of final states such that the language recognized by the automaton
(f(q),K, Sr, δ,KF ) is a subset of Sr,m for any principal state q ∈ Q.

A final function F is said finite if the set of principal states Q is finite (observe
that K is finite by definition). Given a finite final function F , the integer
size(F ) ∈ N is defined by size(F ) = |Q|+ |K|. The parallelization [F ] of a final
function F = (Q, f,m,K, Sr, δ,KF ) is the function [F ] : Q → P(Sr,m) such
that [F ](q) is the language recognized by the automaton (f(q),K, Sr, δ,KF ).

A DVG G and a final function F are said compatible if they are defined
over the same set of principal states with the same basis r and the same
dimension m. Given a tuple (q,G, F ) where q is a principal state, G is a DVG
and F is a final function compatible, we denote by L((q,G, F )) the following
language of (r,m)-decompositions:

L((q,G, F )) = {(w, s) ∈ Σ∗
r,m × Sr,m; s ∈ [F ](δ(q, w))}

Recall that we are interested in recognizing (r,m)-saturated languages. A final
function F is said saturated for a DVG G if it is compatible with G and if
L((q,G, F )) is (r,m)-saturated for any principal states q ∈ Q.
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Proposition 3.6. A final function F is saturated for a DVG G if and only
if F and G are compatible and [F ](q1) ∩ {s} = [F ](q2) ∩ {s} for any q1

s
−→ q2

with (q1, s, q2) ∈ Q× Sr,m ×Q.

Proof. Assume first that L((q,G, F )) is (r,m)-saturated for any state q ∈ Q,

and let us prove that s ∈ [F ](q1) if and only if s ∈ [F ](q2) for any q1
s
−→ q2 with

(q1, s, q2) ∈ Q×Sr,m×Q. Assume first that s ∈ [F ](q1). Lemma 3.3 proves that
ρr,m(ǫ, s) = ρr,m(s, s). As L((q1, G, F )) is (r,m)-saturated, we deduce that
(s, s) ∈ L((q1, G, F )). From q2 = δ(q1, s) we get s ∈ [F ](q2). Next assume
that s ∈ [F ](q2). We get (s, s) ∈ L((q1, G, F )). As this language is (r,m)-
saturated and ρr,m(s, s) = ρr,m(ǫ, s), we deduce that (ǫ, s) ∈ L((q1, G, F )).
Therefore s ∈ [F ](q1).

Next, assume that [F ](q1) ∩ {s} = [F ](q2) ∩ {s} for any q1
s
−→ q2 with

(q1, s, q2) ∈ Q×Sr,m×Q, and let us prove that L((q,G, F )) is (r,m)-saturated
for any state q ∈ Q. Let us consider two (r,m)-decomposition (σ, s) and (σ′, s′)
of the same integer vector such that (σ′, s′) ∈ L((q,G, F )) and let us prove
that (σ, s) ∈ L((q,G, F )). From lemma 3.3, we deduce that s = s′ and there
exists k, k′ ∈ N such that σ.sk = σ′.sk′

. As s ∈ L((q1, G, F )) if and only

if s ∈ L(q2, G, F ) for any q1
s
−→ q2 with q1, q2 ∈ Q, an immediate induc-

tion shows that (σ′, s′) ∈ L((q,G, F )) implies (σ, s) ∈ L((q,G, F )). Therefore
L((q,G, F )) is (r,m)-saturated for any q ∈ Q. ⊓⊔

We can now introduce our definition of digit vector automata.

Definition 3.7. A Digit Vector Automaton (DVA) is a tuple A = (q0, G, F0)
where q0 ∈ Q is the initial state, G is a DVG and F0 is a final function
saturated for G.

A Finite Digit Vector Automaton (FDVA) A is a DVA with a finite DVG G
and a finite final function F . Given a FDVA A, the integer size(A) is defined
by size(A) = size(G) + size(F ). Given a DVA A = (q0, G, F0), the (r,m)-
saturated language L(A) = L((q0, G, F0)) is called the recognized language of
A. The set X = ρr,m(L(A)) is called the set of integer vectors represented by
A.

Let us show that any set X ⊆ Zm can be represented by a DVA by
introducing the DVG Gr,m(X) = (Qr,m(X),m,Kr,m(X), Σr, δr,m) where
Kr,m(X) = {γ−1

r,m,w(X); w ∈ Σ∗
r}, Qr,m(X) = {γ−1

r,m,w(X); w ∈ Σ∗
r,m}, and

δr,m is defined by δr,m(Y, b) = γ−1
r,m,b(Y ) for any Y ∈ Kr,m(X) and b ∈ Σr.

Finally, let us consider the tuple Ar,m(X) = (X,Gr,m(X), Fr,m) where Fr,m is
any final function such that [Fr,m](Y ) = Sr,m∩(1−r).Y for any Y ∈ Qr,m(X).

Proposition 3.8. The tuple Ar,m(X) is a DVA in basis r and in dimension
m that represents X.

Proof. Let us first prove that Ar,m(X) is a DVA in basis r and in dimension
m. It is sufficient to show that [Fr,m](q1) ∩ {s} = [Fr,m](q2) ∩ {s} for any

q1
s
−→ q2 where (q1, s, q2) ∈ Q× Sr,m ×Q. As q1

s
−→ q2, we get q2 = γ−1

r,m,s(q1).
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Remark that [Fr,m](q1) = Sr,m ∩ (1− r).q1 and [Fr,m](q2) = Sr,m ∩ (1− r).q2.
As γr,m,s(

s
1−r

) = s
1−r

, we deduce that [Fr,m](q1)∩ {s} = [Fr,m(q2)]∩ {s}. We
are done.

Now, let X ′ be the set represented by the DVA Ar,m(X), and let us prove
that X ′ = X . Let x ∈ X ′. There exists a (r,m)-decomposition (σ, s) of x such
that (σ, s) ∈ L(Ar,m(X)). Let q = δr,m(q0, σ). We get q = γ−1

r,m,σ(X). From
s ∈ [Fr,m](q), we deduce s ∈ Sr,m ∩ (1 − r).q. Hence s

1−r
∈ q = γ−1

r,m,σ(X)
and we obtain γr,m,σ( s

1−r
) ∈ X . As ρr,m(σ, s) = x, we get x ∈ X and we

have proved the inclusion X ′ ⊆ X . For the converse inclusion, let x ∈ X .
Let us consider a (r,m)-decomposition (σ, s) of x. As x = ρr,m(σ, s) and
ρr,m(σ, s) = γ−1

r,m,σ(X), we get s ∈ Sr,m ∩ (1 − r).q where q = γ−1
r,m,σ(X).

Therefore q0
σ
−→ q and s ∈ [Fr,m](q). That means ρr,m(σ, s) ∈ X ′ and we have

proved the other inclusion X ⊆ X ′. ⊓⊔





4

Modifying a DVA

The sets obtained by moving the initial state of a DVA are geometrically char-
acterized in section 4.1 and the set obtained by modifying the final function
of a DVA are studied in section 4.2.

4.1 Moving the initial state

The DVA obtained from A by replacing the initial state q0 by another principal
state q ∈ Q is denoted by Aq. Given a set X implicitly represented by a DVA
A with a set of principal states Q, we denote by Xq the set represented by the
DVA Aq. In this section the set Xq2

is geometrically characterized in function

of Xq1
for any path q1

w
−→ q2 where (q1, w, q2) ∈ Q×Σ∗

r,m ×Q.

Proposition 4.1. Let X be a set represented by a DVA in basis r and in
dimension m with a set Q of principal states. We have Xq2

= γ−1
r,m,w(Xq1

) for

any path q1
w
−→ q2 where (q1, w, q2) ∈ Q×Σ∗

r,m ×Q.

Proof. Consider x ∈ Xq2
. There exists (σ, s) ∈ L(Aq2

) such that x =
ρr,m(σ, s). From (w.σ, s) ∈ L(Aq1

), we deduce that ρr,m(w.σ, s) ∈ Xq2
. Just re-

mark that ρr,m(w.σ, s) = γr,m,w(ρr,m(σ, s)) = γr,m,w(x). We have proved that
Xq2

⊆ γ−1
r,m,w(Xq1

). For the converse, consider x ∈ γ−1
r,m,w(Xq1

). As any vec-
tor owns at least one (r,m)-decomposition, there exists a (r,m)-decomposition
(σ, s) such that x = ρr,m(σ, s). From x ∈ γ−1

r,m,w(Xq1
), we get γr,m,w(x) ∈ Xq1

.
Just remark that γr,m,w(x) = ρr,m(w.σ, s). As L(Aq1

) is (r,m)-saturated, we
get (w.σ, s) ∈ L(Aq1

). In particular (σ, s) ∈ L(Aq2
). Hence x = ρr,m(σ, s) ∈

Xq2
. We have proved the other inclusion γ−1

r,m,w(Xq1
) ⊆ Xq2

. ⊓⊔

Theorem 4.2. Let X be a Presburger-definable set represented by a DVA
A = (q0, G, F0). The set Xq is Presburger-definable for any reachable (for
[G]) principal state q ∈ Q.
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Proof. The proof is immediate because if X is Presburger-definable, there
exists a formula φ in FO (Z,N,+) that defines X . Consider a reachable (for

[G]) principal state q ∈ Q. There exists a path q0
σ
−→ q with σ ∈ Σ∗

r,m.
From proposition 4.1, we deduce that Xq is defined by the Presburger formula
φσ(x) := ∃y; (y = γr,m,σ(x) ∧ φ(y)). Therefore Xq is Presburger-definable.
⊓⊔
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Fig. 4.1. On the left, Γ−1
2,2,σ with its fix-point ξ2,2(σ). On the right Γ2,2,(0,0)(Z

2)

Previous proposition 4.1 provides a characterization of the sets obtained by
moving the initial state of a DVA to another principal state. This character-
ization can be translated into a geometrical one by considering the unique
sequence (Γr,m,w)w∈Σ∗

r
of affine functions Γr,m,w : Qm → Qm such that

Γr,m,w1.w2
= Γr,m,w1

◦ Γr,m,w2
for any (w1, w2) ∈ Σ∗

r , such that Γr,m,ǫ is the
identity function and such that Γr,m,b(x) is defined for any (b, x) ∈ Σr × Qm

by the following equality:

Γr,m,b(x[1], . . . , x[m]) = (r.x[m] + b, x[1], . . . , x[m− 1])

As γr,m,σ(x) = Γr,m,σ(x) for any x ∈ Zm, we deduce that γ−1
r,m,σ(X) =

Γ−1
r,m,σ(X ∩ Γr,m,σ(Zm)). Now, just remark that given σ ∈ Σ∗

r,m, Γr,m,σ(x) =

r|σ|m .x + γr,m,σ(e0,m) is simply a scaling function (an affine function of the
form x → µ.x + v where µ ∈ Q\{0} and v ∈ Qm) and Γr,m,σ(Zm) =
r|σ|.Zm + γr,m,σ(e0,m) is a pattern (see figure 4.1 and section 9.3).

Remark 4.3. Function Γr,m,w is the unique affine function that extends γr,m,w:
there exists a unique affine function f : Qm → Qm such that f(x) = γr,r,w(x)
for any x ∈ Zm.
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The following lemma introduces the geometrically characterized vectors
ξr,m(σ) that will be useful in the sequel.

Lemma 4.4. The function ξr,m : Σ+
r,m → Qm defined by ξr,m(σ) =

γr,m,σ(e0,m)

1−r|σ|m

is the unique function such that ξr,m(σ) is a fix-point of Γr,m,σ for any
σ ∈ Σ+

r,m.

Proof. Remark that ξr,m(σ) is a fix-point of Γr,m,σ, and if x is a fix-point of
Γr,m,σ, then r|σ|m .x+ γr,m,σ(e0,m) = x and we deduce that x = ξr,m(σ). ⊓⊔

In the sequel the sets X ⊆ Zm such that there exists σ ∈ Σ+
r,m satisfying

γ−1
r,m,σ(X) = X are useful since intuitively ξr,m(σ) is a fix point of these sets.

Such a set is said (r,m, σ)-cyclic.

4.2 Replacing the final function

Given a set X implicitly represented by a DVA A = (q0, G, F0) and given a
final function F saturated for G, we denote by XF the set represented by the
DVA AF obtained from A by replacing F0 by F .

4.2.1 Detectable sets

A set X ′ ⊆ Zm is said (r,m)-detectable in a set X ⊆ Zm if γ−1
r,m,σ1

(X ′) =
γ−1

r,m,σ2
(X ′) for any words σ1, σ2 ∈ Σ∗

r,m such that γ−1
r,m,σ1

(X) = γ−1
r,m,σ2

(X).
The following theorem 4.5 shows that these sets characterize the sets X ′ ⊆ Zm

such that for any DVA A = (q0, G, F0) that represents X , there exists a final
function F saturated for G such that X ′ = XF .

Theorem 4.5. A set X ′ ⊆ Zm is (r,m)-detectable in a set X ⊆ Zm if and
only if for any DVA A that represents X, there exists a final function F
saturated for G such that X ′ = XF .

Proof. Assume first that for any DVA A = (q0, G, F0) that represents X ,
there exists a final function F saturated for G such that X ′ = XF . Let
us consider the DVA Ar,m(X) = (X,Gr,m(X), Fr,m) where Gr,m(X) =
(Qr,m(X),m,Kr,m(X), Σr, δr,m). There exists F : Qr,m(X) → P(Sr,m) such
that X ′ is represented by the DVA (X,Gr,m(X), F ). Consider σ1, σ2 ∈ Σ∗

r,m

such that γ−1
r,m,σ1

(X) = γ−1
r,m,σ2

(X). By definition of Ar,m(X), there exists
Y ∈ Qr,m(X) such that δr,m(X,σ1) = Y = δr,m(X,σ2). Proposition 4.1 proves
that γ−1

r,m,σ1
(X ′) = XF

Y = γ−1
r,m,σ2

(X ′). Therefore X ′ is (r,m)-detectable in X .
Next, assume that X ′ is (r,m)-detectable in X and let us consider a DVA

A = (q0, G, F0) that represents X where G = (Q,m,K,Σr, δ). Let F be a
final function over Q such that [F ](q) = {s ∈ Sr,m; ∃σ ∈ Σ∗

r,m; δ(q0, σ) ∈
δ(q, s∗) ∧ ρr,m(σ, s) ∈ X ′}.
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Let us first prove that F is saturated for G. Consider a transition q
s
−→ q′

with s ∈ Sr,m, and let us prove that s ∈ [F ](q) if and only if s ∈ [F ](q′).
Assume first that s ∈ [F ](q). We deduce that there exists σ ∈ Σ∗

r,m, and

integer k ∈ N such that δ(q0, σ) = δ(q, sk) and ρr,m(σ, s) ∈ X ′. From
δ(q0, σ.s) = δ(q′, sk) and ρr,m(σ.s, s) = ρr,m(σ, s) ∈ X ′, we deduce that
s ∈ [F ](q′). Let us prove the converse and assume now that s ∈ [F ](q′).
There exists a word σ ∈ Σ∗

r , an integer k ∈ N such that δ(q0, σ) = δ(q′, sk)
and such that ρr,m(σ, s) ∈ X ′. Just remark that δ(q0, σ.s) = δ(q, sk+1) and
ρr,m(σ.s, s) = ρr,m(σ, s) ∈ X ′. Hence s ∈ [F ](q). We have proved that F is
saturated for G.

By construction of F , we have X ′ ⊆ XF . Let us prove the converse
inclusion. Consider a vector x ∈ XF . There exists a (r,m)-decomposition
(w, s) ∈ LF

q0
such that ρr,m(w, s) = x. Let q = δ(q0, w). We get s ∈ [F ](q).

That means there exists σ ∈ Σ∗
r,m such that δ(q0, σ) ∈ δ(q, s∗) and such

that ρr,m(σ, s) ∈ X ′. By replacing w by a word in w.s∗, we can assume
that δ(q0, σ) = q. From δ(q0, σ) = δ(q0, w), proposition 4.1 shows that
γ−1

r,m,σ(X) = γ−1
r,m,w(X). As X ′ is detectable in X , we get γ−1

r,m,σ(X ′) =
γ−1

r,m,w(X ′). Moreover, as ρr,m(σ, s) ∈ X ′, we deduce from the previous equal-

ity that x = ρr,m(w, s) ∈ X ′. We have proved the other inclusion XF ⊆ X ′.
⊓⊔

The following proposition will be useful for deciding if a set X ′ is (r,m)-
detectable in a set X represented by a DVA A in basis r.

Proposition 4.6. Let us consider a FDVA A in dimension m in basis r with
n states. We can compute in polynomial time a set U of at most r.m.n pairs
(σ1, σ2) of words in Σ≤n

r satisfying |σ1|+m.Z = |σ2|+m.Z for any (σ1, σ2) ∈
U , and such that for any set X ′ ⊆ Zm, there exists a final function F such
that X ′ is represented by AF if and only if γ−1

r,m,σ1
(X ′) = γ−1

r,m,σ2
(X ′) for any

(σ1, σ2) ∈ U .

Proof. We first show that for any z ∈ N and for any X ⊆ Zm we have
⋃

σ∈Σz
r
γr,m,σ(γ−1

r,m,σ(X)) = X . Naturally γr,m,σ(γ−1
r,m,σ(X)) ⊆ X for any word

σ ∈ Σ∗
r and in particular we get the inclusion

⋃

σ∈Σz
r
γr,m,σ(γ−1

r,m,σ(X)) ⊆ X .

For the converse inclusion, let x ∈ X . There exists a (r,m)-decomposition
(w, s) of x and by replacing w by a word in w.s∗, we can assume that |w| ≥ z.
In particular there exists a decomposition of w into w = σ.w′ where σ ∈ Σz

r .
Since ρr,m(σ.w′, s) = γr,m,σ(ρr,m(w′, s)) and ρr,m(σ.w′, s) = x ∈ X , we deduce
that ρr,m(w′, s) ∈ γ−1

r,m,σ(X) and hence x ∈ γr,m,σ(γ−1
r,m,σ(X)). We have proved

the converse inclusion.
Let S be the set of couples s = (k, Z) ∈ K × Z/m.Z such that there

exists a word σs ∈ Σ∗
r satisfying s = (δ(q0, σs), |σs| + m.Z), and let (σs)s∈S

be a sequence of words satisfying the previous condition, σ(q0,m.Z) = ǫ and
|σs| < n for any s ∈ S. Observe that such a sequence (σs)s∈S is computable
in polynomial time. Let us consider the set U of pairs (σs1

.b, σs2
) where s1 =

(k1, Z1), s2 = (k2, Z2) are in S and b ∈ Σr satisfies s2 = (δ(k1, b), Z1 + 1).
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Note that U is computable in polynomial time and it contains at most r.m.n
pairs (σ1, σ2) of words in Σ≤n

r satisfying |σ1| + m.Z = |σ2| + m.Z for any
(σ1, σ2) ∈ U .

Assume first that there exists a final function F such that X ′ is rep-
resented by AF and let us prove that γ−1

r,m,σ1
(X ′) = γ−1

r,m,σ2
(X ′) for any

(σ1, σ2) ∈ U . Remark that it sufficient to prove that γ−1
r,m,σ1

(X ′) = γ−1
r,m,σ2

(X ′)
for any pair (σ1, σ2) of words in Σ∗

r such that there exists s = (k, Z) ∈ U
satisfying (δ(q0, σ1), |σ1| + m.Z) = s = (δ(q0, σ2), |σ2| + m.Z). There exists
z ∈ {0, . . . ,m − 1} such that Z + z = m.Z. Since δ(q0, σ1) = δ(q0, σ2) we
deduce that δ(q0, σ1.σ) = δ(q0, σ2.σ) for any word σ ∈ Σz

r . As σ1.σ and σ2.σ
are both in Σ∗

r,m, proposition 4.1 shows that γ−1
r,m,σ1.σ(X ′) = γ−1

r,m,σ2.σ(X ′).
Thus γ−1

r,m,σ(X ′
1) = γ−1

r,m,σ(X ′
2) for any σ ∈ Σz

r where X ′
1 = γ−1

r,m,σ1
(X ′)

and X ′
2 = γ−1

r,m,σ2
(X ′). We have proved that

⋃

σ∈Σz
r,m

γr,m,σ(γ−1
r,m,σ(X ′

1)) =
⋃

σ∈Σz
r
γr,m,σ(γ−1

r,m,σ(X ′
2)). From the first paragraph we get X ′

1 = X ′
2.

Next assume that γ−1
r,m,σ1

(X ′) = γ−1
r,m,σ2

(X ′) for any (σ1, σ2) ∈ U and let
us prove that there exists a final function F such that X ′ is represented by
AF . As previously, it is sufficient to prove that γ−1

r,m,σ1
(X ′) = γ−1

r,m,σ2
(X ′)

for any pair (σ1, σ2) of words in Σ∗
r such that there exists s = (k, Z) ∈ S

satisfying (δ(q0, σ1), |σ1| +m.Z) = s = (δ(q0, σ2), |σ2| +m.Z). Let us remark
that it is sufficient to prove that γ−1

r,m,σ(X ′) = γ−1
r,m,σs

(X ′) for any σ ∈ Σ∗
r

where s = (δ(q0, σ), |σ|+m.Z). Let us consider a sequence b1, ..., bi of r-digits
bj ∈ Σr such that σ = b1 . . . bi and let sj = (δ(q0, b1 . . . bj), j +m.Z) ∈ S for
any j ∈ {0, . . . , i}. By hypothesis, we have γ−1

r,m,σsj−1
.bj

(X ′) = γ−1
r,m,σsj

(X ′). In

particular γ−1
r,m,σsj−1

.bj ...bi
(X ′) = γ−1

r,m,σsj
.bj+1...bi

(X ′) for any j ∈ {1, . . . , i}.

We deduce that γ−1
r,m,σs0

.b1...bi
(X ′) = γ−1

r,m,σsi
(X ′). Since σs0

= ǫ, σ = b1 . . . bj

and si = s, we have proved that γ−1
r,m,σ(X ′) = γ−1

r,m,σs
(X ′). ⊓⊔

Let Zr,m,s be the set of vectors x ∈ Zm having a (r,m)-decomposition of
the form (σ, s) where σ ∈ Σ∗

r,m. This set is defined by the follwoing Presburger-
formula:

(
∧

i; s[i]=0

x[i] ≥ 0) ∧ (
∧

i; s[i]=r−1

x[i] < 0)

The sets Zr,m,s naturally appear as (r,m)-detectable sets as shown by the
following proposition 4.7 that characterize these sets.

Proposition 4.7. A set is (r,m)-detectable in any set X ⊆ Zm if and only if
it is equal to a union of Zr,m,s.

Proof. Let us consider a finite set L ⊆ Sr,m and a DVA A that represents a set
X and just remark that

⋃

s∈L
Zr,m,s is represented by the DVA AF where F

is a final function such that [F ](q) = L for any q ∈ Q. Therefore
⋃

s∈L
Zr,m,s

is (r,m)-detectable in any set X ⊆ Zm. Conversely, let us consider a set X ′

that is (r,m)-detectable in any set X . As ∅ is represented by a DVA with one
unique principal state q0, and X ′ is (r,m)-detectable in ∅, we deduce that
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there exists a final function F such that X ′ is represented by AF . Therefore
X ′ =

⋃

s∈[F ](q0)
Zr,m,s. ⊓⊔

Example 4.8. The setX1#X2 is (r,m)-detectable inX for any (r,m)-detectable
sets X1, X2 in X , and for any # ∈ {∪,∩, \, ∆}. Thus, any boolean combina-
tion of sets (r,m)-detectable in X is (r,m)-detectable in X .

4.2.2 Eyes and kernel

Consider a FDVG G = (Q,m,K,Σr, δ). Given a (r,m)-sign vector s ∈ Sr,m,
let us consider the equivalence relation ∼s over the principal states Q defined
by q1 ∼s q2 if and only if δ(q1, s

∗) ∩ δ(q2, s
∗) 6= ∅. An equivalence class

Y ⊆ Q for ∼s is called an s-eye (or just an eye). Given an s-eye Y , we
denote Fs,Y : Q → P(Sr,m) a final function defined by [Fs,Y ](q) = {s} if
q ∈ Y and defined by [Fs,Y ](q) = ∅ otherwise. Notice that a final function
F : Q→ P(Sr,m) is saturated for G if and only if [F ] is a finite union of final
functions [Fs,Y ].

s s

s

s

s s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s

s
s

s

s

s
s

s

s

s
s

s

Fig. 4.2. On the left an s-eye. On the right its s-kernel.

The s-kernel kers(Y ) of an s-eye Y ⊆ Q is defined by kers(Y ) =
⋂

i∈N δ(Y, s
i). Remark that the s-kernel of an s-eye Y is a non empty set

of the form kers(Y ) = {q1, . . . , qk} such that q1
s
−→ q2 . . . qk

s
−→ q1 (see figure

4.2).
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Expressiveness

The expressiveness of the FDVA representation is studied in this section. We
first prove in section 5.1 that a subset of Zm can be represented by a FDVA
if and only if it is r-definable [BHMV94]. Next in section section 5.2, we show
that the Number Decision Diagram (NDD) [WB00] representation, an other
state-based symbolic representation for subsets of Zm is slightly equivalent
(up to polynomial time translation) to the FDVA.

5.1 Sets r-definable

Recall [BHMV94] that a set X ⊆ Zm is said r-definable if it can be defined
in the first order theory FO (Z,N,+, Vr) where Vr : Z → Z is the r-valuation
function defined by Vr(0) = 0 and Vr(x) is the greatest power of r that
divides x ∈ Z\{0}. Note [BHMV94] that a subset X ⊆ Nm is definable in
FO (N,+, Vr) if and only if the language {σ ∈ Σ∗

r,m; ρr,m(σ, e0,m)} is regular.
We are going to prove that a set X ⊆ Zm can be represented by a FDVA
in basis r if and only if it is r-definable by decomposing such a set into sets
of the form fr,m,s(Xs) where Xs ⊆ Nm, s ∈ Sr,m is a (r,m)-sign vector, and
fr,m,s is the function given in the following definition.

Definition 5.1. Given a (r,m)-sign vector s ∈ Sr,m, we denote by fr,m,s :
Zm → Zm the function defined for any x ∈ Zm and for any i ∈ {1, . . . ,m} by:

fr,m,s(x)[i] =

{

x[i] if s[i] = 0

−1 − x[i] otherwise

Remark that X =
⋃

s∈Sr,m
fr,m,s(Xs) where Xs = Nm ∩ fr,m,s(X). The fol-

lowing two propositions 5.2 and 5.3 shows that a FDVA that represents Xs is
computable in linear time from a FDVA that represents X .

Proposition 5.2. For any (r,m)-sign vectors s ∈ Sr,m, a FDVA that repre-
sents fr,m,s(X) in basis r is computable in time O(m.size(A)) from a FDVA
A that represents a set X ⊆ Zm in basis r.
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Proof. Let us consider a FDVA A = (q0, G, F0) that represents X in basis r.
Without loss of generality, we can assume that G and F0 share the same set of
states K and the same transition function δ. That means G = (Q,m,K, Sr, δ)
and F = (Q, f,m,K, Sr, δ,KF ).

Let us first assume that there exists a function l : K → Z/m.Z such that

l(k′) = l(k) + 1 for any transition k
b
−→ k′ where (k, b, k′) ∈ K × Σr × K,

such that l(q0) = 1 and l(f(q)) = 1 for any q ∈ Q. Let us consider the two
bijective functions tr,0, tr,r−1 : Σr → Σr where tr,0 is the identity function and
tr,r−1(b) = r−1−b for any b ∈ Σr. By replacing the function δ in G and F0 by
the function δ′ given by δ′(k, b) = δ(k, tr,s[l(k)](b)) we deduce a DVG G′ and
a final function F ′ such that the DVA A′ = (q0, G

′, F ′) represents fr,m,s(X)
in basis r. This result is well know and the proof is left to the reader.

In the general case, if the labeling function l does not exist, by multiplying
the size of A bym, a DVA A′′ that representsX in basis r and owns a labelling
function l can be easily obtained. Hence, we are done. ⊓⊔

Proposition 5.3. A FDVA that represents Nm ∩X in basis r is computable
in linear time from a FDVA that represents a set X ⊆ Zm in basis r.

Proof. Let us consider a FDVA A = (q0, G, F0) that represents X . Remark
that in linear time we can compute a final function F with the set Q of
principal states such that [F ](q) = {e0,m} if e0,m ∈ [F0](q) and [F ](q) =
∅ otherwise. Now, just remark that Nm ∩ X is represented by the FDVA
(q0, G, F ). ⊓⊔

We can easily deduce the following theorem 5.4.

Theorem 5.4. A set X ⊆ Zm can be represented by a FDVA in basis r if and
only if it is r-definable.

Proof. Assume first that X is r-definable and let us prove that X can be
represented by a FDVA in basis r. As X is r-definable, the set Xs = Nm ∩
fr,m,s(X) is r-definable for any s ∈ Sr,m. As Xs ⊆ Nm, from [BHMV94]
we deduce that {σ ∈ Σ∗

r,m; ρr,m(σ, e0,m) ∈ Xs} is regular. Therefore Xs

can be represented by a FDVA in basis r. From proposition 5.2 we deduce
that fr,m,s(Xs) can be represented by a FDVA in basis r. Therefore X =
⋃

s∈Sr,m
fr,m,s(Xs) can be represented by a FDVA in basis r. For the converse,

assume thatX is represented by a FDVA in basis r and let us prove thatX is r-
definable. From propositions 5.2 and 5.3 we deduce that Xs = Nm∩fr,m,s(X)
can be represented by a FDVA in basis r. As Xs ⊆ Nm, from [BHMV94] we
deduce that Xs is r-definable. As X =

⋃

s∈Sr,m
fr,m,s(Xs), we deduce that X

is r-definable. ⊓⊔

Remark 5.5. We can easily prove that for any set X ⊆ Zm, the set X is r-
definable if and only if the DVA Ar,m(X) is finite and moreover in this case
it is the unique (up to isomorphism) minimal (for the total number of states)
FDVA that represents X in basis r.
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5.2 Number Decision Diagrams (NDD)

Recall [WB00] that a Number Decision Diagram (NDD) A in basis r and in di-
mensionm that represents a r-definable setX ⊆ Zm is a finite automaton over
the alphabet Σr that recognizes the regular language {σ.s; (σ, s) ∈ ρ−1

r,m(X)}.
We do not consider NDD in this paper because (1) the class of regular lan-
guages included in Σ∗

r,m.Sr,m is not stable by residue which means the au-
tomaton obtained by moving the initial state of a NDD is not a NDD any-
more, and (2) rather than replacing the final function F0 of a FDVA A by
another final function F is structurally obvious, the corresponding operation
over NDD is not immediate since the FDVG G and the finite final function
F0 are encoded into a single automaton. Nevertheless, polynomial time algo-
rithms provided in this paper can be applied to NDD thanks to the following
translation proposition 5.6.

Proposition 5.6. A NDD that represents X in a basis r is computable in
quadratic time from a FDVA that represents a set X in basis r. Conversely, a
FDVA that represents X in basis r is computable in linear time from a NDD
that represents a set X in basis r.

Proof. Let us consider a letter ♦ not in Σr and let us consider the one-to-one
function f : Σ∗

r,m.♦.Sr,m → Σ∗
r,m.Sr,m. It is sufficient to show that (1) a finite

automaton that recognizes L′ = f(L) is computable in quadratic time from
a finite automaton that recognizes a language L ⊆ Σ∗

r,m.♦.Sr,m, and (2) a
finite automaton that recognizes L = f−1(L′) is computable in linear time
from a finite automaton that recognizes a language L′ ⊆ Σ∗

r,m.Sr,m. These
two computations are immediate. ⊓⊔
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Some Examples of FDVA

The FDVA Ar,1(Z), Ar,1(N), Ar,3(+) and Ar,2(Vr), are given in figures 6.1,
6.2 and 6.3. Remark that a principal state q ∈ Q is labelled by the set Xq

(in fact a formula in FO (Z,N,+, Vr) defining Xq), and a dot-edge from q to
[F0](q) is drawn for each state q ∈ Q such that [F0](q) 6= ∅.

Z

Sr

Σr

N

{0}

Σr

Fig. 6.1. On the left, FDVA Ar,1(Z). On the right, FDVA Ar,1(N)
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x[1] + x[2] = x[3] x[1] + x[2] + 1 = x[3]

∅

s∈Sr,3;

s[1]+s[2]=s[3]

s∈Sr,3;

s[1]+s[2]+1=s[3]+r

b∈Σr,3;

b[1]+b[2]=b[3]+r

b∈Σr,3;

b[1]+b[2]+1=b[3]

b∈Σr,3;

b[1]+b[2]+1=b[3]+r

b∈Σr,3;

b[1]+b[2]=b[3]

b∈Σr,3;

b[1]+b[2] 6∈b[3]+r.Z

b∈Σr,3;

b[1]+b[2]+16∈b[3]+r.Z

q0 q1

q⊥

Σr,3

Fig. 6.2. The FDVA Ar,3({x ∈ Z3; x[1] + x[2] = x[3]})

Vr(x[1]) = x[2]

{(0,0)}

x[2] = 0

Sr×{0}

∅

Σr,2

(Σr\{0})×{1}

{(0,0)} Σr×{0}

Σr×(Σr\{0})
b∈Σr,2

(¬(b[1]=0∧b[2]=0))

∧(¬(b[1] 6=0∧b[2]=1))

q0 q1

q⊥

Fig. 6.3. FDVA Ar,2({x ∈ Z2; Vr(x[1]) = x[2]})
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Reductions

In this section, we prove that the problem of deciding if the set X represented
by a FDVA A is Presburger-definable and in this case the problem of comput-
ing a Presburger formula that defines X can be reduced in polynomial time
to:

• the cyclic case: there exists a loop on the initial state q0. In particular the
set X represented by A is cyclic from proposition 4.1.

• the positive case: the final function F0 is such that [F0](q) ∈ {∅, {e0,m}}.
In particular X ⊆ Nm.

7.1 Cyclic reduction

Given a word σ ∈ Σ+
r,m, a set X ⊆ Zm is said (r,m, σ)-cyclic (or just cyclic)

if γ−1
r,m,σ(X) = X and a DVA A is said (r,m, σ)-cyclic (or just cyclic) if

δ(q0, σ) = q0. From proposition 4.1, we deduce that the set represented by a
(r,m, σ)-cyclic DVA A is (r,m, σ)-cyclic. Conversely, remark that if a set X is
(r,m, σ)-cyclic then the DVA Ar,m(X) is (r,m, σ)-cyclic. The notion of cyclic
sets is useful in the sequel for reducing some problems to the special cyclic
case since a cyclic Presburger-definable set can be defined by a Presburger
formula of a very particular form (see lemma 7.2).

Remark 7.1. The first application of the cyclic reduction is the positive reduc-
tion given in section 7.2.

Lemma 7.2. For any (r,m, σ)-cyclic Presburger-definable set X, there ex-
ists an integer n ∈ N\{0} relatively prime with r such that X can be de-
fined by a formula equal to a boolean combination of formulas of the form
〈α, x − ξr,m(σ)〉 < 0 where α ∈ Zm and formulas of the form x ∈ b + n.Zm

where b ∈ Zm.
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Proof. A quantification elimination shows that there exists an integer n0 ∈
N\{0} and a finite set D0 ⊆ Zm ×Z such that X can be defined by a formula
equal to a boolean combination of formulas of the from 〈α, x〉 < c where
(α, c) ∈ D0 and x ∈ b + n0.Z

m where b ∈ Zm. Remark that there exists
an integer k ∈ N enough larger such that n = n0

gcd(n0,r|σk|m )
is relatively

prime with r and such that the rational number βα,c = r−|σk|m .((r − 1).c −
〈α, ρr,m(σ, e0,m)〉) satisfies |βα,c| < 1 for any (α, c) ∈ D0. As γ−1

r,m,σk(X) = X ,
we deduce that X can be defined by a formula equal to a boolean combination
of formulas of the form

〈

α, γr,m,σk(x)
〉

< c where (α, c) ∈ D0 and γr,m,σk(x) ∈

b+n0.Z
m where b ∈ Zm. Now remark that

〈

α, γr,m,σk(x)
〉

< c is equivalent to
〈α, (r − 1).x+ ρr,m(σ, e0,m)〉 < βα,c. Since 〈α, (r − 1).x+ ρr,m(σ, e0,m)〉 ∈ Z

and |βα,c| < 1, we have proved that
〈

α, γr,m,σk(x)
〉

< c is equivalent to
〈α, x − ξr,m(σ)〉 < 0 if βα,c < 0 and it is equivalent to ¬ 〈−α, x− ξr,m(σ)〉 < 0
if βα,c ≥ 0. Finally, remark that γr,m,σ(x) ∈ b + ns.Z

m is either false if
b 6∈ n.Zm or equivalent to a formula of the form x ∈ b′ + n.Zm where b′ ∈ Zm

otherwise. ⊓⊔

Lemma 7.3. From an automaton A over Σr that represents a finite language
L ⊆ Σ∗

r,m, we can compute in polynomial time a Presburger formula φ that
defines ρr,m(L, e0,m).

Proof. Let us consider a finite automaton A = (q0, Q,Σr, δ, QF ) that recog-
nizes L. We denote by Aq the automaton obtained from A by replacing the

initial state q0 by an other state q ∈ Q. Let us remark that L ⊆ Σ
≤|Q|
r since

otherwise L is infinite thanks to the pumping lemma. For any k ∈ {0, . . . , |Q|},
we can compute in polynomial time a finite automaton that recognizes L∩Σk

r .
Hence, without loss of generality, we can assume that there exists k ∈ N such
that L ⊆ Σk

r . The cases k = 0 or L = ∅ are left to the reader. Since L ⊆ Σ∗
r,m

and L is not empty and included in Σk
r,m, we deduce that m divides k. Let

n = k
m

and remark that x ∈ ρr,m(L, e0,m) if and only if there exists a sequence

b1, ..., bk of integers in Σr such that
∧m

j=1 x[j] =
∑n−1

i=0 bj+m.i.r
i and such that

δ(q0, b1 . . . bk) ∈ QF . Now remark that this last property can be translated
into a Presburger formula in polynomial time. ⊓⊔

Proposition 7.4. Let X ⊆ Zm be a set represented by a FDVA A in basis
r and let Qc be the set of principal states reachable for [G] that have a loop.
The set X is Presburger-definable if and only if Xqc

is Presburger-definable
for any qc ∈ Qc. Moreover, from a sequence of Presburger formulas (φqc

)qc∈Qc

such that φqc
defines Xqc

, we can compute in polynomial time a Presburger
formula φ that defines X.

Proof. Assume first that X is Presburger-definable. Recall that we have
proved that Xq is Presburger-definable for any principal state q reachable
for [G]. In particular Xqc

is Presburger-definable for any qc ∈ Qc. Next,
assume that Xqc

is defined by a Presburger formula φqc
for any qc ∈ Qc
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and let us prove that we can compute in polynomial time a Presburger for-
mula φ that defines X . For any k ∈ {0, . . . , |Q| − 1} and for any q ∈ Q,
we can compute in polynomial time an automaton Ak,q over Σr that rec-
ognizes Lk,q = {σ ∈ Σk

r,m; δ(q0, σ) = q}. From lemma 7.3 we can com-
pute in polynomial time a Presburger formula φk,qc

that defines the set
Xk,qc

= ρr,m(Lk,qc
, e0,m). Let us prove that X is defined by the Presburger

formula φ(x) :=
∨

qc∈Qc

∨|Q|−1
k=0 (∃y ∃z ((x = rk.y+z)∧φqc

(y)∧φk,qc
(z))). Let

x ∈ X . There exists a (r,m)-decomposition (w, s) of x such that |w|m ≥ m.|Q|.

In this case, w can be decomposed in w = σ.w′ where σ ∈ Σ
≤|Q|
r,m is such that

there exists a loop on qc = δ(q0.σ) and w′ ∈ Σ∗
r . From x = γr,m,σ(x′) where

x′ = ρr,m(w′, s) and x ∈ X , we deduce that x′ ∈ γ−1
r,m,σ(X) = Xqc

. Let

k = |σ|m. From x = rk.x′ + ρr,m(σ, e0,m) ∈ rk.XqC
+ Xk,qc

we deduce that
φ(x) is true. For the converse, consider x ∈ Zm such that φ(x) is true. There
exists (qc, k) ∈ QC ×{0, . . . , |Q| − 1}, x′ ∈ Xqc

and a word σ ∈ L(Ak,qc
) such

that x = rk.x′ + ρr,m(σ, e0,m). Let us consider a (r,m)-decomposition (w′, s)

of x′. As |σ|m = k, we deduce that x′ = γr,m,σ(x). As q0
σ
−→ qc, we have

Xqc
= γ−1

r,m,σ(X). Hence x ∈ γr,m,σ(γ−1
r,m,σ(X)) ⊆ X . We have proved that

x ∈ X . ⊓⊔

7.2 Positive reduction

The following proposition 7.5 and proposition 5.2 provide the positive reduc-
tion since a set S satisfying the following proposition 7.5 is computable in
quadratic time.

Proposition 7.5. Let A be a FDVA that represents a set X ⊆ Zm. Let us
consider a set S of (r,m)-sign vectors such that S ∩ (F0(q)∆F0(q

′)) 6= ∅ for
any state q, q′ ∈ Q such that F0(q)∆F0(q

′) 6= ∅. The set X is Presburger-
definable if and only if the set Nm ∩ fr,m,s(X) is Presburger-definable for any
s ∈ S. Moreover from a sequence of Presburger formulas (φs)s∈S such that φs

defines Xs = Nm∩fr,m,s(X), we can compute in polynomial time a Presburger
formula φ that defines X.

Proof. Naturally, if X is Presburger-definable, then Xs = Nm ∩ fr,m,s(X) is
Presburger-definable for any s ∈ S. Let us prove the converse. Form proposi-
tion 7.4, we can assume that there exists a loop on the initial state. Consider
a sequence (φs)s∈S of Presburger formulas φs that defines Xs. Let us consider
the function sign : Zm → Sr,m that associate to any vector x ∈ Zm the unique
(r,m)-sign vector s ∈ Sr,m such that there exists x ∈ Zr,m,s.

Let us consider the following Presburger formula θs(x, k) and remark that

θs(x, k) is true if and only if x + k. s−sign(x)
1−r

∈ Zr,m,s ∩ X . We denote by
Ks,x the Presburger-definable set Ks,x = {k ∈ Z; θs(x, k)}. Since Ks,x is a
Presburger definable set included in Z, there exists a unique minimal integer
ns,x ∈ N\{0} such that there exists a finite set Bs,x ⊆ {0, . . . , ns,x − 1} and
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an integer ks,x ∈ Z such that Ks,x ∩ (ks,x + N) = ks,x +Bs,x + ns,x.N. Let us
prove that ns,x is relatively prime with r. From lemma 7.2, we deduce that
there exists an integer ns relatively prime with r such that Zr,m,s ∩ X can
be defined by a formula equal to a boolean combination of formulas of the
form 〈α, x〉 < c and x ∈ b+ns.Z

m. Now, just remark that ns,x divides ns. We
deduce that ns,x is relatively prime with r.

θs(x, k) := ∃y φs ◦ fr,m,s(y)∧
m
∧

i=1

(

(x[i] ≥ 0 =⇒ y[i] = x[i] + k. s[i]
1−r

)

∨ (x[i] < 0 =⇒ y[i] = x[i] + k. s[i]−(r−1)
1−r

)

)

Let us consider the Presburger formula Ws(x, n) := n ≥ 1 ∧ ∃k0 ∀k ≥
k0; θs(x, k) ⇐⇒ θs(x, k + n). Remark that Ws(x, n) is true if and only if
n ∈ ns,x.(N\{0}).

Next, let us denote by Qs the set of principal states q ∈ Q such that
s ∈ [F0](q). Observe that we can compute in polynomial time the partition
C of Q corresponding to the equivalence relation ∼ defined by q1 ∼ q2 if and
only if F0[q1] = F0[q2]. Given C ∈ C, remark that [F0](q) does not depend
on q ∈ C and we can denote by [F0](C) the unique subset of Sr,m such that
[F0](C) = [F0](q) for any q ∈ C. From lemma 2.1, we deduce that for any
C ∈ C there exists a boolean formula RC computable in polynomial time
such that C is defined by RC([F0](q)s∈S).

We are going to prove that X is defined by the following Presburger for-
mula φ(x):

φ(x) :=
∨

C∈C

(sign(x) ∈ [F0](C) ∧ ∀N ∃n ≥ N RC(θs(x, 1 + n)∧Ws(x, n))s∈S)

Let us consider x ∈ Zm such that φ(x) is satisfied and let us prove that
x ∈ X . There exists C ∈ C such that sign(x) ∈ [F0](C) and for any N there
exists n ≥ N such that RC(θs(x, 1 + n))s∈S and Ws(x, n) are true. Let us
consider N = ks,x − 1 and let n ≥ N be such that RC(θs(x, 1 + n))s∈S and
Ws(x, n) are true. Since Ws(x, n) is true, we deduce that n ∈ ns,x.(N\{0}).
Let us consider a (r,m)-decomposition (σ0, s0) of x0 such that r|σ0|m ≥ ks,x

for any s ∈ S. Since ns,x is relatively prime with r, by replacing σ0 by a word
in σ0.s

∗
0, we can assume that r|σ0|m ∈ 1 + ns,x.Z. Since 1 + n and r|σ0|m are

both greater than ks,x and the difference of these two integers (1+n)−(r|σ0|m)
is in ns,x.Z, we deduce that θs(x, 1+n) is equivalent to θs(x, r

|σ0|m). Therefore
RC(θs(x, 1 + n))s∈S is true. Remark that θs(x, r

|σ0|m) is true if and only if
x + r|σ0|m . s−s0

1−r
∈ Zr,m,s ∩ X . Remark that x + r|σ0|m . s−s0

1−r
= ρr,m(σ0, s).

Therefore θs(x, r
|σ0|m) is equivalent to s ∈ [F0](q) where q = δ(q0, σ0). We

deduce that RC(s ∈ [F0](q))s∈S is true. Hence q ∈ C and from s0 ∈ [F0](C)
we get s0 ∈ [F0](q). We have proved that x ∈ X .

Now, let us consider x ∈ X and let us prove that φ(x) is true. Since
Q is finite and

∏

s∈S ns,x is relatively prime with r, there exists a (r,m)-
decomposition (σ0, s0) of x and an integer d0 ∈ N\{0} such that q = δ(q0, σ0)
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satisfies δ(q, sd0

0 ) = q and such that r|σ0|m and rd0 are in 1 + ns,x.Z. Since
C is a partition of Q, there exists C ∈ C such that q ∈ C. Let us consider
N ∈ Z. There exists k ∈ N such that the integer n = r|σ0|m+k.d0 − 1 is
greater than or equal to N and 1. Remark that n ∈ ns,x.(N\{0}). Therefore
Ws(x, n) is true. Moreover, as x ∈ X we deduce that s0 ∈ [F0](q) and hence
sign(x) ∈ [F0](C). Moreover, as q ∈ C we get RC(s ∈ [F0](q))s∈S is true.
Remark that s ∈ [F0](q) if and only if ρr,m(σ0.s

k.d0

0 , s) ∈ Zr,m,s ∩ X if and
only if x + r|σ0|m+k.d0 . s−s0

1−r
∈ Zr,m,s ∩ X if and only if θs(x, 1 + n) is true.

Therefore φ(x) is true. ⊓⊔
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Linear Sets

8.1 Vector spaces

V

Fig. 8.1. The vector space V = Q.(2, 1)

A vector space V of Qm is a non empty subset of Qm such that λ.V ⊆ V
for any λ ∈ Q and such that V + V ⊆ V . As any finite or infinite intersection
of vector spaces of Qm remains a vector space and we deduce that any set
X ⊆ Qm is included into a unique minimal (for ⊆) vector space denoted by
vec(X) and called the vector hull of X or the vector space generated by X . A
basis of a vector space V is a sequence v1, .., vd of vectors in V such that for
any x ∈ V there exists a unique sequence λ1, ..., λd of rational numbers such
that x =

∑d
i=1 λi.vi. Recall that any vector space has a basis and the number

of elements of a basis only depends on V and it is called the dimension of V ,
and it is denoted by dim(V ) ∈ {0, . . . ,m}.
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There exists unduly complicated basis of vector spaces. For instance con-
sider the vector space V = Q2 and for each n ∈ N let vn

1 , vn
2 be the basis of

V given by vn
1 = (2.n + 1, n) and vn

2 = (2, 1). That means complex basis of
simple vector spaces (for instance Q2) can be computed if vector spaces are
symbolically manipulated by basis. In order to overcome this problem, we are
going to associate to any vector space a canonical basis.

A set of indices I ⊆ {1, . . . ,m} is said full rank for a vector space V if for
any x ∈ QI there exists a unique v ∈ V such that v[i] = x[i] for any i ∈ I.

Proposition 8.1. Any vector space has a full rank set of indices.

Proof. Let us consider subset I ⊆ {1, . . . ,m} maximal for the inclusion
amongst the subset J ⊆ {1, . . . ,m} satisfying for any x ∈ QJ , there ex-
ists a unique v ∈ V such that v[j] = x[j] for any j ∈ J . Remark that such
a set I exists since J = ∅ satisfies the condition. Let us consider two vectors
v1, v2 ∈ V such that v1[i] = v2[i] for any i ∈ I and let w = v1 − v2. Assume
by contradiction that w 6= e0,m. There exists j0 ∈ {1, . . . ,m}\I such that
w[j0] 6= 0. Let J = I ∪ {j0} and let us prove that for any x ∈ QJ there exists
v ∈ V such that v[j] = x[j] for any j ∈ J . By definition of I, there exists

v0 ∈ V such that v0[i] = x[i] for any i ∈ I. Let v = v0 + x[j0]−v0[j0]
w[j0] .w and

remark that v[i] = x[i] for any i ∈ I since w[i] = 0 and v[j0] = 0. Therefore
I is not maximal and we get a contradiction. Thus w = e0,m and we have
proved that for any x ∈ QI , there exists a unique v ∈ V such that v[i] = x[i]
for any i ∈ I. ⊓⊔

A vector I-representation of a vector space V where I is a full rank set
of indices for V is a sequence (vi)i∈I of vectors in V satisfying vi[i] = 1 and
vi[j] = 0 for any j ∈ I\{i}. Observe that such a sequence (vi)i∈I is a basis
of V and given a full rank set I, there exists a unique vector I-representation
of V . The integer size(V ) ∈ N of a vector space V is defined by size(V ) =
maxI(

∑

i∈I size(vi)) where (vi)i∈I is the unique vector I-representation of V .
The following proposition provides a simple way for computing incremen-

tally a vector I-representation of a vector space V .

Proposition 8.2. Let I be a full rank set of indices for a vector space V ,
let (vi)i∈I be the vector I-representation of V and let V ′ be the vector space
V ′ = V + Q.x where x is any vector in Qm. The vector spaces V and V ′

are equal if and only if the vectors y = x −
∑

i∈I x[i].vi and e0,m are equal.
Moreover, if V ′ is not equal to V then given j0 such that y[j0] 6= 0, the set of
indices J = I ∪ {j0} is full rank for V ′ and the vector J-representation of V ′

is the following sequence (v′j)j∈J :

v′j =

{

vj − vj [j0].
y

y[j0]
if j ∈ I

y
y[j0]

if j = j0
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Proof. Assume first that y = e0,m and let us prove that V = V ′. Since
y = e0,m, we get x =

∑

i∈I x[i].vi ∈ V and we deduce V = V ′. Otherwise,
if V = V ′ we deduce that y ∈ V . Since (vi)i∈I is a basis of V , there exists
a sequence (λi)i∈I of rational numbers such that y =

∑

i∈I λi.vi. From this
last equality, we get y[i] = λi and from y = x −

∑

i∈I x[i].vi, we get y[i] =
x[i]− x[i] = 0. Thus λi for any i and we have proved that y = e0,m. We have
proved that the vector spaces V and V ′ are equal if and only if the vectors
y = x−

∑

i∈I x[i].vi and e0,m are equal.
Now, assume that V ′ is not equal to V and observe that J is a set of

indices full rank for V ′ and the sequence (v′j)j∈J is a vector I-representation
of V ′. ⊓⊔

Our representation is motivated by the following corollary.

Corollary 8.3. The size of a vector space V is at most polynomially larger
than the size of any finite subset V0 ⊆ Qm that generates V .

Proof. Assume fixed a full row set of indices I of V . Let us consider a finite set
V0 of vectors that generates V . It is sufficient to show that we can compute in
polynomial time a sequence (vi)i∈I from V0. By applying the polynomial time
algorithm given in proposition 8.2 and adding one by one the vector v0 in V
and by selecting j0 in I, we deduce that the sequence (vi)i∈I is computable
in polynomial time. ⊓⊔

8.2 Affine spaces

A
−→
A

Fig. 8.2. On the left an affine space A = (0, 1)+Q.(2, 1). On the right its direction.
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An affine space A of Qm is either the empty-set, or a set of the form
A = a0 + V where a0 ∈ Qm and V is a vector space of Qm. This vector space

V is unique, denoted by
−→
A and called the direction of A (see figure 8.2). If

A = ∅, we denote by
−→
A = ∅ the direction of A. A non-empty affine space A

is called a V -affine space if
−→
A is equal to a vector space V .

An affine I-representation of a V -affine space A where I is a full rank
set of indices of V is a couple (a, (vi)i∈I) where a is a vector in A such that
a[i] = 0 for any i ∈ I and (vi)i∈I is the I-vector representation of V . Observe
that such a couple is unique. The integer size(A) ∈ N of a non-empty affine
space A is defined by size(A) = maxI(size(a)) + size(V ) where (a, (vi)i∈I)
is the unique I-affine representation of A. The integer size(∅) is defined by
size(∅) = 0. Notice that size(A) = size(V ) if the affine space A is a vector
space A = V since in this case a = e0,m.

The direction of affine spaces, has an interesting application intensively
used in the sequel and given by the following lemma.

Lemma 8.4 (Comparable affine lemma). Two comparable (for ⊆) affine
spaces that have the same direction are equal.

Proof. Consider two affine spaces A1 and A2 such that A1 ⊆ A2 and such

that
−→
A1 =

−→
A2. Naturally, if A1 = ∅, as

−→
A1 =

−→
A2 we deduce that A2 = ∅ and

we are done. Assume that A1 6= ∅. Consider a1 ∈ A1. As a1 ∈ A1 ⊆ A2, we

deduce that A2 = a1 +
−→
A2. From

−→
A1 =

−→
A2, we get A2 = a1 +

−→
A1 = A1. ⊓⊔

Recall that any finite or infinite intersection of affine spaces of Qm remains
an affine space, and we deduce that any set X ⊆ Qm is included into a unique
minimal (for ⊆) affine space denoted by aff(X) and called the affine hull of X
or the affine space generated by X . The direction of aff(X) is denoted by
−→
aff(X) =

−−−−→
aff(X).

Finally, recall that the orthogonal X⊥ of a subset X ⊆ Qm is the vector
space X⊥ = {y ∈ Qm; ∀x ∈ X 〈y, x〉 = 0}. Recall that (X⊥)⊥ = vec(X). In
particular, X = V is a vector space if and only if (V ⊥)⊥ = V . The orthogonal
projection over a non-empty affine space A is the unique function ΠA : Qm →

A such that ΠA(x) − x ∈ (
−→
A )⊥ for any x ∈ Qm (see figure 8.3). Recall that

ΠA is an affine function that satisfies ΠA(x) = (1 −
∑m

i=1 x[i]).ΠA(e0,m) +
∑m

i=1 x[i].ΠA(ei,m).

8.3 Vector lattices

An additive group M of Qm is a non-empty finite subset of Qm such that
−M ⊆ M and M +M ⊆ M . As any finite or infinite intersection of additive
groups remains an additive group and Qm is a group, any set X ⊆ Qm is
included into a minimal (for ⊆) additive group, denoted by group(X) and
called the group generated by X . An additive group M such that there exists
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b

b

x

ΠA(x)

A

Fig. 8.3. Orthogonal projection ΠA(x) = (6,3)
5

of x = (3,−2) over A = (0, 1) +
Q.(2, 1).

a finite set X satisfying M = group(X) is called a vector lattice. Lattices are
characterized by introducing discrete sets . A set Z ⊆ Qm is said discrete if
for any x ∈M , there exists a rational number ǫ > 0 such that ||x− y||∞ ≥ ǫ
for any y ∈M\{x}.

Proposition 8.5 ([Tau92]). A group is discrete if and only if it is a vector
lattice.

Proof. Assume first that M is a discrete group and let us prove that M is a
vector lattice. Since e0,m ∈M , there exists ǫ > 0 such that ||x||∞ > ǫ for any
x ∈M . Let V be the vector space generated by M and let v1, ..., vd be a basis
of V formed by vectors in M . Let us denote by B = {

∑d
i=1 λ[i].vi; 0 ≤ λ[i] ≤

1}. The rational k =
∑d

i=1 ||vi||∞ satisfies ||b||∞ ≤ k for any b ∈ B. Assume by
contradiction that M ∩B contains more than (2.k+1

ǫ
)n elements. Hence, there

exists x1, x2 ∈ M ∩ B such that x1 6= x2 and such that ||x1 − x2||∞ ≤ ǫ. By
definition of ǫ we deduce that x1−x2 = e0,m and we get a contradiction. Thus

M∩B is finite. For any x ∈M , there exists λ ∈ Qd such that x =
∑d

i=1 λ[i].vi.
Let us consider a vector z ∈ Zd such that 0 ≤ λ[i]− z[i] ≤ 1 and remark that

x−
∑d

i=1 z[i].vi ∈M∩B. ThusM = group({v1, . . . , vd}∪(M∩B)) and we have
proved that there exists a finite set X of vectors such that M = group(X).
For the converse, assume that M is a vector lattice and let us prove that M
is discrete. There exists a finite set X of vectors such that M = group(X).
Let us consider an integer d ∈ N\{0} such that d.X ⊆ Zm and let us remark
that for any x, y ∈ M such that x 6= y, we have ||x− y||∞ ≥ 1

d
. Thus M is

discrete. ⊓⊔

Thanks to this characterization, we deduce that any group included in a vector
lattice is a vector lattice since any set included in a discrete set remains
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discrete. Given a vector space V , a vector lattice M such that V = vec(M) is
called a V -vector lattice. The previous proposition also proves that Zm ∩V is
a V -vector lattice since it is a discrete group such that vec(Zm ∩ V ) = V .

8.3.1 Hermite representation

We are going to provide a canonical (up to a full rank set of indices I for V )
representation of any V -vector lattice.

An Hermite matrix B of order d is a lower triangular (we have B[i, j] = 0
for any j > i), non-negative square matrix B ∈ Md,d(Q+), in which each
row has a unique maximal entry which is located on the main diagonal of B.
Given a full row set of indices I = {i1 < · · · < id} of a vector space V , an
Hermite I-representation B of a V -vector lattice M is an Hermite matrix B
of order d such that we have the following equality where (vi)i∈I is the vector
I-representation of V :

M = group{
d
∑

k=1

B[k, j].vik
; j ∈ {1, . . . , d}}

The integer size(M) ∈ N of a V -vector lattice M is defined by size(M) =
maxI(size(B)) + size(V ).

The following theorem shows that the Hermite I-representation provides
a canonical representation that is polynomially bounded by the size of any
finite set X such that M = group(X).

Theorem 8.6 (Theorem 4.1, 4.2 and 5.3 of [Sch87]). Given a full rank
set of indices I of a vector space V , any V -vector lattice M owns a unique
Hermite I-representation. Moreover, this representation is computable in poly-
nomial time from any finite set of vectors that generates M .

This theorem also proves that for any V -vector lattice, there exists a basis v1,
..., vd of V such thatM =

∑d
j=1 Z.vj (for instance take vj =

∑d
k=1 B[k, j].vik

).
Such a sequence v1, ..., vd is called a Z-basis of M .

The following proposition will be useful in the sequel.

Proposition 8.7 (Corollary 5.3b and 5.3c of [Sch87]). From an I-
representation of a vector space V , we can compute in polynomial time the
Hermite I-representation of the V -vector lattice Zm ∩ V .

8.3.2 Stability by intersection

Naturally, any intersection of vector lattices remains a vector lattice. The
following lemma 8.8 shows that the class of V -vector lattice is stable by fi-
nite intersection (remark 8.9 shows that this class is not stable by infinite
intersection).
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Lemma 8.8. The class of V -vector lattices is stable by finite intersection.
Moreover, given a finite sequence M1, ..., Mn of V -vector lattices, we can
compute in polynomial time the V -vector lattice

⋂n
j=1Mj.

Proof. Let I be a full rank set of indices. Recall that from an Hermite I-
representation of Mj , we get a Z-basis v1,j , ..., vd,j of Mj. Now, remark that
x ∈ M where M =

⋂n
j=1Mj if and only if there exists z1, ..., zn in Zd such

that x =
∑d

i=1 zj.vi,j for any j ∈ {1, . . . , n}. Let us consider the vector space

W = {(x, z1, . . . , zn) ∈ Qn × Qd × · · ·Qd;
⋂n

j=1 x =
∑d

i=1 zj .vi,j}. From
proposition 8.7 we deduce in polynomial time a Z-basis of Zm ∩ W of the
form (x1, z1,1, . . . , z1,n), ..., (xd, zd,1, . . . , zd,n). Let us remark that

⋂d
j=1Mj is

the V -vector lattice generated by x1, ..., xd. We deduce the I-representation
of M in polynomial time. ⊓⊔

Remark 8.9. The class of V -vector lattices is not stable by infinite intersection.
In fact, let Mn be the V -vector lattice Mn = (n+ 1).Zm where V = Qm, and
just remark that

⋂

n∈N Mn = {e0,m} is naturally a group as any intersection
of groups, but it is not a V -vector lattice if m ≥ 1.

8.3.3 Sub-lattice

The quotient M ′/M of two V -vector lattices M ⊆M ′ is defined by M/M ′ =
{m′ +M ; m′ ∈M}. The following theorem 8.10 proves that this set is finite.

Theorem 8.10 ([Tau92]). Given two vector lattices M ⊆M ′, there exists a
unique sequence n1, ..., nd of integers in N\{0} such that ni divides ni+1 for
any i and such that there exists a Z-basis v1, ..., vd of M ′ satisfying n1.v1,
..., nd.vd is a Z-basis of M . Moreover such a sequence (n1, v1), ..., (nd, vd) is
computable in polynomial time.

The unique sequence n1, ..., nd is called the characteristic sequence of M in
M ′.

The following lemma will be useful in the sequel.

Lemma 8.11 ([Tau92]). Given three V -vector lattices M ⊆ M ′ ⊆ M ′′, we
have the following equality:

|M ′′/M ′|.|M ′/M | = |M ′′/M |

8.3.4 Vector lattices included in Zm

In the sequel we denote by hr : N\{0} → N\{0} the function defined by
hr(n) = n

gcd(n,r) , and we denote by θm is the function θm ∈ {1, . . . ,m} →

{1, . . . ,m} defined by θm(i) ∈ (i− 1 +m.Z) ∩ {1, . . . ,m}.
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Inverse image by γr,m,0

Theorem 8.10 proves that any V -vector lattice M included in Zm is a set of
the form M =

∑d
i=1 ni.Z.vi where v1, ..., vd is a Z-basis of Zm ∩V and n1, ...,

nd are integers in N\{0}. Thus, the following lemma 8.12 shows that the class
of V -vector lattices included in Zm is stable by inverse image by γr,m,e0,m

.

Lemma 8.12. Given a Z-basis v1, ..., vd of Zm∩V where V is a vector space
and a sequence n1, ..., nd of integers in N\{0}, we have:

γ−1
r,m,e0,m

(

d
∑

i=1

ni.Z.vi) =

d
∑

i=1

hr(ni).Z.vi

Proof. Let x ∈ γ−1
r,m,e0,m

(
∑d

i=1 ni.Z.vi). There exists z1, ..., zd in Z such that

r.x =
∑d

i=1 ni.zi.vi. In particular x ∈ Zm ∩ V and there exists t1, ..., td in Z

such that x =
∑d

i=1 ti.vi. As v1, ..., vd is a Z-basis, we get r.ti = ni.zi for any i.
Therefore ri.ti = hr(ni).zi where ri = r

gcd(ni,r) . As ri and hr(ni) are relatively

prime, there exists ui, u
′
i in Z such that ui.ri + u′i.hr(ni) = 1. From ui.ri.ti =

hr(ni).ui.zi, we get ti = hr(ni).(ui.zi+u
′
i.ti). Therefore, x ∈

∑d
i=1 hr(ni).Z.vi

and we have proved the inclusion γ−1
r,m,e0,m

(
∑d

i=1 ni.Z.vi) ⊆
∑d

i=1 hr(ni).Z.vi.

Let us prove the other inclusion. Consider x ∈
∑d

i=1 hr(ni).Z.vi. There

exists a sequence z1, ..., zd in Z such that x =
∑d

i=1 hr(ni).zi.vi. Hence
γr,m,e0,m

(x) =
∑n

i=1 r.hr(ni).zi.vi. As ni divides r.hr(ni), we deduce that

γr,m,e0,m
(x) ∈

∑d
i=1 ni.Z.vi. Therefore x ∈ γ−1

r,m,e0,m
(
∑d

i=1 ni.Z.vi) and we
have proved the other inclusion. ⊓⊔

The stability of vector lattices by inverse image by γr,m,0 is provided by
the following proposition 8.13.

Proposition 8.13. The set Mz = γ−z
r,m,0(M) is a Vz-vector lattice included

in Zm for any V -vector lattice M included in Zm where Vz is the vector
space Vz = Γ−z

r,m,0(V ) and for any z ∈ N. Moreover, from an Hermite I-
representation of M , we can compute in polynomial time the Hermite Iz-
representation of Mz where Iz = θz

m(I).

Proof. Recall that form the I-representation of M , we immediately deduce a
Z-basis v1, ..., vd of M . Let us remark that γ−z

r,m,0(M) is the set of vectors x ∈

Zm such that there exists a vector k ∈ Zd satisfying Γ z
r,m,0(x) =

∑d
i=1 k[i].vi.

Let us consider the vector space W = {(k, x) ∈ Qd × Qm; Γ z
r,m,0(x) =

∑d
i=1 k[i].vi}. Remark that W is a vector space and J = {1, . . . , d} is a

full rank set of indices of W . From proposition 8.7 we deduce that we can
compute in polynomial time the J-representation of W . That means we can
compute in polynomial time a Z-basis of Zm ∩ W denoted by (k1, x1), ...,
wd = (kd, xd) where ki ∈ Zd and xi ∈ Zm. Now, just remark that γ−z

r,m,0(M)
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is a the Vz-vector lattice generated by the vectors x1, ..., xd. Therefore,
the Iz-representation of γ−z

r,m,0(M) is computable in polynomial time for any
z ∈ {0, . . . ,m− 1}. Observe that in general, an integer z ∈ N can be decom-
posed into z = z′ +m.k where k ∈ N and z′ ∈ {0, . . . ,m− 1}. Observe that
γ−k

r,m,e0,m
(M) can be computed in polynomial time thanks to lemma 8.12. ⊓⊔

Relatively prime properties

A V -vector lattice M included in Zm is said relatively prime with a basis of
decomposition r if the integer |Zm ∩ V/M | is relatively prime with r.

Thanks to lemma 8.11, we deduce that the class of V -vector lattices in-
cluded in Zm and relatively prime with r is stable by finite intersection. In fact
given two relatively prime V -vector lattices M1 and M2 included in Zm, from
M1∩M2 ⊆ n.Zm∩V ⊆ Zm∩V where n = |Zm∩V/M1|.|Z

m∩V/M2|, we deduce
that |Zm ∩V/M1 ∩M2|.|M1∩M2/n.Z

m ∩V | = |Zm ∩V/n.Zm ∩V | = ndim(V ).
In particular |Zm ∩ V/M1 ∩M2| divides an integer relatively prime with r.
That means it is relatively prime with r.

We are going to show that the V -vector lattices included in Zm and rel-
ativelly prime with r naturally appear when computing inverse images of a
V -vector lattice by γr,m,0.

As hr(n) ≤ n for any integer n ∈ N\{0} we deduce that (hk
r (n))k∈N is a

non increasing sequence ultimely stationary: there exists kn ∈ N such that
hk

r (n) = hkn
r (n) for any k ≥ kn. We denote by h∞r (n) this limit. Remark that

h∞r (n) is relatively prime with r and h∞r (n) = n if and only if n is relatively
prime with r. The previous lemma 8.12 shows that (γ−k

r,m,e0,m
(M))k∈N is a

non decreasing sequence of V -vector lattices ultimately stationary. The limit
is denoted by γ−∞

r,m,e0,m
(M) and naturally satisfies the following equality:

γ−∞
r,m,e0,m

(M) =
⋃

k∈N

γ−k
r,m,e0,m

(M)

From the previous lemma 8.12 we deduce that γ−∞
r,m,e0,m

(M) is relatively prime

with r and if M is relatively prime with r then γ−∞
r,m,e0,m

(M) = M . In partic-
ular the class of V -vector lattices relatively prime with r is stable by inverse
image by γr,m,e0,m

.
Let us remark that the elements in γ−∞

r,m,e0,m
(M) are geometrically char-

acterized by the following lemma 8.14

Lemma 8.14. Given a vector lattice M included in Zm and a vector x ∈ Zm,
we have x ∈ γ−∞

r,m,e0,m
(M) if and only if there exists k ∈ N such that rk.x ∈M .

Proof. Let V = vec(M). There exists a Z-basis of M of the form n1.v1, ...,
nd.vd where n1, ..., nd are integers in N\{0} and v1, ..., vd is a Z-basis of
Zm ∩ V . From lemma 8.12 we deduce that h∞r (n1).v1, ..., h∞r (nd).vd is a Z-
basis of γ−∞

r,m,e0,m
(M). Remark that there exists an integer k0 ∈ N such that

rk0h∞r (ni) divides ni for any i ∈ {1, . . . , d}.
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First, let us first prove that there exists k ∈ N satisfying rk.x ∈ M for
any x ∈ γ−∞

r,m,e0,m
(M). There exists z ∈ Zd such that x =

∑d
i=1 h

∞
r (ni).z[i].vi.

In particular rk0 .x =
∑d

i=1 r
k0 .h∞r (ni).z[i].vi ∈ M and we have proved that

there exists an integer k ∈ N such that rk.x ∈M .
Next, let us show that x ∈ γ−∞

r,m,e0,m
(M) for any x ∈ Zm such that there

exists k ∈ N satisfying rk.x ∈ M . As rk.x ∈ M , we deduce that x ∈ Zm ∩
V . Hence, there exists z ∈ Zd such that x =

∑d
i=1 z[i].vi. Hence rk.x =

∑d
i=1 z[i]r

k.z[i].vi. Moreover, as rk.x ∈ M , there exists t ∈ Zd such that

rk.x =
∑d

i=1 ni.t[i].vi. As v1, ..., vd is a Z-base, we get rk.z[i] = ni.t[i].
As h∞r (ni) divides ni, we deduce that n′

i = ni

h∞
r (ni)

is N. Hence rk.z[i] =

h∞r (ni).n
′
i.t[i]. As h∞r (ni) is relatively prime with r, then h∞r (ni) is relatively

prime with rk, and we deduce that rk divides n′
i.t[i]. Hence z[i] ∈ h∞r (ni).Z.

We deduce that x ∈ γ−1
r,m,e0,m

(M). ⊓⊔

8.4 Affine lattices

An affine lattice P is a subset of Qm of the form P = a +M where a ∈ Qm

and M is a lattice. A V -affine lattice P is an affine lattice P of the form
P = a+M where M is a V -vector lattice.

Given a V -affine space A, observe that Zm ∩ A is either empty or a V -
affine lattice of the form a+ (Zm ∩ V ) where a is any vector in Zm ∩A. The
following proposition will be useful for computing a vector in Zm ∩ A when
such a vector exists.

Proposition 8.15 (Corollary 5.3b and 5.3c of [Sch87]). Given an affine
space A, we can decide in polynomial time if Zm ∩A is non empty and in this
case, we can compute in polynomial time a vector a in this set.

Corollary 8.16. Given two affine lattices P1 = b1 + M1 and P2 = b2 + M2

where b1, b2 are two vectors in Qd and M1, M2 are two vectors lattices, we
can decide in polynomial time if (b1 +M1)∩ (b2 +M2) 6= ∅. Moreover, in this
case we can compute in polynomial time a vector a in this set. Observe that
we have P1 ∩ P2 = a+ (M1 ∩M2).

Proof. From the vector I1-representation of M1, we deduce in linear time a
Z-basis v1,1, ..., v1,d1

of M1, and from the vector I2-representation of M2, we
get in linear time a Z-basis v2,1, ..., v2,d2

of M2. Observe that (b1 + M1) ∩
(b2 +M2) 6= ∅ if and only if Zm ∩A is non empty where A is the affine space

A = {(x1, x2) ∈ Qd1 × Qd2 ; b1 +
∑d1

i=1 x1[i].v1,i = b2 +
∑d2

i=1 x2[i].v2,i}. Note
that proposition 8.15 provides a polynomial time algorithm for deciding if
Zm ∩A is non-empty and in this case it provides in polynomial time a vector
(x1, x2) ∈ Zm ∩ A. Note that a = b1 +

∑d1

i=1 x1[i].v1,i is a vector in P1 ∩ P2.
⊓⊔
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Semi-linear Sets

9.1 Semi-linear Spaces

b

A1

A2

A3
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V1

V3

Fig. 9.1. On the left a semi-affine space S. On the right its direction.

A semi-affine space (resp. a semi-vector space) S of Qm is a finite union of
affine spaces (resp. vector spaces) of Qm (see figure 9.1). Given a vector space
V , a finite union of V -affine spaces is called a semi-V -affine space. In this
section we show that a semi-affine space can be canonically decomposed into
maximal affine spaces, called affine components. Moreover, by proving that
any finite or infinite intersection of semi-affine spaces remains a semi-affine
space, we define the notion of semi-affine hull.



46 9 Semi-linear Sets

9.1.1 Affine components

Definition 9.1. An affine component A of a semi-affine space S is a maximal
(for ⊆) affine space included in S. The set of affine components is denoted by
comp(S).

We are going to prove that comp(S) provides a canonical representation of S.
We first prove the following lemma, intensively used in the sequel.

Lemma 9.2 (Insecable lemma). Let C be a non-empty finite class of affine
spaces and A0 be an affine space such that A0 ⊆

⋃

A∈C
A. There exists A ∈ C

such that A0 ⊆ A.

Proof. Let us consider an affine space A0 and let us prove by induction over
n ∈ N\{0} that for any finite class C of affine spaces such that |C| = n
and A0 ⊆

⋃

A∈C
A, there exists A ∈ C such that A0 ⊆ A. Naturally the

case n = 1 is immediate. Assume that the induction hypothesis is true for
an integer n ∈ N\{0} and let us consider a finite class C of affine spaces
such that |C| = n + 1 and A0 ⊆

⋃

A∈C
A. Let us consider A′ ∈ C. The case

A0 ⊆ A′ is also immediate so we can assume that A0 6⊆ A′. Let us consider
C′ = C\{A′}. As A0 6⊆ A′, there exists a0 ∈ A0\A′. Let a1 ∈ A0 and remark
that at = a0 + t.(a1 − a0) ∈ A0 for any t ∈ Q because A0 is an affine space.
From A0 ⊆

⋃

A∈C
A, we deduce that for any t ∈ Q, there exists A ∈ C such

that at ∈ A. As Q is infinite whereas C is finite, there exists A ∈ C and at
least two different t ∈ Q satisfying at ∈ A. As A is an affine space, we deduce
that at ∈ A for every t ∈ Q. From a0 ∈ A and a0 6∈ A′, we deduce that A ∈ C′.
We get a1 ∈

⋃

A∈C′ A. We have proved that A0 ⊆
⋃

A∈C′ A. From |C′| = n,
we deduce that there exists A′′ ∈ C′ such that A0 ⊆ A′′. We have proved the
induction hypothesis for C. ⊓⊔

Proposition 9.3. The set comp(S) of a semi-affine space S is finite and S is
equal to the finite union of its affine components S =

⋃

A∈comp(S)A. Moreover,

from any finite class C of affine spaces such that S =
⋃

A∈C
A, we can compute

in polynomial time comp(S).

Proof. Let us consider a semi-affine space S =
⋃

A∈C
A where C is a finite

class of affine spaces.
Consider the class C′ of non-empty affine spaces in C maximal for ⊆. Let

us first prove that S =
⋃

A′∈C′ A′. Naturally, from C′ ⊆ C, we deduce that
⋃

A′∈C′ A′ ⊆ S. For any A ∈ C, either A = ∅ and in this case A ⊆
⋃

A′∈C′ A′,
or A 6= ∅, and in this case there exists A′ ∈ C′ such that A ⊆ A′. Hence
A ⊆

⋃

A′∈C′ A′. Therefore, S =
⋃

A′∈C′ A′.
By replacing C by C′, we can assume without loss of generality that C is

a finite class of non-empty affine spaces such that A1 ⊆ A2 implies A1 = A2

for any A1, A2 in C.
Let us now prove that comp(S) = C. Let A0 ∈ C and consider an affine

space A′ such that A0 ⊆ A′ ⊆ S. Insecable lemma 9.2 proves that A′ ⊆ S =
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⋃

A∈C
A implies that there exists A ∈ C such that A′ ⊆ A. From A0 ⊆ A and

A, A0 in C, we get A0 = A. We deduce that A0 = A′. Hence A0 is a maximal
(for ⊆) non-empty affine space such that A0 ⊆ S. That means A0 ∈ comp(S)
and we have proved that C ⊆ comp(S). Let us prove the converse inclusion.
Let A0 ∈ comp(S). As A0 ⊆ S =

⋃

A∈C
A, insecable lemma 9.2 shows that

there exists A ∈ C such that A0 ⊆ A. From A0 ⊆ A ⊆ S, we deduce by
maximality of A0 that A0 = A. Hence A0 ∈ C and we have proved that
comp(S) ⊆ C. ⊓⊔

9.1.2 Size

The set of affine components provides a natural way for canonically repre-
senting semi-affine spaces as finite set of affine spaces. The integer size(S) ∈ N

where S is a semi-affine space is naturally defined by size(S) =
∑

A∈comp(S) size(A).

9.1.3 Direction

Definition 9.4. The direction
−→
S of a semi-affine space S is defined by

−→
S =

⋃

A∈comp(S)

−→
A .

Remark that the semi-affine space direction definition extends the affine
space direction definition because if S = A is a non-empty affine space then
comp(S) = {A}, and if S = ∅ then comp(S) = ∅. Remark also that insecable
lemma 9.2 shows that for any class C of affine spaces such that S =

⋃

A∈C
A,

we have
−→
S =

⋃

A∈C

−→
A even if C is not equal to comp(S). That shows in par-

ticular that a semi-affine space S is a semi-vector space if and only if
−→
S = S.

Example 9.5. Let us consider the semi-affine space S = A1 ∪ A2 ∪ A3 ∪ A4

where A1 = Q.(2, 1), A2 = (0, 1) + Q.(2, 1), A3 = (−1, 0) + Q.(3,−4) and

A4 = {(−3,−3)} given in figure 9.1. We have
−→
S = V1∪V3 where V1 = Q.(2, 1)

and V3 = Q.(3,−4). Remark that S owns 4 affine components comp(S) =

{A1, A2, A3, A4} and
−→
S owns only 2 affine components comp(

−→
S ) = {V1, V3}.

9.1.4 Semi-affine hull

Following proposition 9.6 proves that any finite or infinite intersection of semi-
affine spaces remains a semi-affine space. In particular for any subsetX ⊆ Qm,
there exists a minimal (for ⊆) semi-affine space written saff(X) that contains
X . This semi-affine space is called the semi-affine hull of X . The semi-vector

space
−−−−−→
saff(X) is written

−→
saff(X).

Proposition 9.6. Any finite or infinite intersection of semi-affine spaces re-
mains a semi-affine space.
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Proof. Observe that a semi-affine space is a finite union of affine spaces that
can be represented by a finite set of vectors in Qm. Hence the class of semi-
affine spaces is countable. In order to prove the lemma, it is therefore sufficient
to prove that

⋂

n∈N Sn is a semi-affine space for any sequence (Sn)n∈N of semi-
affine spaces. As the class of semi-affine spaces is stable by finite intersection,
we can also assume that (Sn)n∈N is non-increasing. Let us prove by induction
over the dimension k ∈ N ∪ {−1} that any non-increasing sequence of semi-

affine spaces (Sn)n∈N such that dim(
−→
aff(S0)) ≤ k, is ultimately stationary.

Case k = −1 is immediate because in this case Sn = ∅ for any n ∈ N. Now,
assume the induction true for k ≥ −1 and let us consider a non-increasing

sequence of semi-affine spaces (Sn)n∈N such that the dimension of
−→
aff(S0) is

equal to k+1. Remark that if Sn is an affine space for any n ≥ 0, then (Sn)n≥0

is a non-increasing sequence of affine spaces. In particular, this sequence is
ultimately constant. So, we can assume that there exists an integer n0 ≥ 0
such that Sn0

is not an affine space. There exists a finite class C of affine
spaces such that Sn0

=
⋃

A∈C
A. Let A ∈ C. From A ⊆ Sn0

⊆ S0 ⊆ aff(S0),

we deduce that the dimension of
−→
A is less than or equal to k+1. Moreover, if it

is equal to k+1, from A ⊆ aff(S0), we deduce A = aff(S0) and we get Sn0
= A

is an affine space which is a contradiction. As the sequence (Sn ∩ A)n≥0 is
a non-increasing sequence of semi-affine spaces such that the dimension of
−→
aff(Sn ∩ A) ⊆

−→
A is less than or equal to k, the induction hypothesis proves

that there exists nA ≥ 0 such that Sn ∩A = SnA
∩A for any n ≥ nA. Let us

consider N = maxA∈C(n0, nA). For any n ≥ N , we have Sn ⊆ Sn0
=
⋃

A∈C
A

and Sn ∩ A = SN ∩ A. Hence Sn = Sn ∩ (
⋃

A∈C
A) =

⋃

A∈C
(Sn ∩ A) =

⋃

A∈C
(SN ∩ A) = SN ∩ (

⋃

A∈C
A) = SN for any n ≥ N and we have proved

the induction. ⊓⊔

Example 9.7. The semi-affine hull of a finite subset X ⊆ Qm is equal to X
because X is the finite union over x ∈ X of the affine spaces {x}. The semi-
affine hull of an infinite subset X ⊆ Q (remark that m = 1) is equal to Q. In
fact, the class of affine spaces of Q is equal to {Q, ∅} ∪ {{x}; x ∈ Q}.

Remark 9.8. As aff(X) is an affine space and in particular a semi-affine space
that contains X , we deduce that saff(X) ⊆ aff(X). This last inclusion can be
strict as shown by the example X = {e0,m, . . . , em,m}. In fact, in this case,
we have saff(X) = X and aff(X) = Qm.

The following lemma will be useful to compute the semi-affine hull of some
subsets of Qm (see example 9.10).

Lemma 9.9 (Covering lemma).

• For any affine function f : Qm → Qm′

and for any subset X ⊆ Qm, we
have saff(f(X)) = f(saff(X)).

• For any subsets X,X ′ ⊆ Qm, we have
– saff(X ×X ′) = saff(X) × saff(X ′),
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– saff(X ∪X ′) = saff(X) ∪ saff(X ′), and
– saff(X +X ′) = saff(X) + saff(X ′).

Proof. Let us consider an affine function f . From X ⊆ saff(X), we de-
duce f(X) ⊆ f(saff(X)). As f(saff(X)) is a semi-affine space that con-
tains f(X) (observe that f(A) is an affine space for any affine space A
and for any affine function f), by minimality of the semi-affine hull, we
deduce saff(f(X)) ⊆ f(saff(X)). Let us prove the converse inclusion. As
f(X) ⊆ saff(f(X)), we have X ⊆ f−1(saff(f(X))). As f−1(saff(f(X))) is
a semi-affine space (observe that f−1(A) is an affine space for any affine space
A and for any affine function f), by minimality of the semi-affine hull, we
get saff(X) ⊆ f−1(saff(f(X))). Hence f(saff(X)) ⊆ f(f−1(saff(f(X)))). Re-
call that for any function g : A → B, and for any subset Y ⊆ B, we have
g(g−1(Y )) = g(A) ∩ Y . Hence f(f−1(saff(f(X)))) = f(Qm) ∩ saff(f(X)).
From f(X) ⊆ f(Qm), we also deduce saff(f(X)) ⊆ f(Qm) and we get
f(Qm) ∩ saff(f(X)) = saff(f(X)). Therefore f(saff(X)) ⊆ saff(f(X)).

Let us consider X,X ′ ⊆ Qm and let us prove that saff(X∪X ′) = saff(X)∪
saff(X ′). From X ∪ X ′ ⊆ saff(X) ∪ saff(X ′), we deduce by minimality of
the semi-affine hull saff(X ∪ X ′) ⊆ saff(X) ∪ saff(X ′). Moreover, from X ⊆
X ∪ X ′ ⊆ saff(X ∪ X ′), we get saff(X) ⊆ saff(X ∪ X ′) and symmetrically
saff(X ′) ⊆ saff(X ∪X ′). We have shown saff(X) ∪ saff(X ′) ⊆ saff(X ∪X ′).

Let us consider X,X ′ ⊆ Qm and let us prove that saff(X×X ′) = saff(X)×
saff(X ′). From X ×X ′ ⊆ saff(X) × saff(X ′), we deduce that saff(X ×X ′) ⊆
saff(X)×saff(X ′). By considering the affine function f1,x : Qm → Q2m defined
by f1,x(x′) = (x, x′), we get saff({x} ×X ′) = {x} × saff(X ′) for any x ∈ X .
From {x} × X ′ ⊆ X × X ′, we deduce saff({x} × X ′) ⊆ saff(X × X ′). So
X × saff(X ′) ⊆ saff(X × X ′). In particular, for any x′ ∈ saff(X ′), we have
X × {x′} ⊆ saff(X × X ′). Affine function f2,x′ : Qm → Q2m defined by
f2,x′(x) = (x, x′) proves that saff(X) × {x′} ⊆ saff(X × X ′) for any x′ ∈
saff(X ′). So, we have proved saff(X) × saff(X ′) ⊆ saff(X ×X ′).

Let us consider X,X ′ ⊆ Qm and let us prove that saff(X + X ′) =
saff(X) + saff(X ′). By considering the affine function f : Q2m → Qm de-
fined by f(x, x′) = x + x′, we deduce that saff(X) × saff(X ′) = f(saff(X) ×
saff(X ′)) = f(saff(X ×X ′)) = saff(f(X ×X ′)) = saff(X +X ′). ⊓⊔

Example 9.10. The semi-affine hull of Nm is equal to Qm. In fact, from covering
lemma 9.9, we deduce saff(Nm) =

∑m
i=1 saff(N.ei,m) =

∑m
i=1 saff(N).ei,m =

∑m
i=1 Q.ei,m = Qm.

9.1.5 Cyclic sets

Recall that a (r,m, σ)-cyclic set X where σ ∈ Σ∗
r,m is a subset of Zm such that

γ−1
r,m,σ(X) = X . The following proposition 9.11 shows that the semi-affine hull

of a (r,m, σ)-cyclic set X ⊆ Zm is a finite union of affine spaces of the form
ξr,m(σ) + V where V is a vector space.
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Proposition 9.11. We have saff(X) = ξr,m(σ) +
−→
saff(X) for any (r,m, σ)-

cyclic set X ⊆ Zm.

Proof. It is sufficient to prove that for any affine component A of saff(X),
we have ξr,m(s) ∈ A. Consider x ∈ X . As γ−1

r,m,σ(X) = X then γk
r,m,σ(x) =

rk.|σ|.(x − ξ(σ)) + ξ(σ) ∈ X for any k ∈ N. Covering lemma 9.9 proves that
Q.(x − ξr,m(σ)) + ξr,m(σ) ⊆ saff(X). In particular, for any λ ∈ Q, we have
λ.(X − ξr,m(σ)) + ξr,m(σ) ⊆ saff(X). From covering lemma 9.9, we also prove
that λ.(saff(X)− ξr,m(σ))+ ξr,m(σ) ⊆ saff(X). Let A be an affine component
of saff(X). We have proved that Q.(A − ξr,m(σ)) + ξr,m(σ) ⊆ saff(X). From
A ⊆ Q.(A − ξr,m(σ)) + ξr,m(σ) ⊆ saff(X), we deduce by maximality of the
affine component A, the equality A = Q.(A − ξ(σ)) + ξr,m(σ). In particular
ξr,m(σ) ∈ A. ⊓⊔

9.2 Semi-affine lattices

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 9.2. On the left a semi-Q2-affine lattice P1. On the right a semi-Q.(1, 1)-affine
lattice P2.

A semi-V -affine lattice P is a finite union of V -affine lattices. Observe that
the class of semi-V -affine lattice is stable by boolean combinations.

Lemma 9.12. For any non-empty semi-V -affine lattice, there exists a non-
empty finite set B ⊆ Qm and a V -vector lattice M such that P = B +M .

Proof. There exists a non-empty finite sequence (aj ,Mj)j∈J where aj ∈ Qm

and Mj is a V -vector lattice such that P =
⋃

j∈J (aj +Mj). From lemma 8.8,
we deduce that M =

⋂

j∈J Mj is a V -vector lattice. Since M ⊆Mj , theorem
8.10 shows that there exists a finite set Bj ⊆Mj such that Mj = Bj +M . We
have proved that P = B +M where B is the finite set B =

⋃

j∈J (aj + Bj).
⊓⊔
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The group of invariants inv(X) of a subset X ⊆ Qm is the group of vectors
v ∈ Qm that let X invariant: we have X − v = X .

Lemma 9.13. The group of invariants of a non empty semi-V -affine lattice
is a V -vector lattice.

Proof. Let P be a non-empty semi-V -affine lattice. Lemma 9.12 proves that
there exists a non-empty finite set B ⊆ Qm and a V -vector lattice M such
that P = B +M . Let us show that inv(P ) ⊆ (V ∩ (B −B)) +M . Consider a
vector v ∈ inv(P ). Let b ∈ B. Since P − k.v = P for any k ∈ N, there exists
bk ∈ B and mk ∈ M such that b − k.v = bk + mk. Since B is finite, there
exists k1 < k2 such that bk1

= bk2
. We deduce that (k1 − k2).v = mk2

−mk1
.

In particular v ∈ V since M ⊆ V . Moreover, from v = b − b1 + m1 and
m1 ∈M ⊆ V , we get b−b1 ∈ V . We have proved that v ∈ (V ∩(B−B))+M .
Thus inv(P ) is included in the discrete set (V ∩ (B − B)) +M and we have
proved that inv(P ) is a vector lattice. Let us prove that vec(inv(P )) = V .
From inv(P ) ⊆ (V ∩ (B − B)) +M we get vec(inv(P )) ⊆ V . Moreover, from
M ⊆ inv(P ) we get V = vec(M) ⊆ vec(inv(P )). Therefore inv(P ) is a V -
vector lattice. ⊓⊔

The V -vector lattice of invariants of a non-empty semi-V -affine lattice is
geometrically characterized by the following proposition 9.14.

Proposition 9.14. Let P be a non-empty semi-V -affine lattice and let M be
a V -vector lattice. There exists a finite subset B ⊆ Zm such that P = B +M
if and only if M ⊆ inv(P ).

Proof. Observe that if there exists a finite set B ⊆ Zm such that P = B+M ,
we deduce that M ⊆ inv(P ). Let us now prove the converse. Assume that
M is a V -vector lattice such that M ⊆ invV (P ) and let us prove that there
exists a finite set B ⊆ Zm such that P = B + M . Lemma 9.12 proves that
there exists a non-empty finite set B0 ⊆ Qm and a V -vector lattice M0 such
that P = B0 +M0. As M ⊆ inv(P ), we deduce that P = B0 +M0 +M . Since
M ⊆M0 +M , theorem 8.10 proves that there exists a finite set B1 ⊆M0 +M
such that M0 +M = B1 +M . Therefore P = B+M where B = B0 +B1. ⊓⊔

Proposition 9.15. Let M be a V -vector lattice and let B be a non-empty
finite subset of Qm. We can compute in polynomial time the V -vector lattice
of invariants of P = B +M .

Proof. Let us fix a vector b0 ∈ B and let us prove that the V -vector lattice of
invariant inv(P ) is equal to the V -vector lattice M ′ generated by M and the
vectors v ∈ B− b0 such that v+B+M = B+M . Observe that M ′ ⊆ inv(P ).
Conversely, let x ∈ inv(P ). We have x + B + M = B + M . In particular
x+ b0 ∈ B +M and we deduce that there exists v ∈ B − b0 and m ∈M such
that x = v+m. Observe that x+B+M = B+M implies v+B+M = B+M .
Thus x ∈ M ′ and we have proved that inv(P ) = M ′. Note that a vector
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v ∈ Qm satisfies v+B+M = B+M if and only if for any b ∈ B there exists
b′ ∈ B such that v + b− b′ ∈M . Since we can decide in polynomial time if a
vector is in M , we are done. ⊓⊔

Corollary 9.16. Given two semi-affine lattice P1 = B1 +M1 and P2 = B2 +
M2 where B1, B2 are two finite subsets of Qm, and M1, M2 are two vector
lattices, we can decide in polynomial time if B1 +M1 = B2 +M2.

Proof. Naturally if B1 and B2 are both empty then P1 = P2 and if only
one of then is empty then P1 6= P2. Thus, without loss of generality, we cam
assume that B1 and B2 are non empty. From proposition 9.15, we deduce
that inv(P1) and inv(P2) are computable in polynomial time. Observe that
if inv(P1) 6= inv(P2) then P1 6= P2. Hence we can assume that there exists
a vector lattice M such that inv(P1) = M = inv(P2). We have reduced our
problem to decide if B1 +M1 = B2 +M2 where M1 and M2 are equal to a V -
vector latticeM . Let S1 and S2 be the semi-V -affine spaces Si =

⋃

b∈Bi
(b+V ).

If S1 6= S2 then P1 6= P2. So, we can assume that there exists a semi-V -
vector space S such that S1 = S = S2. Remark that P1 = P2 if and only
if (B1 ∩ A) + M = (B2 ∩ A) + M for any affine component A of S. Thus
we can assume that B1 and B2 are included into a V -affine space A. Let
a0 ∈ A (for instance take a0 ∈ B1) and notice that P1 = P2 if and only if
(B1 − a0) +M = (B2 − a0) +M . Hence, we can assume that B1 and B2 are
included in V . From an Hermite I-representation of M , we get in linear time
a Z-basis v1, ..., vd of M . Let us consider the function λ ∈ V → Qd defined
by λ(v) is the unique x ∈ Qd such that 0 ≤ x[i] < 1 and such that there

exists k ∈ Zd satisfying v =
∑d

i=1(x + k)[i].vi. Note that λ(v) is computable
in polynomial time and B1 + M = B2 + M if and only if λ(B1) = λ(B2).
Thus, we can decide in polynomial time if B1 +M = B2 +M . ⊓⊔

Example 9.17. Let P1 be the semi-Q2-affine lattice P1 = {(0, 0), (1, 0), (0, 1)}+
2.Z2 and let P2 be the semi-Q.(1, 1)-affine lattice P2 = {(0, 0), (0, 1), (0, 2), (1, 2)}+
Z.(2, 2) given in figure 9.2. We have inv(P1) = Z.(2, 0)+Z.(0, 2) and inv(P2) =
Z.(2, 2).

9.3 Semi-patterns

A V -pattern is a V -affine lattice included in Zm and a semi-V -pattern is a
semi-V -affine lattice included in Zm.

Observe that the the V -lattice inv(P ) of a non-empty semi-V -pattern P
is included in Zm ∩ V and if P is empty then inv(P ) = V . We denote by
invV (P ) the V -vector lattice invV (P ) = Zm ∩ V ∩ inv(X) for any (empty or
non-empty) semi-V -pattern P .
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9.3.1 Inverse image by γr,m,σ

Proposition 9.18 proves that the class of semi-patterns is stable by inverse
image by γr,m,σ where σ ∈ Σ∗

r .

Proposition 9.18. Let B be a finite subset of Zm and let M be a V -vector
lattice included in Zm. For any word σ ∈ Σ∗

r , we can compute in polynomial
time a finite set Bσ ⊆ Zm such that |Bσ| ≤ |B| and γ−1

r,m,σ(B +M) = Bσ +

γ
−|σ|
r,m,0(M).

Proof. Let us consider for each b ∈ B such that γr,m,σ(Zm) ∩ (b + M) 6= ∅,
a vector b′ ∈ Zm such that γr,m,σ(b′) ∈ b + M . We denote by B′ the set of
b′ ∈ Zm obtained. Note that corollary 8.16 provides a polynomial time algo-

rithm for computing B′. Let us prove that γ−1
r,m,σ(B +M) = B′ + γ

−|σ|
r,m,0(M).

Let x ∈ B′ + γ
−|σ|
r,m,0(M). That means, there exists b′ ∈ B′ such that

γ
|σ|
r,m,0(x − b′) ∈ M . Moreover, by definition of b′, there exists b ∈ B such

that γr,m,σ(b′) ∈ b +M . From γ
|σ|
r,m,0(x − b′) = γr,m,σ(x) − γ

−|σ|
r,m,0(b

′), we get

γr,mσ(x) ∈ B + M . Therefore x ∈ γ−1
r,m,σ(B + M), and we have proved the

inclusion B′ + γ
−|σ|
r,m,0(M) ⊆ γ−1

r,m,σ(B + M). For the converse inclusion, con-

sider x ∈ γ−1
r,m,σ(B + M). There exists b ∈ B such that γr,m,σ(x) ∈ b + M .

By construction, there exists b′ ∈ Zm such that γr,m,σ(b′) ∈ b + M . Hence

γr,m,σ(x) − γr,m,σ(b′) ∈ M . From γ
|σ|
r,m,0(x − b′) = γr,m,σ(x) − γr,m,σ(b′), we

get γ
|σ|
r,m,0(x− b′) ∈M . Therefore x ∈ b′ + γ

−|σ|
r,m,0(M) and we have proved the

other inclusion. ⊓⊔

9.3.2 Relatively prime properties

A semi-V -pattern P is said relatively prime with r if the V -lattice invV (P ) is
relatively prime with r. From lemma 8.11 we deduce that the class of relatively
prime semi-V -patterns is stable by boolean combinations. In fact, consider
two semi-V -patterns P1 and P2 and # ∈ {∪,∩, \, ∆}. Observe that invV (P1)∩
invV (P2) ⊆ invV (P1#P2) ⊆ Zm∩V . From these inclusions, lemma 8.11 proves
|Zm ∩ V/invV (P1#P2)|.|invV (P1#P2)/invV (P1) ∩ invV (P2)| is equal to the
integer |Zm ∩ V/invV (P1) ∩ invV (P2)|. As invV (P1) and invV (P2) are two
V -lattices relatively prime with r, we deduce that invV (P1) ∩ invV (P2) is
relatively prime with r. In particular |Zm∩V/invV (P1#P2)| divides an integer
relatively prime with r and we deduce that this integer is relatively prime with
r. Hence P1#P2 is relatively prime with r.

The following lemma provides a geometrical characterization of these semi-
V -patterns. This characterization and proposition 9.18 prove that the class of
semi-V -patterns relatively prime with r is stable by inverse image by γr,mσ

for any σ ∈ Σ∗
r,m.
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Lemma 9.19. A semi-V -pattern is relatively prime with r if and only if there
exists a V -lattice M relatively prime with r and a finite set B ⊆ Zm such that
P = B +M .

Proof. Remark that if P is relatively prime with r then there exists a finite
subset B ⊆ Zm such that P = B + invV (X). Conversely, assume that there
exists a V -lattice M relatively prime with r and a finite set B ⊆ Zm such that
P = B + M and let us prove that P is relatively prime with r. Since M ⊆
invV (X) ⊆ Zm∩V , lemma 8.11 shows that |Zm∩V/invV (X)|.|invV (X)/M | =
|Zm ∩ V/M |. As |Zm ∩V/M | is relatively prime with r, we deduce that |Zm ∩
V/invV (X)| is relatively prime with r. Thus P is relatively prime with r. ⊓⊔

The class of semi-V -patterns relatively prime with r that are also included
into a V -affine space naturally appear when computing the inverse image of a
semi-V -pattern by γr,m,σ when σ is a word enough longer in Σ∗

r,m as proved
by the following proposition 9.21.

Lemma 9.20. Any (r,m,w)-cyclic semi-V -pattern P is relatively prime with
r and included in the V -affine space A = ξr,m(w) + V .

Proof. As P is (r,m,w)-cyclic, we deduce that P = γ−1
r,m,wk(P ) for any k ∈ N.

From proposition 9.18, we deduce that P is relatively prime with r. Moreover,

from proposition 9.11, we get saff(P ) = ξr,m(w) +
−→
saff(P ). As P is a semi-V -

pattern, we deduce that
−→
saff(P ) is either empty or equal to V . Hence saff(P ) ⊆

ξr,m(w) + V . From P ⊆ saff(P ), we are done. ⊓⊔

Proposition 9.21. The class of semi-V -pattern relatively prime with r and
included into a V -affine space is stable by inverse image by γr,m,σ for any
σ ∈ Σ∗

r,m. Moreover, given a general semi-V -pattern P , there exists an integer
k ∈ N such that γ−1

r,m,σ(P ) is a semi-V -pattern relatively prime with r and

included into a V -affine space for any word σ ∈ Σ≥k
r,m.

Proof. Let us first consider a semi-V -pattern P relatively prime with r and
included into a V -affine spaceA, let σ ∈ Σ∗

r,m and let us prove that γ−1
r,m,σ(P ) is

a semi-V -pattern relatively prime with r and included into a V -affine space.
Recall that we have previously proved that γ−1

r,m,σ(P ) is a semi-V -pattern
relatively prime with r. Since P ⊆ A, we deduce that γ−1

r,m,σ(P ) ⊆ A′ where
A′ is the V -affine space A′ = Γ−1

r,m,σ(A). We are done.
Now, let us consider a general semi-V -pattern there exists an integer k ∈ N

such that γ−1
r,m,σ(P ) is a semi-V -pattern relatively prime with r and included

into a V -affine space for any word σ ∈ Σ≥k
r,m. Since P is Presburger-definable,

there exists a FDVA A that represents P in basis r. Let us consider the integer
k = |A| the number of principal states of A. Now consider σ ∈ Σ∗

r,m. Since
|σ| ≥ |A|, the word σ can be decomposed in σ = σ1.σ2 such that there exists a

loop q
w
−→ q where w ∈ Σ+

r,m and q = δ(q0, σ1). As Pq = γ−1
r,m,σ1

(P ) this set is
a semi-V -pattern. Moreover, as γ−1

r,m,w(Pq) = Pq, lemma 9.20 proves that Pq
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is relatively prime r and included in a V -affine space. Finally, as γ−1
r,m,σ(P ) =

γ−1
r,m,σ2

(Pq), the previous paragraph shows that γ−1
r,m,σ(P ) is relatively prime

with r and included into a V -affine space. ⊓⊔

Given a non-empty semi-V -pattern P included into a V -affine space A, we
naturally deduce that γ−1

r,m,σ(A) = ∅ implies γ−1
r,m,σ(P ) = ∅. The class of semi-

V -pattern relatively prime r that are included into a V -affine space plays
an important role since the following corollary 9.23 intensively used in the
sequel proved that for this class, the converse is true: γ−1

r,m,σ(P ) = ∅ implies
γ−1

r,m,σ(A) = ∅.

Lemma 9.22. Let P be a semi-V -pattern relatively prime with r and included
into a V -affine space A. We have γ−1

r,m,σ(P ) = ξr,m(s)+P −ρr,m(σ, s) for any
semi-V -pattern P relatively prime with r and included into a V -affine space
A and for any (r,m)-decomposition (σ, s) such that ρr,m(σ, s) ∈ A and such
that r|σ|m ∈ 1 + |Zm ∩ V/invV (P )|.Z.

Proof. Let us consider x ∈ γ−1
r,m,σ(P ). We have γr,m,σ(x) = r|σ|m .x+ρr,m(σ, s).

Hence r|σ|m .(x − ξr,m(s)) ∈ P − ρr,m(σ, s). In particular, from P ⊆ A and
ρr,m(σ, s) ∈ A, we deduce that rσ.(x − ξr,m(s)) ∈ V . Hence x − ξr,m(s) ∈
Zm ∩ V . From r|σ|m ∈ 1 + |Zm ∩ V/invV (P )|, we deduce that (r|σ|m − 1).(x−
ξr,m(s)) ∈ invV (P ). As x−ξr,m(s) ∈ P−(r|σ|m−1).(x−ξr,m(s))−ρr,m(σ, s), we
get x ∈ ξr,m(s)+P −ρr,m(σ, s) and we have proved the inclusion γ−1

r,m,σ(P ) ⊆
ξr,m(s) + P − ρr,m(σ, s). For the converse inclusion, let x ∈ ξr,m(s) + P −
ρr,m(σ, s). From γr,m,σ(x) = r|σ|m .(x − ξr,m(s)) + ρr,m(σ, s), we deduce that
there exists p ∈ P such that γr,m,σ(x) = r|σ|m .(p − ρr,m(σ, s)) + ρr,m(σ, s).
Hence γr,m,σ(x) = p + (r|σ|m − 1).(p − ρr,m(σ, s)). As ρr,m(σ, s) and p are
both in A, we deduce that p− ρr,m(σ, s) ∈ Zm ∩ V . Moreover, as r|σ|m − 1 ∈
|Zm ∩ V/invV (X)|.N, we deduce that (r|σ|m − 1).(p − ρr,m(σ, s)) ∈ invV (P ).
From p ∈ P , we get γr,m,σ(x) ∈ P and we have proved the other inclusion
ξr,m(s) + P − ρr,m(σ, s) ⊆ γ−1

r,m,σ(P ). ⊓⊔

Corollary 9.23 (Dense pattern corollary). Let P be a non-empty semi-
V -pattern relatively prime with r and included into a V -affine space A. The

set γ−1
r,m,σ(P ) is a non-empty semi-Γ

−|σ|
r,m,0(V )-pattern relatively prime with r

and included into the Γ
−|σ|
r,m,0(V )-affine space Γ−1

r,m,σ(A) for any word σ ∈ Σ∗
r

such that γ−1
r,m,σ(A) 6= ∅.

Proof. As γ−1
r,m,σ(A) is non empty, there exists a couple (w, s) such that

ρr,m(w, s) ∈ γ−1
r,m,σ(A) and such that |σ| + |w| ∈ m.Z. By replacing w by a

word in w.s∗, we can assume without loss of generality that r|σ.w|m ∈ 1+|Zm∩
V/invV (P )|.Z. From lemma 9.22, we deduce that γ−1

r,m,σ.w(P ) = ξr,m(s)+P −
ρr,m(σ.w, s). As γ−1

r,m,σ.w(P ) = γ−1
r,m,w(γ−1

r,m,σ(P )) and γ−1
r,m,σ.w(P ) 6= ∅, we de-

duce that γ−1
r,m,σ(P ) 6= ∅. From proposition 9.18 we deduce that γ−1

r,m,σ(P )

is a semi-Γ
−|σ|
r,m,0(V )-pattern. Let us now show that γ−1

r,m,σ(P ) is relatively
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prime with r. Since P ⊆ A, we deduce that γ−1
r,m,σ(P ) is included in the

Γ
−|σ|
r,m,0(V )-affine space Γ−1

r,m,σ(A). Now, let us prove that γ−1
r,m,σ(P ) is rela-

tively prime with r. From proposition 9.18 we deduce that γ
−|σ|
r,m,0(invV (P )) ⊆

invV (γ−1
r,m,σ(P )). As invV (P ) is relatively prime with r we get γ−∞

r,m,0(invV (P )) =

invV (P ). Hence γ−∞
r,m,0(γ

−|σ|
r,m,0(invV (P ))) = γ

−|σ|
r,m,0(γ

−∞
r,m,0(invV (P ))) = γ

−|σ|
r,m,0(invV (P ))

and we have proved that γ
−|σ|
r,m,0(invV (P )) is relatively prime with r. From the

inclusion γ
−|σ|
r,m,0(invV (P )) ⊆ invV (γ−1

r,m,σ(P )) and lemma 8.11, we deduce that

invV (γ−1
r,m,σ(P )) is relatively prime with r. We are done. ⊓⊔
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Degenerate Sets

Given a vector space V , a subset X ⊆ Qm is said V -degenerate if V is not

included in
−→
saff(Zm ∩ X). The following lemma 10.1 shows that the binary

relation ∼V defined over the subsets of Qm byX1 ∼V X2 if and only ifX1∆X2

is V -degenerate, is an equivalence relation. The equivalence class for ∼V of a
subset X ⊆ Qm is denote by [X ]V .

Lemma 10.1. The binary relation ∼V is an equivalence.

Proof. The binary relation ∼V is an equivalence relation. Naturally ∼V is
reflexive and symmetric. So, it is sufficient to prove that ∼V is transitive.
Consider X1, X2, X3 ⊆ Qm such that X1 ∼V X2 and X2 ∼V X3 and let us
prove that X1 ∼V X3. We have Zm ∩ (X1∆X3) ⊆ (Zm ∩ (X1∆X2)) ∪ (Zm ∩
(X2∆X3)) and from insecable lemma 9.2, we deduce that V is not included

in
−→
saff(Zm ∩ (X1∆X3)). Hence X1 ∼V X3. ⊓⊔

Given two equivalence classes X1 and X2 and a boolean operation # ∈
{∪,∩, \, ∆}, the following lemma 10.2 shows that [X1#X2]

V is independent
of X1 ∈ X1 and X2 ∈ X2. This equivalence class is naturally denoted by
X1#

V X2.

Lemma 10.2. We have [X1#X2]
V = [X ′

1#X
′
2]

V for any X1, X
′
1, X2, X

′
2 ⊆

Qm such that X1 ∼V X ′
1 and X2 ∼V X ′

2 and for any # ∈ {∪,∩, \, ∆}.

Proof. Let us prove that (X1#X2)∆(X ′
1#X

′
2) ⊆ (X1∆X

′
1)#(X2∆X

′
2) for any

X1, X
′
1, X2, X

′
2 ⊆ Qm and for any # ∈ {∪,∩, \, ∆}.

Case # equals to∆: in this case, we have the equality (X1#X2)∆(X ′
1#X

′
2) =

(X1∆X
′
1)#(X2∆X

′
2) and we are done.

Case # equals to ∩: we have (X1#X2)∆(X ′
1#X

′
2) = ((X1 ∩ X2)\(X ′

1 ∩
X ′

2)) ∪ ((X ′
1 ∩X

′
2)\(X1 ∩X2)). Remark that (X1 ∩X2)\(X ′

1 ∩X
′
2) = ((X1 ∩

X2)\X
′
1)∪((X1∩X2)\X

′
2). From (X1∩X2)\X

′
1 ⊆ X1\X

′
1 and (X1∩X2)\X

′
2 ⊆

X2\X ′
2, we deduce that (X1 ∩ X2)\(X ′

1 ∩ X ′
2) ⊆ (X1\X ′

1) ∪ (X2\X ′
2) ⊆

(X1∆X
′
1) ∪ (X2∆X

′
2). By symmetry, we also get (X ′

1 ∩ X ′
2)\(X1 ∩ X2) ⊆

(X1∆X
′
1) ∪ (X2∆X

′
2). We are done.
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Case # equals to \: this case can be reduced to the previous case ∩. In
fact, if # is equal to \ then (X1#X2)∆(X ′

1#X
′
2) = (X1 ∩ (Qm\X2))∆(X ′

1 ∩
(Qm\X ′

2)). From the previous case ∩, we deduce that (X1∩(Qm\X2))∆(X ′
1∩

(Qm\X ′
2)) ⊆ (X1∆X

′
1)∪ ((Qm\X2)∆(Qm ∩X ′

2). As (Qm\X2)∆(Qm ∩X ′
2) =

X2∆X
′
2, we are done.

Case # equals to ∪: we have (X1#X2)∆(X ′
1#X

′
2) = ((X1 ∪ X2)\(X ′

1 ∪
X ′

2))∪((X ′
1∪X

′
2)\(X1∪X2)). Remark that (X1∪X2)\(X ′

1∪X
′
2) = (X1\(X ′

1∪
X ′

2)) ∪ (X2\(X ′
1 ∪X

′
2)). From X1\(X ′

1 ∪X
′
2) ⊆ X1\X ′

1 and X2\(X ′
1 ∪X

′
2) ⊆

X2\X ′
2, we deduce that (X1 ∪ X2)\(X ′

1 ∪ X ′
2) ⊆ (X1\X ′

1) ∪ (X2\X ′
2) ⊆

(X1∆X
′
1) ∪ (X2∆X

′
2). By symmetry, we also get (X ′

1 ∪ X ′
2)\(X1 ∪ X2) ⊆

(X1∆X
′
1) ∪ (X2∆X

′
2). We are done.

From insecable lemma 9.2, we deduce that if X1 ∼V X ′
1 and X2 ∼V X ′

2

then X1#X2 ∼V X ′
1#X

′
2 for any # ∈ {∪,∩, \, ∆}. ⊓⊔

For any equivalence class X and for any word σ ∈ Σ∗
r,m, following lemma

10.3 shows that the equivalence class [γ−1
r,m,σ(X)]V does not depend on X ∈ X.

This equivalence class is denoted by γ−1
r,m,σ(X).

Lemma 10.3. We have γ−1
r,m,σ(X) ∼V γ−1

r,m,σ(X ′) for any X,X ′ ⊆ Qm such

that X ∼V X ′, and for any σ ∈ Σ∗
r,m.

Proof. Consider X,X ′ ⊆ Qm such that X ∼V X ′. We denote by Z =

Zm ∩ (X∆X ′). As X ∼V X ′, the vector space V is not included in
−→
saff(Z).

We have Zm ∩ (γ−1
r,m,σ(X1)∆γ

−1
r,m,σ2

(X2)) = γ−1
r,m,σ(Z). From covering lemma

we get saff(γ−1
r,m,σ(Z)) ⊆ Γ−1

r,m,σ(saff(Z)). By considering the direction of

the previous inclusion, we get
−→
saff(γ−1

r,m,σ(Z)) ⊆
−→
saff(Z) since Γr,m,σ(x) =

r|σ|.x+γr,m,σ(e0,m). As V is not included in
−→
saff(Z), we deduce that V is nei-

ther included in
−→
saff(Zm∩(γ−1

r,m,σ(X1)∆γ
−1
r,m,σ2

(X2))). Therefore γ−1
r,m,σ(X) ∼V

γ−1
r,m,σ(X ′).

The following lemma 10.4 provides a commutativity result.

Lemma 10.4. We have γ−1
r,m,σ(X1#

V X2) = γ−1
r,m,σ(X1)#

V γ−1
r,m,σ(X2) for any

equivalence class X1 and X2, for any # ∈ {∪,∩, \, ∆}, and for any σ ∈ Σ∗
r,m.

Proof. Consider X1 ∈ X1 and X2 ∈ X2. We have γ−1
r,m,σ(X1#

V X2) =

[γ−1
r,m,σ(X1#X2)]

V = [γ−1
r,m,σ(X1)#γ

−1
r,m,σ(X2)]

V = [γ−1
r,m,σ(X1)]

V #V [γ−1
r,m,σ(X2)]

V =

γ−1
r,m,σ(X1)#

V γ−1
r,m,σ(X2). ⊓⊔



11

Polyhedrons

In this section, we recall the definition of a polyhedron and associate to a
polyhedron C included into a vector space V , a boundary that only depends
on the equivalence class [C]V .

α

〈α, x〉 < 0

α

〈α, x〉 > 0

Fig. 11.1. Let α = (1, 1). On the left {x ∈ Q2; 〈α, x〉 < 0}. On the right {x ∈
Q2; 〈α, x〉 > 0}.

11.1 Orientation

A V -hyperplane H , where V is a vector space, is a set of the form {x ∈
V ; 〈α, x〉 = c} where (α, c) ∈ (V \{e0,m}) × Q. A V -hyperplane H provides
a partition of V \H into two open V -half spaces {x ∈ V ; 〈α, x〉 < c} and
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{x ∈ V ; 〈α, x〉 > c} that only depends on the V -hyperplane H (see figures
11.1).

An orientation o is a function that associate to any couple (V,H) where
H is a V -hyperplane, one of these two open V -half spaces. Given an im-
plicit orientation o, we denote by (V,H)> and (V,H)< the open V -half spaces
(V,H)> = o(V,H) and (V,H)< = (V \H)\o(V,H). We denote by (V,H)= the
hyperplane H and the closed V -half spaces (V,H)≥ and (V,H)≤ are naturally
defined by (V,H)≥ = H ∪ (V,H)> and (V,H)≤ = H ∪ (V,H)<.

Remark that a V -hyperplane H is an affine space and in particular
−→
H is

well defined. Moreover,
−→
H is also a V -hyperplane. Remark that H + (V,

−→
H )>

is an open half space of the form (V,H)# where # ∈ {<,>} depends on H .
A uniform orientation is an orientation that only depends on the direction of

the V -hyperplane
−→
H : we have (V,H)# = H + (V,

−→
H )# for any # ∈ {≤, <,=

, >,≥}.
In the remaining of this paper, we assume fixed a uniform orientation (see

remark 11.1 for the existence of such an effective and efficient orientation).
Moreover when V is implicit, the set (V,H)# is simply written H#.

Remark 11.1. Consider the function o that associate to any (V,H) where
H is a V -hyperplane, the open V -half space H + (Q+\{0}).ΠV (ei) where

i ∈ {1, . . . ,m} is the least (for ≤) integer such that ΠV (ei) 6∈
−→
H . Remark

that such an integer i exists because if ΠV (ei) ∈
−→
H for any i ∈ {1, . . . ,m},

then V ⊆
−→
H which is impossible. Remark that o is an uniform orientation

computable in polynomial time.

11.2 V -polyhedral equivalence class

Recall that a polyhedron C of Qm is a boolean combination in Qm of sets
H# where H is a Qm-hyperplane and # ∈ {≤, <,=, >,≥}. A V -polyhedron
C is a polyhedron included into a vector space V . A polyhedron C is said
(V,H)-definable, where H is a finite set of V -hyperplanes if C is a boolean
combination in V of sets in {H#; (H,#) ∈ H × {≤, <,=, >,≥}}.

Lemma 11.2. A polyhedron is a V -polyhedron if and only if it is (V,H)-
definable for a finite set H of V -hyperplanes.

Proof. Naturally, if C is (V,H)-definable then C is a V -polyhedron. For the
converse, consider a V -polyhedron C. By definition C ⊆ V and there exists
D0 ∈ Pf (Qm\{e0,m}) andK ∈ Pf (Q) such that C is a boolean combination in
Qm of sets {x ∈ Qm; 〈α0, x〉#c} where (α0, c) ∈ D0×K and # ∈ {≤, <,=, >
,≥}. From C ⊆ V we deduce that C = C ∩V and in particular C is a boolean
combination in V of sets {x ∈ V ; 〈α0, x〉#c} = {x ∈ V ; 〈ΠV (α0), x〉#c}.
Let D = ΠV (D0)\{e0,m} and consider the set of V -hyperplanes H = {{x ∈
V ; 〈α, x〉 = c}; (α, c) ∈ D ×K} and let us prove that C is (V,H)-definable.
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Let (α0, c) ∈ D0 ×K. Remark that {x ∈ V ; 〈ΠV (α0), x〉#c} is either empty
or equal to V in the case ΠV (α0) = e0,m, or it is in the class {H#; (H,#) ∈
H × {≤, <,=, >,≥}} if ΠV (α0) 6= e0,m. ⊓⊔

Definition 11.3. A V -polyhedral equivalence class C is the equivalence class
for ∼V of a V -polyhedron.

C1

C2

H1

H2

α1

α2

Fig. 11.2. Let V = Q2. On the left a V -degenerate V -polyhedron C1. On the right
a non V -degenerate V -polyhedron C2.

11.3 Open convex polyhedrons

A V -polyhedron C is said open convex in V (or just open convex when V is
implicitly known) if it is equal to a finite intersection of open V -half spaces
(in particular V is an open convex).

Definition 11.4. Given a finite set H of V -hyperplanes and a sequence
# ∈ {<,>}H, we denote by CV,# the open convex V -polyhedron CV,# =
⋂

H∈H
H#H (if H = ∅, then CV,# = V ).

Given a (V,H)-definable polyhedron C, remark that C\(
⋃

H∈H
H) is a

finite union of open convex polyhedrons CV,# where # ∈ {<,>}H. As [C]V =
[C\(

⋃

H∈H
H)]V , this property will be useful for decomposing V -polyhedrons.

11.4 Degenerate polyhedrons

We geometrically characterize the V -degenerate V -polyhedrons (see figure
11.2) thanks to the following proposition 11.7.

We first prove the following two lemmas 11.5 and 11.6.
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Lemma 11.5. For any V -hyperplanes H1, H2 such that
−→
H1 =

−→
H2, the open

convex V -polyhedron H>
1 ∩H<

2 is V -degenerate.

Proof. Let α ∈ Zm ∩ V \{e0,m} and c1, c2 ∈ Q such that H>
1 = {x ∈

V ; 〈α, x〉 > c1} and such that H<
2 = {x ∈ V ; 〈α, x〉 < c2}. Let us prove

that C = H>
1 ∩ H<

2 is V -degenerate. Let K = {k ∈ Z; c1 < k < c2}
and remark that for any x ∈ Zm ∩ C we have c1 < 〈α, x〉 < c2 and
〈α, x〉 ∈ Z. Hence, there exists k ∈ K such that 〈α, x〉 ∈ K. We deduce that
Zm∩C ⊆

⋃

k∈K Hk where Hk is the V -hyperplane Hk = {x ∈ V ; 〈α, x〉 = k}.

Hence
−→
saff(Zm ∩C) ⊆ {x ∈ V ; 〈α, x〉 = 0}. As α is in V but not in this semi-

vector space, we deduce that V is not included in
−→
saff(Zm ∩ C). Hence C is

V -degenerate. ⊓⊔

Lemma 11.6. We have [CV,#]V 6= [∅]V if and only if
⋂

H∈H

−→
H#H 6= ∅, for

any # ∈ {<,>}H where H is a finite set of V -hyperplanes.

Proof. Let us consider a sequence (αH , cH)H∈H of elements in (V \{e0,m})×Q

such that H#H = {x ∈ V ; 〈αH , x〉 > cH}, and let C =
⋂

H∈H
H#H .

Assume first that
⋂

H∈H

−→
H#H 6= ∅ and let us prove that C is non V -

degenerate. Consider a vector v in this open convex V -polyhedron and remark
that 〈αH , v〉 > 0 for every H ∈ H. By replacing v by a vector in (N\{0}).v, we
can assume that v ∈ Zm ∩V . Let us first show that there exists x0 ∈ Zm ∩C.
In fact, there exists k ∈ N enough larger such that 〈αH , k.v〉 > cH for any
H ∈ H. For such a k, just remark that x0 = k.v ∈ Zm ∩C. Next, let us prove
that there exists a finite set V0 of vectors in Zm that generates V and such that
〈αH , v0〉 > 0 for any (v0, H) ∈ V0 × H. We know that there exists a finite set
V0 of vectors in Zm that generates V . By replacing V0 by V0+k.v where k ∈ N

is enough larger, we can assume that 〈αH , v0〉 > 0 for any (v0, H) ∈ V0 × H.
We have proved that x0 +

∑

v0∈V0
N.v0 ⊆ Zm ∩C. From covering lemma 9.9,

we get saff(x0 +
∑

v0∈V0
N.v0) = x0 + V . Hence V ⊆

−→
saff(Zm ∩C). Therefore

C is non V -degenerate.

Now, assume that
⋂

H∈H

−→
H#H = ∅. Hence, for any v ∈ V , there exists

H ∈ H such that 〈αH , v〉 ≤ 0. In particular for any v ∈ C, there exists H ∈ H

such that cH < 〈αH , v〉 ≤ 0. Lemma 11.5 shows that C is V -degenerate. ⊓⊔

Proposition 11.7. A V -polyhedron is V -degenerate if and only if it is in-
cluded into a finite union of H>

1 ∩H<
2 where H1 and H2 are two V -hyperplanes

with the same direction.

Proof. As a finite union of V -degenerate subsets of V remains V -degenerate,
we deduce from lemma 11.5 that if a V -polyhedron is included into a finite
union of H>

1 ∩ H<
2 where H1 and H2 are two V -hyperplanes with the same

direction, then it is V -degenerate.
For the converse consider a V -polyhedron C such that for any finite set

D ⊆ V \{e0,m}, the V -polyhedron C is not included in
⋃

α∈D{x ∈ V ; −1 <
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〈α, x〉 < 1}. Let H be a finite set of V -hyperplanes such that C is (V,H)-
definable. Recall that C′ = C\(

⋃

H∈H
H) is a finite union of open convex

definable polyhedron CV,# where # ∈ {<,>}H and it satisfies [C]V = [C′]V .
So, we can assume without loss of generality that C = CV,#. Consider a
sequence (αH , cH)H∈H of elements in (V \{e0,m})×Q such that H#H = {x ∈
V ; 〈αH , x〉 > cH}. Naturally, C 6= ∅ (otherwise we obtain a contradiction).
Hence, there exists x0 ∈ C. Let us consider c ∈ Q such that c ≥ 1, c ≥ 〈αH , x0〉
and c ≥ −cH for any H ∈ H. As C is not included in

⋃

H∈H
{x ∈ V ; −1 <

〈

αH

c
, x
〉

< 1}, there exists x1 ∈ C and such that for any H ∈ H either
〈αH , x1〉 > c or 〈αH , x1〉 < −c. As x1 ∈ C, recall that 〈αH , x1〉 > cα. Hence
〈αH , x1〉 < −c implies c < −cα which is impossible. Therefore 〈αH , x1〉 > c
for any H ∈ H. Consider v = x1 − x0 and remark that 〈αH , v〉 > 0 for any

H ∈ H. Hence v is in
⋂

H∈H

−→
H#H . From lemma 11.10, we deduce that C is

non V -degenerate. ⊓⊔

Example 11.8. The Q2-polyhedrons C1 = {x ∈ Q2; (−1 ≤ x[1] + x[2] ≤ 1) ∨
(−1 ≤ x[1] − x[2] ≤ 1)} and C2 = {x ∈ Q2; −x[1] + 2.x[2] ≥ 0 ∧ 2.x[1] −
x[2] ≥ 0} are given in figure 11.2. Remark that C1 is Q2-degenerate because
−→
saff(Zm ∩ C1) = V1 ∪ V2 where V1 = {x ∈ Q2; x[1] = x[2]} and V2 = {x ∈

Q2; x[1]+x[2] = 0}, and C2 is non Q2-degenerate because
−→
saff(Zm∩C2) = Q2.

11.5 Boundary

We are interested in associating to a V -polyhedral equivalence class C, a set
of V -hyperplanes that intuitively corresponds to the “constraints of C”.

A possible V -boundary H of a V -polyhedral equivalence class C is a finite
set of V -hyperplanes such that there exists a (V,H)-definable polyhedron in
C. Following lemma shows that a possible V -boundary can be translated, and
in particular the direction of any possible V -boundary remains a possible V -
boundary.

Lemma 11.9. For any possible V -boundary H of a V -polyhedral equivalence
class C and for any sequence (VH)H∈H of non-empty finite subset of V , the
set {v +H ; H ∈ H; v ∈ VH} is a possible V -boundary of C.

Proof. There exists a (V,H)-definable polyhedron C ∈ C. That means C is a
boolean combination in V of sets in {H≤, H<, H=, H>, H≥; H ∈ H}. Lemma
11.5 proves that [(v +H)#]V = [H#]V for any (H,#) ∈ H × {≤, <,=, >,≥}
and for any v ∈ VH . ⊓⊔

Lemma 11.10. Let C be an open convex V -polyhedron and H1 be a V -
hyperplane such that [C ∩ H<

1 ]V 6= [∅]V and [C ∩ H>
1 ]V 6= [∅]V . For any

V -hyperplane H0 such that
−→
H0 6=

−→
H1, there exist #0 ∈ {<,>} such that

[C ∩H#0

0 ∩H<
1 ]V 6= [∅]V and [C ∩H#0

0 ∩H>
1 ]V 6= [∅]V .
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Proof. As C is an open convex set, there exists a finite set H of V -hyperplanes
and # ∈ {<,>}H such that C = CV,#. Let us consider a sequence (αH , cH)H∈H

of elements in (V \{e0,m})×Q such that H#H = {x ∈ V ; 〈αH , x〉#HcH}. Let

us also consider (α0, c0) and (α1, c1) in (V \{0}) × Q such that H#0

0 = {x ∈

V ; 〈α0, x〉#0c0} and H#1

1 = {x ∈ V ; 〈α1, x〉#1c1}. As [C ∩H#1

1 ]V 6= [∅]V ,
lemma 11.6 shows that there exists v#1

∈ Qm such that 〈α1, v#1
〉#10 and

such that 〈αH , v#1
〉#H0 for any H ∈ H.

Let us first prove that there exists a finite set V1 of vectors in
⋂

H∈H

−→
H#H

that generates
−→
H1. There exist µ< and µ> in Q+\{0} such that the vector

v= = µ<.v< +µ>.v> satisfies 〈α1, v=〉 = 0. Remark that v= ∈
−→
H1 and satisfies

〈αH , v=〉#H0 for any H ∈ H. Let us consider a finite set of vectors V1 that

generate
−→
H1 and just remark that there exists µ ∈ Q+ enough larger such

that 〈αH , v〉#H0 for any (H, v) ∈ H × (V1 + µ.v=). Finally, as V1 generates
−→
H1 and v= ∈

−→
H1, the set V1 + µ.v= also generates

−→
H1. By replacing V1 by

V1 + µ.v=, we are done.

Naturally, if V1 ⊆
−→
H0 then

−→
H1 =

−→
H0 which is impossible. Hence, there

exists v1 ∈ V1 such that 〈α0, v1〉 6= 0. Let #0 ∈ {<,>} such that 〈α0, v1〉#00.
Remark that there exists µ ∈ Q+ enough larger such that v#1

+ µ.v1 ∈
⋂

H∈H

−→
H#H ∩

−→
H0

#0 ∩
−→
H1

#1 for any #1 ∈ {<,>}. Lemma 11.6 shows that

[C ∩H#0

0 ∩H<
1 ]V 6= [∅]V and [C ∩H#0

0 ∩H>
1 ]V 6= [∅]V . ⊓⊔

Lemma 11.11. Let C be an open convex V -polyhedron and H be a V -
hyperplane such that [C ∩ H<]V 6= [∅]V and [C ∩ H>]V 6= [∅]V . The set
−−−−→
C ∩H is non

−→
H -degenerate open convex

−→
H -polyhedron.

Proof. Without loss of generality, we can assume that
−→
C = X and

−→
H = H .

Since C ∩H# is an open convex non V -degenerate V -polyhedron, there exists
a vector v# in this set. Let us remark that there exists two rational numbers
x<, x> in Q+\{0} such that x = x<.v< + x>.v> ∈ H . Since x<, x> are both
in C and x<, x> are strictly positive rational numbers, we deduce that x ∈ C.
Hence x ∈ H ∩ C and from lemma 11.6 we deduce that H ∩ C is non-H-
degenerate. ⊓⊔

Proposition 11.12. Let C be a V -polyhedral equivalence class and HV (C) be
the set of V -hyperplanes H such that there exists an open convex V -polyhedron
CH such that [CH ∩ H<]V 6= [∅]V and [CH ∩ H>]V 6= [∅]V , and such that

[CH ]V ∩V C is equal to one of these two equivalence classes. The set
−−−−→
HV (C)

is a possible V -boundary of C included into the direction of any possible V -
boundary of C.

Proof. Let us first consider a possible V -boundary H of C and let us prove
that for any H0 ∈ H\HV (C), the set H\{H0} is a possible V -boundary of
C. Let H′ = H\{H0}. As H is a possible V -boundary of C, there exists a
(V,H)-definable polyhedron C in C. We have the following equality:
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C =

[

C\

(

⋃

H∈H

H

)]V

=

V
⋃

#∈{<,>}H′

[

CV,# ∩H<
0 ∩ C

]V
∪V
[

CV,# ∩H>
0 ∩ C

]V

As C is (V,H)-definable, we deduce that CV,# ∩H#0

0 ∩ C is either empty or

equal to CV,# ∩ H#0

0 . Let us prove that [CV,# ∩ C]V is either equal to [∅]V

or equal to [CV,#]V . Naturally, if CV,# ∩H<
0 or CV,# ∩H>

0 is V -degenerate,
we are done. Otherwise, [CV,# ∩ H<

0 ]V 6= [∅]V and [CV,# ∩ H>
0 ]V 6= [∅]V .

As CV,# is an open convex V -polyhedron and H0 6∈ HV (C), we deduce that
[CV,#]V ∩V C is neither equal to [CV,# ∩ H<

0 ]V nor equal to [CV,# ∩ H>
0 ]V .

However, (CV,# ∩C)\H0 is either equal to ∅, CV,#\H0, CV,# ∩H<
0 or CV,# ∩

H>
0 . As the two last cases are impossible, we deduce that [CV,#]V ∩V C is

either equal to [∅]V in the first case, or equal to [CV,#]V in the second case.
We have proved that the following (V,H′)-definable polyhedron C′ is in C.
That means H′ is a possible V -boundary.

C′ =
⋃

#∈{<,>}H′ ; [CV,#]V ∩V C6=[∅]V

CV,#

Finally, let us now consider a possible V -boundary H of C and H0 ∈ HV (C),

and let us prove that
−→
H0 ∈

−→
H. Lemma 11.9 shows that we can assume that

−→
H = H. As H0 ∈ HV (C), there exists an open convex V -polyhedron CH0

such
that [CH0

∩H<
0 ]V 6= [∅]V and [CH0

∩H>
0 ]V 6= [∅]V and such that [CH0

]V ∩V C

is equal to one of these two equivalence classes. Assume by contradiction that
−→
H0 6∈

−→
H. From lemma 11.10, an immediate induction proves there exists # ∈

{<,>}H such that [CH0
∩CV,#∩H<

0 ]V 6= [∅]V and [CH0
∩CV,#∩H>

0 ]V 6= [∅]V .
As H is a possible V -boundary of C, we deduce that [CV,#]V ∩V C is either
equal to [∅]V or equal to [CV,#]V . In particular [CH0

∩ CV,#]V ∩V C is either
equal to [∅]V or equal to [CH0

∩ CV,#]V . Moreover, as [CH0
]V ∩V C is equal

to [CH0
∩H<

0 ]V or [CH0
∩H>

0 ]V , we also deduce that [CH0
∩ CV,#]V ∩V C is

either equal to [CH0
∩ CV,# ∩H<

0 ]V or equal to [CH0
∩ CV,# ∩H>

0 ]V . Hence

there exists #0 ∈ {<,>} such that [CH0
∩CV,#∩H#0

0 ]V is either equal to [∅]V

or equal to [CH0
∩ CV,#]V . The first case is impossible and the second case

implies [CH0
∩ CV,# ∩H

#′
0

0 ]V = [∅]V where #′
0 ∈ {<,>}\{#0}. We obtain a

contradiction. Therefore
−→
H0 ∈

−→
H. ⊓⊔

The previous proposition 11.12 shows in particular that the set of direc-
tions of possible V -boundaries of a V -polyhedron C, owns a minimal elements
for ⊆.

Definition 11.13. The finite class
−−−−→
HV (C) is denoted by boundV (C) and called

the V -boundary of C.
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Example 11.14. Let C2 = {x ∈ Q2; 〈α1, x〉 ≥ 0 ∧ 〈α2, x〉 ≥ 0} be the Q2-
polyhedron given in figure 11.2 where α1 = (−1, 2) and α2 = (2,−1). Let H1

and H2 be the Q2-hyperplanes defined by H1 = {x ∈ Q2; 〈α1, x〉 = 0} and
H2 = {x ∈ Q2; 〈α2, x〉 = 0}. Naturally, as C2 is (Q2, {H1, H2})-definable, we

deduce that {H1, H2} ⊆ boundQ2([C2]
Q2

). Let us show the converse inclusion.
Consider the open convex Q2-polyhedron CH1

= {x ∈ Q2; 〈α2, x〉 > 0 ∧

x[2] > 0}. Remark that [CH1
∩ H<

1 ]Q
2

and [CH1
∩ H>

1 ]Q
2

are not equal to

[∅]Q
2

and [CH1
∩ C2]

Q2

is equal to one of this two classes. We deduce that

H1 ∈ boundQ2(C2). Symmetrically, we get H2 ∈ boundQ2([C2]
Q2

). Therefore

boundQ2([C2]
Q2

) = {H1, H2}.

11.6 Polyhedrons of the form C + V ⊥

In the sequel, we often consider Qm-polyhedrons of the form C + V ⊥ where
C is a V -polyhedron. In this section, we provide some properties satisfied by
these sets.

Given a V -polyhedral equivalence class C, following lemma 11.15 shows
that the equivalence class [C + V ⊥]V does not depend on the V -polyhedron
C ∈ C. This equivalence class [C + V ⊥]V is naturally denoted by C + V ⊥.

Lemma 11.15. We have C + V ⊥ ∼V C′ + V ⊥ for any V -polyhedrons C and
C′ such that C ∼V C′

Proof. We have Zm ∩ ((C + V ⊥)∆(C′ + V ⊥)) = Zm ∩ (C0 + V ⊥) where C0 =
C∆C′. As C ∼V C′, we deduce that C0 is V -degenerate. In order to prove

the lemma, we have to show that V is not included in
−→
saff(Zm ∩ (C0 + V ⊥)).

Proposition 11.7 proves that there exists a finite set D ⊆ Zm ∩ V \{e0,m}
and an integer k ∈ N such that C0 ⊆

⋃

α∈D{x ∈ V ; | 〈α, x〉 | ≤ k}. Let

K = {−k, . . . , k} and remark that we get Zm ∩ (C0 +V ⊥) ⊆
⋃

(α,k)∈D×K{x ∈

Qm; 〈α, x〉 = k}. Hence
−→
saff(Zm ∩ (C0 + V ⊥)) ⊆

⋃

α∈D α⊥. As α ∈ V for any

α ∈ D, we deduce that V is not included in α⊥ for any α ∈ D. From insecable
lemma 9.2 we deduce that V is not included in

⋃

α∈D α⊥. In particular V is

not included in
−→
saff(Zm ∩ (C0 + V ⊥)). Therefore C + V ⊥ ∼V C′ + V ⊥. ⊓⊔

Remark that even if [C + V ⊥]V does not depends on a V -polyhedron C ∈ C,
there exist subsets X ⊆ V in C such that [X + V ⊥]V 6= [C + V ⊥]V as shown
by the following example 11.16. That explains why our definition of C + V ⊥

is limited to V -polyhedral equivalence classes C.

Example 11.16. Assume that m = 2, let V = {x ∈ Q2; x[1] = x[2]}. Let us
consider the V -polyhedron C = ∅ and the set X = (1

2 ,
1
2 )+(Zm ∩V ). Remark

that [C]V = [X ]V . However [C + V ⊥]V = [∅]V whereas [X + V ⊥]⊥ 6= [∅]V

since Zm ∩ (X + V ⊥) = (0, 1) + 2.Z2.



11.6 Polyhedrons of the form C + V ⊥ 67

Let us finally proves that γ−1
r,m,σ(C + V ⊥) = C + V ⊥ for any V -polyhedral

equivalence class C and for any word σ ∈ Σ∗
r,m. In fact, given a V -polyhedron

C ∈ C, we have the following equalities:

γ−1
r,m,σ(C + V ⊥) = γ−1

r,m,σ([C + V ⊥]V )

= [γ−1
r,m,σ(C + V ⊥)]V

= [Γ−1
r,m,σ(C + V ⊥)]V

We can easily prove that Γ−1
r,m,σ(C + V ⊥) is a Qm-polyhedron of the form

C′ + V ⊥ by introducing the sequence (ΓV,r,m,σ)σ∈Σ∗
r,m

of affine functions
ΓV,r,m,σ : V → V defined by the following equality for any x ∈ V :

ΓV,r,m,σ(x) = r|σ|.x+ΠV (γr,m,σ(e0,m))

Remark that ΓV,r,m,σ1.σ2
= ΓV,r,m,σ1

◦ ΓV,r,m,σ2
for any word σ1, σ2 ∈ Σ∗

r,m,

ΓV,r,m,ǫ is the identity function, and Γ−1
r,m,σ(C + V ⊥) = Γ−1

V,r,m,σ(C) + V ⊥ for
any subset C ⊆ V .

Thanks to the following proposition 11.17, we deduce the following corol-
lary 11.18.

Proposition 11.17. We have [Γ−1
r,m,σ(C)]V = [C]V for any V -polyhedron C

and for any σ ∈ Σ∗
r,m.

Proof. Let us consider a finite class H of V -polyhedrons such that C is (V,H)-
definable. As C is a boolean combination in V of sets H# where H ∈ H

and # ∈ {<,>}, we can assume that C is equal to such a set. As H and
Γ−1

V,r,m,σ(H) have the same direction, from lemma 11.5, we are done. ⊓⊔

Corollary 11.18. We have γ−1
r,m,σ(C + V ⊥) = C + V ⊥ for any V -polyhedral

equivalence class and for any σ ∈ Σ∗
r,m.
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Presburger Decomposition

A subsetX ⊆ Qm can be naturally decomposed intoX =
⋃

V ∈comp(
−−→
saff(X))

XV

where XV is defined by the following equality:

XV = X ∩















⋃

A∈comp(saff(X))
−→
A⊆V

A















Obseve that XV is non empty and as shown by the following dense component

lemma 12.1, the semi-affine hull direction
−→
saff(XV ) is equal to V .

Lemma 12.1 (Dense component lemma). We have saff(X ∩A) = A for
any subset X ⊆ Qm and for any affine component A of saff(X).

Proof. We have saff(X) = A∪S where S is the semi-affine space equal to the
finite union of affine spaces A′ ∈ comp(saff(X))\{A}. From X ⊆ saff(X), we
deduce thatX ⊆ (X∩A)∪S ⊆ saff(X∩A)∪S. By minimality of the semi-affine
hull, we get saff(X) ⊆ saff(X ∩A) ∪ S. As A ⊆ saff(X), insecable lemma 9.2
shows that either A ⊆ saff(X ∩A) or A ⊆ S. In this last case, by definition of
S, insecable lemma 9.2 proves that there exists A′ ∈ comp(saff(X))\{A} such
that A ⊆ A′. As A is an affine component of saff(X) and A ⊆ A′ ⊆ saff(X),
we get the equality A = A′ which is impossible. Therefore A ⊆ saff(X ∩ A).
Moreover, as X ∩A ⊆ A, we get the other inclusion saff(X ∩A) ⊆ A. ⊓⊔

We are going to prove that this decomposition of X can be refined when
X is Presburger-definable. In fact, in this case, we show that XV can be de-
composed (up to V -degenerate sets) into sets of the form P ∩ (C+V ⊥) where
P is a semi-V -pattern and C is a V -polyhedron.

Naturally, a set P ∩ (C+V ⊥) is Presburger-definable. The semi-affine hull
direction of such a set is characterized by the following lemma 12.2
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Lemma 12.2. Let P be a semi-V -pattern and C a V -polyhedral equivalence
class. We have [P ]V ∩V (C + V ⊥) 6= [∅]V if and only if P 6= ∅ and C 6= [∅]V .

Proof. Naturally if P = ∅ or C = [∅]V then [P ]V = [∅]V or C + V ⊥ = [∅]V

and in this case [P ]V ∩V (C + V ⊥) = [∅]V . Assume that P 6= ∅ and C is
non V -degenerate and let us prove that [P ]V ∩V (C + V ⊥) 6= [∅]V . As C

is polyhedral, there exists a V -polyhedron C ∈ C. Let us consider a finite
class H of V -hyperplanes such that V is (V,H)-definable. As C\(

⋃

H∈H
H)

is a finite union of V -polyhedrons of the form CV,# where # ∈ {<,>}H and
[H ]V = [∅]V , we can assume without loss of generality that there exists # such
that C = [CV,#]V . Moreover,as a semi-V -pattern is a finite union of V -pattern,
we can also assume without loss of generality that there exists a ∈ Zm and a V -
groupM such that P = a+M . We have to prove that [P ]V ∩V (C+V ⊥) 6= [∅]V .

That means V is included in
−→
saff((a+M)∩(VV,#+V ⊥)). Let (αH , cH)H∈H be

a sequence of elements in (V \{e0,m})×Q such thatH#H = {x ∈ V ; 〈αH , x〉 >
cH} for any H ∈ H. Lemma 11.6 proves that there exists v ∈ V such that
〈αH , v〉 > 0 for any H ∈ H. By replacing v by a vector in (N\{0}).v, we can
assume that v ∈M . Let a′ = ΠV (a) be the orthogonal projection of a over V .
Vector v′ = a−a′ ∈ V ⊥. There exists an integer k ∈ N enough larger such that
〈α, a′ + k.v〉 > cH for any H ∈ H. In particular a′ + k.v ∈ C. As k.v ∈M , we
deduce that a+k.v ∈ P . From a+k.v = (a′+k.v)+v′ we get a+k.v ∈ C+V ⊥.
Hence x0 = a + k.v ∈ P ∩ (C + V ⊥). Let us now consider a finite set V0 of
dim(V ) vectors in Qm that generates V . By replacing V0 by k.V0 where k ∈
N\{0} is enough larger, we can assume that V0 ⊆M . Moreover, by replacing
V0 by V0 +k.v where k ∈ N is enough larger, we can assume that 〈αH , v0〉 > 0
for every (H, v0) ∈ H×V0. We deduce that x0 +

∑

v0∈V0
N.v0 ⊆ P ∩(C+V ⊥).

Covering lemma 9.9 proves that
−→
saff(x0 +

∑

v0∈V0
N.v0) = V . In particular

from x0 +
∑

v0∈V0
N.v0 ⊆ P ∩ (C + V ⊥) we get V ⊆

−→
saff(P ∩ (C + V ⊥)). ⊓⊔

Definition 12.3. A V -polyhedral partition (Ci)i∈I is a non empty finite se-
quence of V -polyhedral equivalence classes such that Ci1 ∩

V Ci2 = [∅]V if and

only if i1 6= i2 and such that [V ]V =
⋃V

i∈I Ci.

Theorem 12.4 (Decomposition theorem). Let X ⊆ Zm be a Presburger-

definable set and V be an affine component of
−→
saff(X). There exists a unique

V -polyhedral partition (CV,P (X))P∈PV (X) indexed by a non-empty finite class
PV (X) of semi-V -patterns such that:

[XV ]V =

V
⋃

P∈PV (X)

([P ]V ∩V (CV,P (X) + V ⊥))

Proof. Let us first prove that two V -polyhedral partitions (CV,P )P∈PV
and

(C′
V,P ′)P ′∈P′

V
that satisfies [XV ]V =

⋃V
P∈PV

([P ]V ∩V (CV,P + V ⊥)) and

[XV ]V =
⋃V

P ′∈P′
V
([P ′]V ∩V (C′

V,P ′ + V ⊥)) are equal. Consider P ∈ PV . As
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[V ]V =
⋃V

P ′∈P′
V

C′
V,P ′ , we deduce that CV,P =

⋃V
P ′∈P′

V
(CV,P ∩V C′

V,P ′). In

particular, there exists P ′ ∈ P′
V such that CV,P ∩V C′

V,P ′ 6= [∅]V . Consider

such a P ′ ∈ P′
V . By intersecting the equality

⋃V
P∈PV

([P ]V ∩V (CV,P (X) +

V ⊥)) =
⋃V

P ′∈P′
V
([P ′]V ∩V (C′

V,P ′(X) + V ⊥)) with CV,P ∩V C′
V,P ′ , we get

[P∆P ′]V ∩V ((CV,P ∩V C′
V,P ′) + V ⊥) = [∅]V . Lemma 12.2 proves that

P∆P ′ = ∅. Hence P = P ′ and we have proved the inclusion PV ⊆ P′
V

and by symmetry the equality PV = P′
V . Remark that we have also proved

that for any P ′ ∈ P′
V \{P} we have CV,P ∩V C′

V,P ′ = [∅]V . Therefore

CV,P ∩V (
⋃V

P ′∈P′
V
\{P} C′

V,P ′) = [∅]V . As (C′
V,P ′)P ′∈P′

V
is a V -polyhedral parti-

tion, we deduce that CV,P ⊆V C′
V,P and by symmetry CV,P = C′

V,P . We have
proved that (CV,P )P∈PV

and (C′
V,P ′)P ′∈P′

V
are equal.

Next, let us prove that there exists a V -polyhedral partition (CV,P )P∈PV

satisfying [XV ]V =
⋃V

P∈PV
([P ]V ∩V (CV,P + V ⊥)). Let us denote by AV the

set of A ∈ comp(saff(XV )) such that
−→
A = V and let X ′

V = XV ∩ (
⋃

A∈AV
A).

As X ′
V is Presburger-definable, a quantification elimination shows that X ′

V is
a boolean combination in Zm of sets of the form {x ∈ Zm; 〈α, x〉 ∈ c+ n.Z}
and of the form {x ∈ Zm; 〈α, x〉#c} where (α,#, c, n) ∈ (Zm\{0}) × {<,>
} × Z × (N\{0}). Remark that any boolean combination of sets of the form
{x ∈ Zm; 〈α, x〉 ∈ c+n.Z} is a semi-Qm-pattern and any boolean combination
in Qm of {x ∈ Qm; 〈α, x〉#c} is a polyhedron. Hence, there exists a finite
sequence (Pi, Ci)i∈I where Pi is a semi-Qm-pattern and Ci is a polyhedron
such that X ′

V =
⋃

i∈I(Pi∩Ci). Let us consider a sequence (v′A)A∈AV
of vectors

v′A ∈ A. For any i ∈ I and A ∈ AV , we have A∩Ci = A∩ (Ci,A + V ⊥) where
Ci,A is the V -polyhedron Ci,A = (A ∩ Ci) − v′A. As I × AV is finite, there
exists a finite set H of V -hyperplanes such that Ci,A is (V,H)-definable for
any (i, A) ∈ I × AV . We have:

X ′
V \(

⋃

H∈H

(H + V ⊥)) =
⋃

#∈{<,>}H

(X ′
V ∩ (CV,# + V ⊥))

=
⋃

#∈{<,>}H

⋃

(i,A)∈I×AV

(Pi ∩A ∩ (Ci,A + V ⊥) ∩ (CV,# + V ⊥))

=
⋃

#∈{<,>}H

⋃

(i,A)∈I×AV

(Pi ∩A ∩ ((Ci,A ∩ CV,#) + V ⊥))

=
⋃

#∈{<,>}H

P# ∩ (CV,# + V ⊥)

Where P# is the semi-V -pattern P# =
⋃

(i,A)∈I×AV ; Ci,A∩CV,# 6=∅(Pi ∩A) (re-

call that Ci,A ∩ CV,# is either empty or equal to CV,#). Let us denote by
PV = {P#; [CV,#]V 6= [∅]V } and consider the sequence (CV,P )P∈PV

of V -
polyhedrons defined by:

CV,P =
⋃

#∈{<,>}H; P#=P

CV,#
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Remark that (CV,P )P∈PV
where CV,P = [CV,P ]V is a V -polyhedral partition.

Moreover, the set ZV = XV ∆(
⋃

P∈PV
(P ∩ (CV,P + V ⊥))) is included in the

union of
⋃

A∈comp(saff(XV ))\AV
A,
⋃

#∈{<,>}H; [CV,#]V =[∅]V
(P#∩(CV,#+V ⊥)),

and
⋃

H∈H
(XV ∩ (H + V ⊥)). Remark that for any A ∈ comp(saff(XV ))\AV ,

we have [A]V = [∅]V , for any # ∈ {<,>}H such that [CV,#]V = [∅]V , lemma
12.2 shows that [P# ∩ (CV,# + V ⊥)]V = [∅]V , and for any H ∈ H, we have
[XV ∩(H+V ⊥)]V = [XV ]V ∩V [H+V ⊥]V = [XV ]V ∩V [∅]V = [∅]V . We deduce

that [ZV ]V = [∅]V . Therefore [XV ]V =
⋃V

P∈PV
([P ]V ∩V (CV,P + V ⊥)). ⊓⊔
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Fig. 12.1. The Presburger-definable set X = {x ∈ N2; (x[2] ≥ 4.x[1]) ∨ (x[1] ≥
4.x[2])}

Example 12.5. Let us consider the Presburger-definable setX = {x ∈ N2; (x[2] ≥
4.x[1]) ∨ (x[1] ≥ 4.x[2])} given in figure 12.1. We have saff(X) = Q2. Hence

V = Q2 is the only affine component of
−→
saff(X). The V -polyhedral parti-

tion ([CV,P ]V )P∈PV
defined by PV = {Z2, ∅}, CV,Z2 = {x ∈ Q2; 0 ≤ x[1] ≤

4.x[2] ∨ 0 ≤ x[2] ≤ 4.x[1]} and CV,∅ = V \CV,Z2 satisfies decomposition theo-
rem.

The following proposition shows that the decomposition theorem can be
also applied to [X ]V since [XV ]V = [X ]V .

Proposition 12.6. We have [XV ]V = [X ]V for any set X ⊆ Zm and for any

affine component V of
−→
saff(X).

Proof. Let us consider the semi-affine space S equal to the affine component

A of comp(saff(X)) such that
−→
A ⊆ V . Recall that XV = X ∩ S. In order to

prove that [XV ]V = [X ]V , it is sufficient to show that V is not included in
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−→
saff(Zm ∩ (X∆XV )). Remark that Zm ∩ (XV ∆X) = X\S. Moreover as X ⊆
⋃

A∈comp(saff(X))A, we deduce that X\S ⊆
⋃

A∈comp(saff(X))(A\S). Naturally,

if
−→
A ⊆ V then A ⊆ S and in particular A\S = ∅. Hence X\S is included into

the finite union of affine component A of saff(X) such that
−→
A 6⊆ V . Assume

by contradiction that V is included in
−→
saff(X\S). From insecable lemma 9.2,

we deduce that there exists such an affine component A such that V ⊆
−→
A .

Hence V ⊆
−→
A ⊆

−→
saff(X) and as V is an affine component of

−→
saff(X), we

deduce that V =
−→
A which is in contradiction with

−→
A 6⊆ V . Hence V is not

included in
−→
saff(X\S) and we have proved that [XV ]V = [X ]V . ⊓⊔





Part III

From Automata to Presburger Formulas





13

Strongly Connected Components

A component T of a FDVG G is a strongly connected component of the
parallelization [G].

13.1 Untransient strongly connected components

A component T is said untransient if there exists a loop q
σ
−→ q where q ∈ T

and σ ∈ Σ+
r,m. Otherwise, the component T is said transient .

In this section, we prove that for any untransient component T of a FDVG
G there exists a unique vector space VG(T ) and a unique sequence (aG(q))q∈T

of vectors in VG(T )⊥ such that we have the following equality:

saff({ξr,m(w); q
w∈Σ+

r,m

−−−−−→ q}) = aG(q) + VG(T )

Moreover, an algorithm for computing VG(T ) and (aG(q))q∈T in polynomial
time is provided.

Remark 13.1. The vector space VG(T ) does not depend on q ∈ T .

The polynomial time computation is based on a fix-point system provided
by the following proposition 13.2

Proposition 13.2. Let T be an untransient component of a FDVG G and
let K0 be the set of states k0 ∈ K reachable and co-reachable from T . There
exists a unique minimal (for the point-wise inclusion) sequence of affine spaces

(Ak0
)k0∈K0

not equal to (∅)k0∈K0
such that for any transition k0

b
−→ k′0 where

(k0, b, k
′
0) ∈ K0 ×Σr ×K0, we have the following inclusion:

Γ−1
r,m,b(Ak0

) ⊆ Ak′
0

Moreover, this sequence satisfies saff({ξr,m(w); k0

w∈Σ+
r,m

−−−−−→ k0}) = Ak0
for

any k0 ∈ K0.
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Proof. We denote by Zk0
the set of Zk0

= {ξr,m(w); k0

w∈Σ+
r,m

−−−−−→ k0}. By
developing the expression ξr,m(σ1.w

k.σ2) where σ1, σ2 are in Σ∗
r such that

σ1.σ2 ∈ Σ+
r,m, w ∈ Σ+

r,m and n ∈ N, we obtain the following equality:

ξr,m(σ1.w
n.σ2) =

Γr,m,σ1
◦ ξr,m(w)

1 − r|σ1.σ2|m+n.|w|m
+ Γ−1

r,m,σ2
◦ ξr,m(w)

Let us first prove that (saff(Zk0
))k0∈K0

satisfies the fix-point system. Con-

sider a transition k0
b
−→ k′0 where (k0, b, k

′
0) ∈ K0×Σr ×K0. As k0 and k′0 and

in the same strongly connected component, there exists a path k′0
σ1−→ k0. By

replacing σ1 by σ1.(b.σ1)
m−1, we can assume that σ1.b ∈ Σ+

r,m. Let us consider

x ∈ Zk0
. There exists a loop k0

w
−→ k0 where w ∈ Σ+

r,m such that x = ξr,m(w).

Remark that for any n ∈ N, we have the loop k′0
σ1.wn.b
−−−−−→ k′0. Therefore

ξr,m(σ1.w
n.b) ∈ Zk′

0
. Thanks the the equality given in the first paragraph and

covering lemma 9.9, we deduce that Q.Γr,m,σ1
(x) + Γ−1

r,m,b(x) ⊆ saff(Zk′
0
). In

particular Γ−1
r,m,b(x) ∈ saff(Zk′

0
). We have proved the inclusion Γ−1

r,m,b(Zk0
) ⊆

saff(Zk′
0
) and from covering lemma 9.9, we get Γ−1

r,m,b(saff(Zk0
)) ⊆ saff(Zk′

0
).

We have proved that (saff(Zk0
))k0∈K0

satisfies the fix-point system.
Now, let us prove that saff(Zk0

) is an affine space. Remark that this semi-
affine space is not empty and in particular there exists at least one affine
component A of saff(Zk0

). Let x ∈ Zk0
. Assume by contradiction that Zk0

\A
is not empty. Let us consider a vector x ∈ Zk0

\A. By definition of Zk0
, there

exists a loop k0
w
−→ k0 where w ∈ Σ+

r,m such that x = ξr,m(w). From the

previous paragraph, we deduce that Γ−1
r,m,wn(saff(Zk0

)) ⊆ saff(Zk0
) for any

n ∈ N. In particular Γ−1
r,m,wn(A) ⊆ saff(Zk0

) for any n ∈ N. Remark that

Γ−1
r,m,wn(A) = r−n.|w|.(A− x) + x thanks to x = ξr,m(w). Covering lemma 9.9

shows that Q.(A−x)+x ⊆ saff(Zk0
). As A ⊆ Q.(A−x)+x ⊆ saff(Zk0

) and A is
an affine component of saff(Zk0

), we deduce the equality A = Q.(A− x) + x.
In particular x ∈ A and we obtain a contradiction. We have proved that
Zk0

\A = ∅. Therefore Zk0
⊆ A. We get saff(Zk0

) = A. Therefore saff(Zk0
)

is an affine space (remark that even if these proof is similar to the one pro-
vided by proposition 9.11, we cannot apply this proposition since Zk0

is not
necessary (r,m,w)-cyclic).

Finally, let us consider a sequence of affine spaces (Ak0
)k0∈K0

not equal

to (∅)k0∈K0
such that Γ−1

r,m,b(Ak0
) ⊆ Ak′

0
for any transition (k0

b
−→ k′0 with

(k0, b, k
′
0) ∈ K0 × Σr × K0 and let us prove that saff(Zk0

) ⊆ Ak0
for any

k0 ∈ K0. An immediate induction shows that Γ−1
r,m,σ(Ak0

) ⊆ Ak′
0

for any path

k0
σ
−→ k′0 where (k0, σ, k

′
0) ∈ K0 ×Σ∗

r ×K0. Since saff(Zk0
) is an affine space,

it is sufficient to show that Zk0
⊆ Ak0

. Since (Ak0
)k0∈K0

is not equal to the
empty sequence (∅)k0∈K0

, there exists at least a state k1 ∈ K0 such thatAk1
6 ∅.

By definition of K0, there exists a path k1
σ
−→ k0. From Γ−1

r,m,σ(Ak1
) ⊆ Ak0

we deduce that Ak0
6= ∅. Hence, there exists a ∈ Ak0

. Since x ∈ Zk0
, there

exists w ∈ Σ+
r,m such that k0

w
−→ k0. From the path k0

wn

−−→ k0, we get
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Γ−1
r,m,wn(Ak0

) ⊆ Ak0
for any n ∈ N. Hence Γ−1

r,m,wn(a) ∈ Ak0
for any n ∈ N.

Since Γ−1
r,m,wn(a) = r−|w|m .(a− ξr,m(w)) + ξr,m(w), from covering lemma 9.9,

we get Q.(a− ξr,m(w)) + ξr,m(w) ∈ Ak0
. In particular ξr,m(w) ∈ Ak0

and we
have proved that Zk0

⊆ Ak0
. Thus saff(Zk0

) ⊆ Ak0
for any k0 ∈ K0.

Since (saff(Zk0
))k0∈K0

is not equal to (∅)k0∈K0
, we are done. ⊓⊔

We deduce the following proposition 13.3 that shows that a characteristic
vector space denoted by VG(T ) is associated to any untransient component
T of a finite DVG G. This vector space is extremely useful in the sequel for
extracting geometrical properties from a FDVA.

Proposition 13.3. Let T be an untransient component of a finite graph G
labelled by Σr,m. There exists a unique vector space VG(T ) and a unique se-
quence (aG(q))q∈T of vectors in VG(T )⊥ such that for any q ∈ Q:

saff({ξr,m(w); q
w∈Σ+

r,m

−−−−−→ q}) = aG(q) + VG(T )

Proof. Let Aq = saff({ξr,m(w); q
w∈Σ+

r,m
−−−−−→ q}). The previous proposition 13.2

proves that Aq is a non empty affine space. It is sufficient to show that the

vector space
−→
Aq that does not depend on q ∈ T . By symmetry, it is sufficient to

prove that
−−→
Aq1

⊆
−−→
Aq2

for any q1, q2 ∈ T . Since T is strongly connected, there

exists a path q1
σ
−→ q2 with σ ∈ Σ∗

r,m. Proposition 13.2 proves by an immediate
induction that Γ−1

r,m,σ(Aq1
) ⊆ Aq2

. Since the affine space Γ−1
r,m,w(Aq1

) is equal

to r−|w|m .(Aq1
− ρr,m(w, e0,m)), its direction is equal to

−−→
Aq1

. We deduce that
−−→
Aq1

⊆
−−→
Aq2

. ⊓⊔

13.1.1 A polynomial time algorithm

Thanks to the fix-point system provided by proposition 13.2, we are going to
show that VG(T ) is computable in polynomial time from G.

Theorem 13.4. Let T be an untransient component of a FDVG G. The vector
space VG(T ) is computed in polynomial by the algorithm given in figure 13.1.

Proof. Naturally, the algorithm terminates in polynomial time. Let us prove
that the vector space V returned by the algorithm is equal to VG(T ). Let

(Sk0
)k0∈K0

be the sequence of affine spaces Sk0
= saff({ξr,m(w); k0

w∈Σ+
r,m

−−−−−→
k0}). For any state k0 ∈ K0 let us consider the set Jk0

= λ(k0) − λ(k0) the
set of difference of two elements in λ(k0).

Let us show that for any k0, k
′
0 ∈ K0, we have Jk0

+ m.Z = Jk′
0

+ m.Z.
It is sufficient to show the inclusion Jk0

⊆ Jk′
0

+m.Z. Let i1, i2 ∈ Jk0
. There

exists two paths q1
σ1−→ k0 and q2

σ2−→ k0 where |σ1| ∈ i1 + m.Z, |σ2| ∈
i2 +m.Z and q1, q2 ∈ T . Since T is strongly connected (for [G]), there exists
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a path k0
w
−→ k′0. From the path q1

σ1.w
−−−→ k′0 and q2

σ2.w
−−−→ k′0 we deduce that

(|σ1| + |w|) − (|σ2| + |w|) ∈ Jk′
0

+m.Z. Hence i1 − i2 ∈ Jk′
0

+m.Z. We have
proved that for any k0, k

′
0 ∈ K0, we have Jk0

+m.Z = Jk′
0
+m.Z.

Thanks to the previous paragraph, we deduce that Γ−i1
r,m,0(V ) = Γ−i2

r,m,0(V )
for any i1, i2 ∈ λ(k0) and for any k0 ∈ K0 is an invariant of the algorithm.
Thus, for any k0 ∈ K0, there exists a vector space Vk0

such that Vk0
=

Γ−i
r,m,0(V ) for any i ∈ λ(k0). For any transition k0

b
−→ k′0 such that (k0, b, k

′
0) ∈

K0 × Σr × K0, let xk0,b,k′
0

= Γ−1
r,m,b(ξr,m(σk0

)) − ξr,m(σk′
0
), and let Ak0

=
ξr,m(σk0

) + Vk0
.

Let us show that VG(T ) ⊆ V . Since for any transition k0
b
−→ k′0 where

(k0, b, k
′
0) ∈ K0×Σr ×K0 and for any i ∈ λ(k0), we have Γ i

r,m,0(xk0,b,k′
0
) ∈ V ,

we deduce that Γ−1
r,m,b(Ak0

) = Ak′
0

and in particular (Ak0
)k0∈K0

is a sequence
of affine spaces satisfying the fix-point system provided by proposition 13.2
and not equal to (∅)k0∈K0

. By minimality of the sequence (Sk0
)k0∈K0

, we
deduce that Sk0

⊆ Ak0
. Taking the direction of the previous inclusion, we get

VG(T ) ⊆ V .
Let us prove the converse inclusion V ⊆ VG(T ). Remark that V is gen-

erated by vectors Γ i
r,m,0(xk0,b,k′

0
) where k0

b
−→ k′0 is a transition such that

(k0, b, k
′
0) ∈ K0 ×Σr ×K0, and i ∈ λ(k0). Since VG(T ) is a vector space, it is

sufficient to prove that Γ i+1
r,m,0(xk0,b,k′

0
) ∈ VG(T ). Remark that ξr,m(σk0

) ∈ Sk0

and since Γ−1
r,m,b(Sk0

) ⊆ Sk′
0
, we get Γ−1

r,m,b(ξr,m(σk0
)) ∈ Sk′

0
. Moreover, as

ξr,m(σk′
0
) ∈ Sk′

0
and Sk′

0
is an affine space, we get xk0,b,k′

0
∈

−→
S k′

0
. By def-

inition of λ, there exists a path q
σ
−→ k0 such that |σ| ∈ i + m.Z. As T

is strongly connected for [G], there exists a path k′0
w
−→ q where q ∈ T

and σ.b.w ∈ Σ∗
r,m. As Γ−1

r,m,w(Sk′
0
) ⊆ Sq, taking the direction of the previ-

ous inclusion provides Γ
−|w|
r,m,0(

−→
S k′

0
) ⊆ VG(T ). From xk0,b,k′

0
∈

−→
S k′

0
we get

xk0,b,k′
0
∈ Γ

|w|
r,m,0(VG(T )). As Γm

r,m,0(VG(T )) = VG(T ) (in fact for any vector

space W we have Γm
r,m,0(W ) = W ), we deduce that Gamma

|w|
r,m,0(VG(T )) =

Γ
−(i+1)
r,m,0 (VG(T )). Thus Γ i+1

r,m,0(xk0,b,k′
0
) ∈ VG(T ) and we have proved the other

inclusion V ⊆ VG(T ). ⊓⊔

Example 13.5. Let Ar,1({1}) be the FDVA given in figure 13.2. The two
components T1 = {{0}} and T⊥ = {∅} are untransient,and the component
T0 = {{1}} is transient.

Example 13.6. Let Ar,3(+) be the FDVA representing {x ∈ Z3; x[1] + x[2] =
x[3]} and given in figure 6.2. We denote by q0, q1 and q⊥, the principal states
q0 = {x ∈ Z3; x[1] + x[2] = x[3]}, q1 = {x ∈ Zm; x[1] + x[2] + 1 = x[3]} and
q⊥ = ∅. The two strongly connected components T0 = {q0, q1} and T⊥ = {q⊥}
are untransient. We have VG(T⊥) = Q3 and VG(T0) = {x ∈ Q3; x[1] + x[2] =
x[3]}.
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function VG(T ).
input

A FDVG G = (Q, m, K, Σr, δ) and an untransient component of T of G.
output

VG(T ).
begin

let K0 be the set of states k0 ∈ K reachable and co-reachable from T .
for each state k0 ∈ K0.

let σk0
∈ Σ+

r,m such that k0

σk0−−→ k0.

let λ(k0)← {i ∈ {0, . . . , m− 1}; T
Σ∗

r,m.Σi
r

−−−−−−→ k0}.
end for.
let V ← {e0,m}.

for each transition k0
b
−→ k′

0.
let x← Γ−1

r,m,b(ξr,m(σk0
))− ξr,m(σk′

0
).

let V ← V +
P

i∈λ(k0) Q.Γ i+1
r,m,0(x).

end for.
return V .

end

Fig. 13.1. An algorithm computing in polynomial time VG(T ).

{1} {0}

∅ {0}

Σr

1
0

Σr\{0}Σr\{1}

Fig. 13.2. The FDVA Ar,1({1})

Example 13.7. Let Ar,2(Vr) be the FDVA representing {x ∈ Z2; Vr(x[1]) =
x[2]} and given in figure 6.3. We denote by q0, q1 and q⊥ the principal states
q0 = {x ∈ Z2; Vr(x[1]) = x[2]}, q1 = Z × {0} and q⊥ = ∅. The three strongly
connected components T0 = {q0}, T1 = {q1} and T⊥ = {q⊥} are untransient.
Moreover, the vector spaces associated to T0, T1, T⊥ are respectively equal to
{e0,m}, Q × {0} and Q2.
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13.2 Detectable semi-V -patterns

In this section, we prove that any semi-V -pattern P ∈ PV (X) introduced by
decomposition theorem 12.4 is (r,m)-detectable in X for any affine compo-

nent V of
−→
saff(X) and for any Presburger-definable set X . That means, given

a DVA A that represents X , there exists a final function F such that P is rep-
resented by AF . Independently, being given a semi-V -pattern P and a FDVA
A that represents a set X not necessary Presburger-definable, a polynomial
time algorithm for deciding if there exists a final function F such that P is
represented by AF is provided.

Lemma 13.8. Given a Presburger definable set X, an affine component V of
−→
saff(X) and a word σ ∈ Σ∗

r,m, we have:

[γ−1
r,m,σ(X)]V =

V
⋃

P∈PV (X)

([γ−1
r,m,σ(P )]V ∩V (CV,P (X) + V ⊥))

Proof. Recall that [X ]V =
⋃V

P∈PV (X)([P ]V ∩V (CV,P (X)+V ⊥)) from decom-

position theorem 12.4 and proposition 12.6. We deduce that [γ−1
r,m,σ(X)]V =

⋃V
P∈PV (X)([γ

−1
r,m,σ(P )]V ∩V (CV,P (X) + V ⊥)) from lemmas 10.3 and 10.4 and

corollary 11.18. ⊓⊔

Corollary 13.9. Let X be a Presburger-definable set and V be an affine com-

ponent of
−→
saff(X). Any set P ∈ PV (X) is detectable in X.

Proof. Let us consider a pair (σ1, σ2) of words in Σ∗
r,m such that γ−1

r,m,σ1
(X) =

γ−1
r,m,σ2

(X). From lemma 13.8 we deduce that
⋃V

P∈PV (X)([γ
−1
r,m,σ1

(P )]V ∩V

(CV,P (X) + V ⊥)) =
⋃V

P∈PV (X)([γ
−1
r,m,σ2

(P )]V ∩V (CV,P (X) + V ⊥)). By in-

tersecting the previous equality by CV,P (X) + V ⊥, we get [γ−1
r,m,σ1

(P )]V ∩V

(CV,P (X) + V ⊥) = [γ−1
r,m,σ2

(P )]V ∩V (CV,P (X) + V ⊥). From lemma 12.2 we
deduce that γ−1

r,m,σ1
(P ) = γ−1

r,m,σ2
(P ). ⊓⊔

Even if the following two corollaries are not used in this section, they
become useful in the sequel.

Corollary 13.10. Let X be a (r,m,w)-cyclic Presburger-definable set and let

V be an affine component of
−→
saff(X). Any semi-V -pattern P ∈ PV (X) is

relatively prime with r and included in the V -affine space A = ξr,m(w) + V .

Proof. Since any P ∈ PV (X) is (r,m)-detectable in X , we deduce that any
P ∈ PV (X) is (r,m,w)-cyclic. From lemma 9.20, any P ∈ PV (X) is relatively
prime with r and included in A. ⊓⊔

Corollary 13.11. The set Zm ∩ (ξr,m(w) + V ) is (r,m)-detectable in X
for any Presburger-definable set X ⊆ Zm and any affine component V ∈
comp(saff(X)).
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Proof. Let A be the V -affine space A = ξr,m(w) + V . Let us consider P ∈
PV (X)\{∅}. It is sufficient to prove that Zm ∩ A is (r,m)-detectable in P .
Consider a pair (σ1, σ2) of words in Σ∗

r,m such that there exists P ′ satisfying
γ−1

r,m,σ1
(P ) = P ′ = γ−1

r,m,σ2
(P ). Remark that if P ′ = ∅ then the dense pattern

corollary 9.23 shows that γ−1
r,m,σ1

(Zm∩A) = ∅ = γ−1
r,m,σ2

(Zm∩A). If P ′ = 6 ∅, we
deduce that saff(γ−1

r,m,σi
(P )) = Γ−1

r,m,σi
(A). Therefore Γ−1

r,m,σ1
(A) = Γ−1

r,m,σ2
(A).

In particular, by intersecting the previous equality by Zm, we get γ−1
r,m,σ1

(Zm∩
A) = γ−1

r,m,σ2
(Zm ∩A). ⊓⊔

Theorem 13.12. Let A be a FDVA, let M be a V -vector lattice included
in Zm, and let B be a non empty finite subset of Zm. We can compute in
polynomial time a partition B0, B1, ..., Bn of B such that a semi-V -pattern
P of the form P = B′ +M where B′ ⊆ B is represented by a FDVA of the
form AF if and only if there exists J ⊆ {1, . . . , n} such that B =

⋃

j∈J Bj.

Proof. Let us denote by C the class of subsets of X ′ ⊆ Zm that can be
represented by the FDVA AF where F is any final function. Since C is stable by
boolean operations in {∪,∩, \, ∆}, we deduce that exists a unique partition
B0, B1, ..., Bn of a subset of B satisfying the theorem. From proposition
4.6, we deduce that there exists a finite set U of pairs (σ1, σ2) of words in
Σ∗

r computable in polynomial time such that |σ1| + m.Z = |σ2| + m.Z for
any (σ1, σ2) ∈ U , and such that a subset X ′ ⊆ Zm is in in C if and only
if γ−1

r,m,σ1
(X ′) = γ−1

r,m,σ2
(X ′) for any (σ1, σ2) ∈ U . Let us consider the binary

relation R over B defined by b1Rb2 if and only if there exists (σ1, σ2) ∈ U such
that γ−1

r,m,σ1
(b1 +M) ∩ γ−1

r,m,σ2
(b2 +M) 6= ∅. The symmetrical and transitive

closure of R denoted by R′ provides an equivalence relation of B. Let us
consider the equivalence classes B′

1, ..., B′
k of R′ such that the last classes

B′
n′+1, ..., B′

k are the equivalence classes such that B′
i +M is not in C.

Let us prove that B0 =
⋃k

i=n+1 B
′
i and B1, ..., Bn are equal up to a

permutation to B′
1, ..., B′

n′ . Observe that Bi +M is in C for any i ≥ 1. Thus
for any (σ1, σ2) ∈ U , we have γ−1

r,m,σ1
(Bi+M) = γ−1

r,m,σ2
(Bi+M). In particular

b1Rb2 implies that there exists i ≥ 0 such that b1, b2 ∈ Bi. We have proved
that for any equivalence class B′ of R′, there exists i such that B′ ⊆ Bi. Note
that if B′ ⊆ B0 then B′+M is not in C by definition of B0. Next, assume that
B′ ⊆ Bi with i ≥ 1. Let us consider (σ1, σ2) ∈ U and let x ∈ γ−1

r,m,σ1
(B′ +M).

There exists b1 ∈ B′ such that γr,m,σ1
(x) ∈ b1 + M . Since Bi + M ∈ C, we

get γ−1
r,m,σ1

(Bi + M) = γ−1
r,m,σ2

(Bi + M). As b1 ∈ B′ ⊆ Bi, we deduce that
there exists b2 ∈ Bi such that γr,m,σ2

(x) ∈ b2 +M . Thus γ−1
r,m,σ1

(b1 + M) ∩
γ−1

r,m,σ2
(b2 + M) 6= ∅ and we have proved that b1Rb2. Since b1 ∈ B′ we get

b2 ∈ B′ and we have proved that γ−1
r,m,sigma1

(B′ +M) ⊆ γ−1
r,m,σ2

(B′ +M). By

symmetry, we get the equality γ−1
r,m,σ1

(B′ +M) = γ−1
r,m,σ2

(B′ +M). We have
proved that B′+M ∈ C. Since B′ is non empty and included in Bi, we deduce
that B′ = Bi. We have proved that B0 =

⋃k
i=n+1 B

′
i and B1, ..., Bn are equal

up to a permutation to B′
1, ..., B′

n′ .
Therefore, it is sufficient to prove that we can decide in polynomial time

if γ−1
r,m,σ1

(b1 +M)∩γ−1
r,m,σ2

(b2 +M) 6= ∅ for any b1, b2 ∈ B, and we can decide
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in polynomial time if B′ + M ∈ C for any B′ ⊆ B. Proposition 9.18 prove
that for any word σ and for any finite subset B′ ⊆ Zm, we can compute in
polynomial time a finite subset Bσ ⊆ Zm and a vector lattice Mσ such that
|Bσ| ≤ |B′| and γ−1

r,m,σ(B′ + M) = Bσ + Mσ. Therefore, it is sufficient to
prove that given two vector lattices M1 and M2, two finite subsets B1 and
B2 of Zm, and two vectors b1 and B2 in Zm, we can decide in polynomial
time if b1 + M1 ∩ b2 + M2 6= ∅ and we can decide in polynomial time if
(B1 +M1) = (B2 +M2). From corollaries 8.16 and 9.16, we are done. ⊓⊔

13.3 Terminal components

A terminal component T of a FDVA A = (q0, G, F0) is a component of G
satisfying:

• T is reachable (for [G]) from the initial state q0,
• there exists a state q ∈ T such that [F0](q) 6= ∅, and
• any state q′ reachable (for [G]) from T such that [F0](q

′) 6= ∅ is in T .

The set of terminal components of a FDVA A is denoted by TA.
Observe that VG(T ) is defined for any terminal component T since the

following proposition 13.13 show that such a T is untransient.

Proposition 13.13. A terminal component is untransient.

Proof. Let T be a terminal component of a FDVA A. Consider a state q ∈ T
such that [F0](q) 6= ∅, and let s ∈ [F0](q). Since F0 is saturated for G and s ∈
[F0](q) we deduce that s ∈ [F0](δ(q, s

n)) for any n ∈ N. As T is terminal, we
have δ(q0, s

n) ∈ T . Moreover, as Q is finite, there exits n ∈ N and d ∈ N\{0}
such that δ(q0, s

n+d) = δ(q0, s
n). We have proved that there exists a loop of

the state q′ = δ(q, sn). From q′ ∈ T we deduce that T is untransient. ⊓⊔

The terminal components have a lot of applications in the sequel. In this
section we show that saff(Xq) = aG(q)+VG(T ) and we provide a geometrical
characterization of the sets Xq.

Lemma 13.14 (Destruction lemma). Let σ ∈ Σ+
r,m be a non-empty word

and let A be an affine space. There exists k0 ∈ N such that γ−1
r,m,σk0

(Zm∩A) =

∅ if and only if ξr,m(σ) 6∈ A or Zm ∩A = ∅.

Proof. We can assume without loss of generality that Zm∩A 6= ∅. In particular
−→
A is a vector space (because A is non empty) and there exists a finite set

D ⊆ Zm\{e0,m} such that
−→
A = {x ∈ Qm;

∧

α∈D 〈α, x〉 = 0}.
Assume first that ξr,m(σ) ∈ A. The set Zm ∩ A is equal to {x ∈

Zm;
∧

α∈D 〈α, x − ξr,m(σ)〉 = 0}. Remark that γ−1
r,m,σ(Zm ∩ A) = {x ∈

Zm;
∧

α∈D 〈α, γr,m,σ(x) − ξr,m(σ)〉 = 0} = Zm∩A. In particular γ−1
r,m,σk(Zm∩

A) 6= ∅ for any k ∈ N.
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Next, assume that γ−1
r,m,σk(Zm ∩ A) 6= ∅ for any k ∈ N. As Zm ∩ A 6= ∅,

there exists a ∈ A. For any k ∈ N, we have:

γ−1
r,m,σk(Zm ∩A)

=

{

x ∈ Zm;
∧

α∈D

〈

α, γr,m,σk(x) − a
〉

= 0

}

=

{

x ∈ Zm;
∧

α∈D

〈

α, rk.|σ|m .(x− ξr,m(σ)) + ξr,m(σ) − a
〉

= 0

}

=

{

x ∈ Zm;
∧

α∈D

〈

α, (r|σ|m − 1).x+ γr,m,σ(e0,m)
〉

= (r|σ|m − 1).
〈α, a− ξr,m(σ)〉

rk.|σ|m

}

Let us consider k ∈ N enough larger such that |(r|σ|m − 1).
〈α,a−ξr,m(σ)〉

rk.|σ|m
| < 1

for any α ∈ D. As γ−1
r,m,σk(Zm ∩ A) 6= ∅, there exists x in this set. From

〈

α, (r|σ|m − 1).x+ γr,m,σ(e0,m)
〉

∈ Z, we deduce that (r|σ|m − 1).
〈α,a−ξr,m(σ)〉

rk.|σ|m

is in the set {c ∈ Z; |c| < 1} = {0}. Therefore 〈α, a− ξr,m(σ)〉 = 0 for any
α ∈ D. That means ξr,m(σ) ∈ A. ⊓⊔

Proposition 13.15. Let A = (q0, G, F0) by a FDVA that represents a set
X, let Y be an s-eye of a FDVG G and let T be a terminal component that

contains kers(Y ). We have saff(X
Fs,Y
q (G)) = aG(q)+VG(T ) for any principal

state q ∈ T .

Proof. Let us denote by Zq the set Zq = {ξr,m(w); q
w
−→ q}. Recall that

saff(Zq) = aG(q) + VG(T ).

Let us first prove that saff(Zq) ⊆ saff(X
Fs,Y
q ). Consider a vector x ∈

Zq. There exists a loop q
w
−→ q with w ∈ Σ+

r,m such that x = ξr,m(w). Let
q′ ∈ kers(Y ). As q and q′ are in the same component, there exists a path

q
σ
−→ q′ with σ ∈ Σr,m. Remark that ρr,m(wk.σ, s) ∈ X

Fs,Y
q for any k ∈ N. By

developing ρr,m(wk.σ, s), we get ρr,m(wk.σ, s) = rk.|w|m .(ρr,m(σ, s) − x) + x.

From covering lemma 9.9, we get Q.(ρr,m(σ, s) − x) + x ⊆ saff(X
Fs,Y
q ). In

particular x ∈ saff(X
Fs,Y
q ) and we get Zq ⊆ saff(X

Fs,Y
q ). By minimality of the

semi-affine full, we deduce the inclusion saff(Zq) ⊆ saff(X
Fs,Y
q ).

For the converse inclusion, let us consider a vector x ∈ X
Fs,Y
q . There exists

a (r,m)-decomposition (σ, s) of x such that δ(q, σ) ∈ Y . By replacing σ by
a word in σ.s∗, we can assume that q′ = δ(q, σ) is in kers(Y ). In particular,
there exists n1 ∈ N\{0} such that δ(q′, sn1) = q′. Proposition 13.2 shows
that Γr,m,w(ξr,m(sn1)) ∈ saff(ξr,m,q). Remark that ξr,m(sn1) = s

1−r
, and we

deduce that x = ρr,m(w, s) ∈ saff(Zq). We have proved the inclusion X
Fs,Y
q ⊆

saff(Zq). By minimality of the semi-affine hull, we deduce the other inclusion

saff(X
Fs,Y
q ) ⊆ saff(Zq). ⊓⊔
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The following proposition shows that for any state q in a terminal compo-
nent of a FDVA that represents a set X , the semi-affine space saff(Xq) can
be easily computed thanks to aG(q) and VG(T ).

Proposition 13.16. Let X be a set represented by a FDVA A and let T be a
terminal component. We have saff(Xq) = aG(q) + VG(T ) for any state q ∈ T .

Proof. Let us consider the class CT of couple (s, Y ) ∈ Sr,m ×P(Q) such that
Y is an s-eye satisfying kers(Y ) ⊆ T and Fs,Y ⊆ F0. As T is terminal, this

class is non-empty. Proposition 13.15 shows that saff(X
Fs,Y
q ) = aG(q)+VG(T )

for any (s, Y ) ∈ CT . Let F =
⋃

(s,Y )∈CT
Fs,Y . As q ∈ T and T is terminal, we

deduce that Xq = XF
q =

⋃

(s,Y )∈CT
X

Fs,Y
q . From covering lemma 9.9, we get

saff(Xq) = aG(q) + VG(T ). ⊓⊔

Remark that by definition of boundV (X), there exists a unique semi-V -
pattern P ∈ PV (X) such that [CV,#]V ⊆V CV,P (X) for any sequence # ∈
{<,>}boundV (X) such that [CV,#]V 6= [∅]V . Let X be a Presburger-definable

set, let V be an affine component of
−→
saff(X), and let P ∈ PV (X) be a semi-

V -pattern. We denote by SV,P (X) the set of sequences # ∈ {<,>}boundV (X)

such that [CV,#]V ⊆V CV,P (X).
The following theorem provides a geometrical form of the set Xq when q

is a state in a terminal component of a FDVA that represents a Presburger-
definable set X .

Theorem 13.17. Let X be a Presburger-definable set represented by a FDVA

A and let V be an affine component of
−→
saff(X). For any state q in a terminal

component T such that VG(T ) is equal to V , there exists a vector aq ∈ Qm

such that we have:

Xq =
⋃

P∈PV (X)

⋃

#∈SV,P (X)

(Pq ∩ (aq + CV,# + V ⊥))

such that for any j ∈ {1, . . . ,m}, we have −1 < aq[j] ≤ 0 if V ⊆ e
⊥
j,m and we

have −1 < aq[j] < 0 otherwise.

Proof. Let us first prove that there exists a loop q
wj

−−→ q such that wj 6∈

(Σr,m ∩ e⊥j,m)∗ for any j ∈ {1, . . . ,m} satisfying V 6⊆ e⊥j,m. As
−→
saff(Xq) = V ,

from proposition 14.11 we deduce that there exists P ∈ PV (X) such that
Pq 6= ∅. Let us consider a vector x ∈ Pq. As V 6⊆ e⊥j,m, there exists a vector
v ∈ V such that v[j] 6= 0 and by replacing v by a vector in (Z\{0}).v, we
have proved that there exists a vector v ∈ invV (Pq) such that v[j] > 0. In
particular x + Z.v ⊆ Pq. As v[j] > 0, there exists k ∈ N enough larger such
that (x+k.v)[j] > 0. Let us consider a (r,m)-decomposition (σ, s) of x+k.n.v.
Naturally, as (x + k.n.v)[j] > 0, we have σ 6∈ (Σr,m ∩ e⊥j,m)∗. Moreover, as
ρr,m(σ, s) ∈ Pq, we get Pq′ 6= ∅ where q′ = δ(q, σ). Proposition 14.11 shows
that Xq′ 6= ∅. As T is terminal, we have proved that q′ ∈ T . Hence, there
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exists a path q′
σ′

−→ q. Remark that the loop q
wj

−−→ q where wj = σ.σ′ satisfies
wj 6∈ (Σr,m ∩ e⊥j,m)∗.

Let us consider the sequence (CV,P )P∈PV (X) of V -polyhedrons defined
by CV,P =

⋃

#∈SV,P (X)CV,#. Remark that CV,P (X) = [CV,P ]V for any

P ∈ PV (X). Hence, the set Z = X∆(
⋃

P∈PV (X)

⋃

#∈SV,P (X)(Pq∩(aq +CV,#+

V ⊥))) is such that [Z]V = [∅]V . Let us consider a path q0
σ
−→ q with q in a

terminal component T such that VG(T ) = V . Thanks to the first paragraph,
we can assume without loss of generality that σ 6∈ (Σr,m ∩ e⊥j,m)∗ for any

j ∈ {1, . . . ,m} satisfying V 6⊆ e⊥j,m. As
−→
saff(Xq) = V , and [γ−1

r,m,σ(Z)]V =

γ−1
r,m,σ([∅]V ) = [∅]V , we deduce that Xq is not included in saff(γ−1

r,m,σ(Z)).
Hence, there exists a (r,m)-decomposition (w1, s) ∈ ρ−1

r,m(Xq) such that
ρr,m(w1, s) 6∈ saff(γ−1

r,m,σ(Z)). Destruction lemma 13.14 shows that by re-
placing w1 by a word in w1.s

∗, we can assume that γ−1
r,m,σ.w1

(Z) = ∅. Let
q′ = δ(q, w1). As s ∈ F0(q

′) and T is terminal, we deduce that q′ ∈ T . As q

and q′ are in the strongly connected component T , there exists a path q′
w2−−→ q.

Let w = w1.w2 and let aq = Γ−1
r,m,σ.w(e0,m). As σ 6∈ (Σr,m ∩ e⊥j,m)∗ for any

j ∈ {1, . . . ,m} satisfying V 6⊆ e⊥j,m, we deduce that for any j ∈ {1, . . . ,m},

we have −1 < aq[j] ≤ 0 if V ⊆ e⊥j,m and we have −1 < aq[j] < 0 other-

wise. Remark that for any V -hyperplane H such that
−→
H = H and for any

# ∈ {<,≤,=,≥, >}, we have Γ−1
r,m,σ.w(H# + V ⊥) = aq + H# + V ⊥. As

γ−1
r,m,σ.w(Z) = ∅ then Xq =

⋃

P∈PV (X)

⋃

#∈SV,P (X)(Pq ∩ (aq + CV,# + V ⊥)).
⊓⊔
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Extracting Geometrical Properties

14.1 Semi-affine hull direction of a Presburger-definable
FDVA

In this section we prove that the semi-affine hull direction
−→
saff(X) of a

Presburger-definable set X represented by a FDVA is computable in poly-
nomial time.

This computation cannot be extended to saff(X). In fact, as shown by the
following lemma 14.1, the size of saff(X) can be exponentially larger than the
size of a FDVA representing X .

Lemma 14.1. There exist α, β ∈ Q+\{0}, a sequence (An)n∈N of FDVA that
represents a sequence (Xn)n∈N of Presburger-definable sets in basis r, such
that limn→+∞ size(An) = +∞ and size(saff(Xn)) ≥ α.2β.size(An).

Proof. Consider the finite set Xn = {0, . . . , rn − 1}m. Remark that Xn is
Presburger-definable and the FDVA Ar,1(Xn) that represents Xn has n + 2
principal states. Moreover, as comp(saff(Xn)) = {{x}; x ∈ Xn}, we deduce
that size(saff(Xn)) = rn. ⊓⊔

Remark 14.2. The semi-affine hull of a set X represented by a FDVA (X is
not necessarily Presburger-definable) can be computed in exponential time
thanks to the algorithm provided in [Ler03]. This result is not used in this
paper.

Our computation of
−→
saff(X) is based on the following lemma 14.3 that

shows that an under-approximation of
−→
saff(X) can be easily computed from

a FDVA that represents a set X . In this section, we prove that this under-
approximation is exact if X is Presburger-definable.

Lemma 14.3. Let X be a set represented by a FDVA. We have
⋃

T∈TA
VG(T ) ⊆

−→
saff(X).
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Proof. Let us consider a FDVA A that represents a set X . Let us consider

a terminal component T ∈ TA and let us prove that VG(T ) ⊆
−→
saff(X). Let

us consider q ∈ T . As T is reachable (for [G]) from the initial state, there

exists a path q0
σ∈Σ∗

r,m

−−−−−→ q. We have Xq = γ−1
r,m,σ(X) ⊆ Γ−1

r,m,σ(X). Covering

lemma 9.9 shows that
−→
saff(Xq) ⊆

−→
saff(X). Moreover, as q ∈ T , proposition

13.16 shows that
−→
saff(Xq) = VG(T ). Therefore VG(T ) ⊆

−→
saff(X) and we have

proved the inclusion
⋃

T∈TA
VG(T ) ⊆

−→
saff(X). ⊓⊔

Proposition 14.4. Let X be a Presburger-definable set represented by a

FDVA A and let V be an affine component of
−→
saff(X). For any principal

state q reachable for [G], there exists P ∈ PV (X) such that Pq 6= ∅ if and only
if there exists a terminal component T ∈ TA reachable from q for [G] such
that VG(T ) = V .

Proof. Assume first that there exists a terminal component T ∈ TA reach-
able from q for [G] such that VG(T ) = V and let us prove that there
exists P ∈ PV (X) such that Pq 6= ∅. There exists q′ ∈ T and a path

q
σ∈Σ∗

r,m

−−−−−→ q′. From theorem 13.17, since Xq′ 6= ∅, we deduce that there
exists P ∈ PV (X) such that Pq′ 6= ∅. As Pq′ = γ−1

r,m,σ(Pq) we get Pq 6= ∅
and we have proved that there exists P ∈ PV (X) such that Pq 6= ∅. Let
us prove the converse. Assume that there exists P ∈ PV (X) such that
Pq 6= ∅ and let us prove that there exists a terminal component T ∈ TA

reachable from q for [G] such that VG(T ) = V . Since q is reachable for

[G] from the initial state, there exists a path q0
σ0−→ q. Let us consider a

sequence (CV,P )P∈PV (X) of V -polyhedrons such that CV,P ∈ CV,P (X). Let

us consider Z = X∆
⋃

P∈PV (X)(P ∩ (CV,P + V ⊥)). We have [Z]V = [∅]V .

That means V is not included in
−→
saff(Z). Let Z ′ = γ−1

r,m,σ0
(Z). From cov-

ering lemma 9.9, we deduce that V is not included in
−→
saff(Z ′). Observe

that if there exists P ∈ PV (X) such that Pq 6= emptyset then from Z ′ =

Xq∆
⋃

P∈PV (X)(Pq ∩ (CV,P +V ⊥)), we deduce that V is included in
−→
saff(Xq).

Thus, there exists a (r,m)-decomposition (σ, s) such that ρr,m(σ, s) ∈ Xq and
ρr,m(σ, s) 6∈ saff(Z ′). Destruction lemma 13.14 proves that by replacing σ by a
word in σ.s∗, we can assume that γ−1

r,m,σ(Z ′) = ∅. Let q′ = δ(q, σ) and remark

that Xq′ =
⋃

P∈PV (X)(Pq′ ∩ (Γ−1
V,r,m,σ(CV,P ) + V ⊥)). As ρr,m(ǫ, s) ∈ Xq then

s ∈ F0(q
′). So there exists a terminal component T reachable (for [G]) from

q′. Let q′′ ∈ T . There exists a path q′
w∈Σ∗

r,m
−−−−−→ q′′ such that q′′ ∈ T . We have

Xq′′ =
⋃

P∈PV (X)(Pq′′ ∩ (Γ−1
V,r,m,σ.w(CV,P ) + V ⊥)). As Xq′′ 6= ∅, there exists

P ∈ PV (X) such that Pq′′ 6= ∅. In particular Pq′′ is a non-empty semi-V -
pattern. As CV,P is non-V -degenerate and [CV,P ]V = [Γ−1

V,r,m,σ.w(CV,P )]V , we

deduce that Γ−1
V,r,m,σ.w(CV,P ) is non-V -degenerate. Lemma 12.2 proves that V

is included in
−→
saff(Pq′′ ∩ (Γ−1

V,r,m,σ.w(CV,P ) + V ⊥)). Therefore V ⊆
−→
saff(Xq′′).
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Moreover, as
−→
saff(Pq′′ ) ⊆ V for any P ∈ PV (X), we deduce that

−→
saff(Xq′′ ) =

V . As q′′ ∈ T , recall that VG(T ) =
−→
saff(Xq′′ ). Therefore, we have proved that

there exists a terminal component T such that VG(T ) = V . ⊓⊔

From the previous proposition 14.4, we deduce that
−→
saff(X) can be easily

computed in polynomial time from the sequence of vector spaces associated
to the terminal components.

Proposition 14.5. For any Presburger-definable setX represented by a FDVA
A, we have:

−→
saff(X) =

⋃

T∈TA

VG(T )

Proof. Lemma 14.3 shows that
⋃

T∈TA
VG(T ) ⊆

−→
saff(X). Now, let us prove

the converse inclusion. Let V be an affine component of
−→
saff(X). Proposition

14.4 shows that there exists a terminal component T such that VG(T ) =

V . Therefore V ⊆
⋃

T∈TA
VG(T ). We deduce the other inclusion

−→
saff(X) ⊆

⋃

T∈TA
VG(T ). ⊓⊔

From theorem 13.4 and the previous proposition 14.5, we get one of the
main powerful theorem of this paper.

Theorem 14.6. The semi-affine hull direction of a Presburger-definable set
represented by a FDVA is computable in polynomial time.

14.1.1 An example

Let us consider the set X = X1 ∪X2 where X1 = {x ∈ N2; x[1] = 2.x[2]} and

X2 = {x ∈ N2; x[2] = 2.x[1]}. Naturally, the semi-vector space
−→
saff(X1) is

equal to the vector space V1 = {x ∈ Q2; x[1] = 2.x[2]} and symmetrically the

semi-vector space
−→
saff(X2) is equal to the vector space V2 = {x ∈ Q2; x[2] =

2.x[1]}. As
−→
saff(X) has two affine components V1 and V2, from proposition

14.5, we deduce that whatever the FDVA A that represents X we consider,
for any terminal terminal components T , we have VG(T ) ⊆ V1 or VG(T ) ⊆ V2

(remark that we have implicitly used the insecable lemma 9.2). Moreover, we
also deduce that there exists at least one terminal component T1 such that
VG(T1) = V1 and at least one terminal component T2 such that VG(T2) = V2.

This property can be verified in practice. Figure 14.1 represents the min-
imal FDVA A2,2(X1 ∪ X2) where X ′

1 = {x ∈ N; x[1] = 2.x[2] + 1} and
X ′

2 = {x ∈ N; x[2] = 2.x[1] + 1}. Remark that this FDVA has 2 terminal
components T1 and T2 defined by T1 = {X1, X

′
1} and T2 = {X2, X

′
2}. We have

VG(T1) =
−→
aff(X1) =

−→
aff(X ′

1) = V1 and VG(T2) =
−→
aff(X2) =

−→
aff(X ′

2) = V2.
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X ′
1

X1 ∪X2

(0,0)

X ′
2

X2

(0,0)

X1

(0,0)

∅

(0,0) (0,0)

(1,1)

(0,0)

(1,1)

(1,0)

Σ2,2

(0,1)

(1,0)(0,1)(1,0)(0,1)

{1}×Σ2 Σ2×{1}

{0}×Σ2 Σ2×{0}

(1,1)

Fig. 14.1. The FDVA A2,2(X1 ∪X2)

14.2 Polynomial time invariant computation

Let X be a Presburger-definable set and V be an affine component of
−→
saff(X).

The V -vector lattice invV (X) of invariants of X is defined by the following
equality:

invV (X) =
⋂

P∈PV (X)

invV (P )

In this section we prove that the V -vector lattice of invariants invV (X) is
computable in polynomial time from a cyclic FDVA A that represents X in
basis r. We also prove that |Zm ∩ V/invV (X)| is bounded by the number of
principal states of A.

Recall that corollary 13.10 proves that any P ∈ PV (X) is relatively prime
with r and included in the V -affine space ξr,m(s)+V . This V -affine space will
be useful in the sequel. Our algorithm is based on the following proposition
14.8 and the remaining of this section is devoted to prove that all structures
needed for applying this proposition are small and they can be computed
efficiently.

Lemma 14.7. Let A be a V -affine space and s ∈ Sr,m be a (r,m)-sign vector
such that [Zr,m,s∩A]V 6= [∅]V . There exists a vector v ∈ V such that v[i] < 0 if
s[i] = r−1 and v[i] > 0 if s[i] = 0 for any i ∈ {1, . . . ,m} such that ei,m 6∈ V ⊥.
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Proof. Since A is a V -affine space, there exists a ∈ A. We denote by #0 the
binary relation ≥ and by #r−1 the binary relation <, and we denote by I
the set of i ∈ {1, . . . ,m} such that ei,m 6∈ V ⊥. Remark that Zr,m,s ∩ A =
Zm ∩ A ∩ (C + ΠV (a) + V ⊥) where C is the V -polyhedron C =

⋂m
i=1{x ∈

V ; x[i] + a[i]#s[i]0}. As {x ∈ V ; x[i] + a[i]#s[i]0} = {x ∈ V ; 〈ΠV (ei,m), x〉+
a[i]#s[i]0}, we deduce that {x ∈ V ; x[i] + a[i]#s[i]0} is either empty or equal
to V for any i ∈ {1, . . . ,m}\I. Moreover, as [Zr,m,s ∩ A]V 6= [∅]V , we get
{x ∈ V ; x[i] + a[i]#s[i]0} = V for any i ∈ {1, . . . ,m}\I. Hence C =

⋂

i∈I{x ∈

V ; 〈ΠV (ei,m), x〉 + a[i]#s[i]0}. As [Zm ∩ A ∩ (C + ΠV (a) + V ⊥)]v 6= [∅]V ,
lemma 12.2 shows that [C]V 6= [∅]V . From lemma 11.6 we deduce that there
exists a vector v ∈ V such that v[i] > 0 if s[i] = 0 and v[i] < 0 if s[i] = r − 1
for any i ∈ I. ⊓⊔

Proposition 14.8. Let X be a (r,m,w)-cyclic Presburger-definable set and

let V be an affine component of
−→
saff(X). Assume that we have:

• A (r,m)-sign vector s ∈ Sr,m such that [Zr,m,s ∩ (ξr,m(s) + V )]V 6= [∅]V ,
• A couple (q0, G) such that q0 is a principal state of a FDVG G such that

δ(q0, σ1) = δ(q0, σ2) if and only if (γ−1
r,m,σ1

(P ))P∈PV (X) = (γ−1
r,m,σ2

(P ))P∈PV (X)

for any σ1, σ2 ∈ Σ∗
r,m,

• The set Q′ of principal states reachable for [G] from q0 such that (∅)P∈PV (X) 6=

(γ−1
r,m,σ(P ))P∈PV (X) if and only if q′ ∈ Q′ for any path q0

σ
−→ q′ with

σ ∈ Σ∗
r,m,

• An integer n0 ∈ N\{0} relatively prime with r such that |Zm∩V/invV (X)|
divides n0,

• An integer n ∈ N\{0} such that rn ∈ 1 + n0.Z.

We denote by U the set of pairs u = (k, Z) ∈ K × Z/mn.Z such that
there exists a pair of words (σu, σ

′
u) in Σ∗

r satisfying |σu.σ
′
u| ∈ m.n.Z,

(k, Z) = (δ(q0, σu), |σu| + m.n.Z) and there exists an s-eye Y ′ such that
δ(k, σ′

u) ∈ kers(Y
′) ⊆ Q′. Given a sequence (σu, σ

′
u)u∈U satisfying the pre-

vious conditions and such that σ(q0,m.n.Z) = ǫ, the vector lattice of invariants
invV (X) is equal to the vector lattice generated by n0.Z

m ∩ V and the vectors
ρr,m(σu1

.b.σ′
u2
, s) − ρr,m(σu2

.σ′
u2
, s) where u1 = (k1, Z1) ∈ U , b ∈ Σr and

u2 = (k2, Z2) ∈ U are such that (k2, Z2) = (δ(k1, b), Z1 + 1).

Proof. Let us denote by A the V -affine space A = ξr,m(w) + V .
Since δ(q0, σ1) = δ(q0, σ2) if and only if (γ−1

r,m,σ1
(P ))P∈PV (X) = (γ−1

r,m,σ2
(P ))P∈PV (X)

for any σ1, σ2 ∈ Σ∗
r,m, for any principal state q reachable for [G] from q0, there

exists a unique sequence denoted by (Pq)P∈PV (X) such that Pq = γ−1
r,m,σ(P )

for any P ∈ PV (X) and for any σ ∈ Σ∗
r,m such that q = δ(q0, σ).

We first prove that ρr,m(σ′, s) ∈ A for any word σ′ ∈ Σ∗
r,m such that there

exists an s-eye Y ′ satisfying δ(q0, σ
′) ∈ kers(Y

′) ⊆ Q′. As the principal state
q′ = δ(q0, σ

′) is in Q′, there exists P ∈ PV (X) such that Pq′ 6= ∅. As there

exists a path q′
s+

−−→ q′ since q′ ∈ kers(Y
′), we get saff(Pq′ ) = ξr,m(s) + V

from lemma 9.20. Remark that Pq′ = γ−1
r,m,σ′(P ). Thus, from covering lemma
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9.9, we get ξr,m(s)+V ⊆ Γr,m,σ′(saff(P )) in particular from saff(P ) = A and
ρr,m(σ, s) = Γr,m,σ(ξr,m(s)), we deduce that ρr,m(σ′, s) ∈ A.

Next, let us show that for any pair of integers z1, z2 ∈ N such that z1 +
m.n.Z = z2 +m.n.Z and for any x ∈ Zm, we have x′ = γz2

r,m,0(x)−γ
z1

r,m,0(x) ∈
n0.Z

m. Naturally, by symmetry, we can assume that z1 < z2 and by replacing
x by γz1

r,m,0(x) and (z1, z2) by (0, z2 − z1) we can assume that z1 = 0. In this
case z = z2

m.n
is in N and x′ = (rn.z − 1).x. Since rn − 1 divides rn.z − 1 and

n0 divides rn − 1, we have prove that x′ ∈ n0.Z
m.

Let us denote by M the vector lattice generated by n0.Z
m ∩ V and the

vectors ρr,m(σu1
.b.σ′

u2
, s) − ρr,m(σu2

.σ′
u2
, s) where u1 = (k1, Z1) ∈ U , b ∈ Σr

and u2 = (k2, Z2) ∈ U are such that (k2, Z2) = (δ(k1, b), Z1 + 1).
We first prove the inclusion M ⊆ invV (X).
Let us show that ρr,m(σ2, s) − ρr,m(σ1, s) ∈ invV (X) for any pair of

words (σ1, σ2) in (Σn
r,m)∗ such that there exists a principal state q′ sat-

isfying δ(q0, σ1) = q′ = δ(q0, σ2) and there exists an s-eye Y ′ satisfying
q′ ∈ kers(Y

′) ⊆ Q′. The previous paragraphs shows that ρr,m(σ1, s) and
ρr,m(σ2, s) are both in A. Thus, from lemma 9.22 we get γ−1

r,m,σi
(P ) =

ξr,m(s) + P − ρr,m(σi, s) for any i ∈ {1, 2} and for any P ∈ PV (X). In
particular ρr,m(σ2, s) − ρr,m(σ1, s) ∈ invV (X).

We can now easily prove that M ⊆ invV (X) since n0.Z
m ∩ V ⊆ invV (X)

(recall that |Zm ∩ V/invV (X)| divides n0) and from the previous paragraph
we deduce that ρr,m(σu1

.b.σ′
u2
, s) − ρr,m(σu2

.σ′
u2
, s) ∈ invV (X) for any u1 =

(k1, Z1) ∈ U , b ∈ Σr and u2 = (k2, Z2) ∈ U such that (k2, Z2) = (δ(k1, b), Z1+
1).

Next, let us prove the converse inclusion invV (X) ⊆M .
Let us show that ρr,m(σ2.σ

′, s)−ρr,m(σ1.σ
′, s) ∈ ρr,m(σ2.σ

′′, s)−ρr,m(σ1.σ
′′, s)+

M for any pair of words (σ1, σ2) in Σ∗
r such that there exists u = (k, Z) ∈ U

satisfying (δ(q0, σ1), |σ1| + m.n.Z) = u = (δ(q0, σ2), |σ2| + m.n.Z) and for
any pair of words (σ′, σ′′) in Σ∗

r satisfying Z + |σ′| = m.n.Z = Z +
|σ′′| + m.n.Z and there exists two s-eyes Y ′ and Y ′′ satisfying δ(k, σ′) ∈
kers(Y

′) ⊆ Q′ and δ(k, σ′′) ∈ kers(Y
′′) ⊆ Q′. Let x′ = (ρr,m(σ2.σ

′, s) −
ρr,m(σ1.σ

′, s)) − (ρr,m(σ2.σ
′′, s) − ρr,m(σ1.σ

′′, s)). This vector is in V since
the vectors ρr,m(σ1.σ

′, s), ρr,m(σ2.σ
′, s), ρr,m(σ1.σ

′′, s), and ρr,m(σ2.σ
′′, s)

are in the V -affine space A from the previous paragraphs. Moreover, let
us remark that x′ = γz2

r,m,0(x) − γz1

r,m,0(x) where z1 = |σ1|, z2 = |σ2| and
x = ρr,m(σ′, s) − ρr,m(σ′′, s). Thus, from the previous paragraphs, we get
x ∈ n0.Z

m and we have proved that x′ ∈ n0.Z
m ∩ V ⊆M .

Let us show that ρr,m(σ2, s) − ρr,m(σ1, s) ∈ M for any pair of words
(σ1, σ2) in (Σn

r,m)∗ such that there a principal state q′ satisfying δ(q0, σ1) =
q′ = δ(q0, σ2) and there exists an s-eyes Y ′ satisfying q′ ∈ kers(Y

′) ⊆ Q′. Since
M is a vector lattice, it is sufficient to prove that ρr,m(σ, s)−ρr,m(σu, s) ∈M
for any word σ ∈ (Σn

r,m)∗ such that u = (δ(q0, σ),m.n.Z) is in U . Let us
consider a sequence b1, ..., bi of r-digits bj ∈ Σr such that σ = b1 . . . bi. We
denote by ui the couple ui = (δ(q0, b1 . . . bj), j+m.n.Z). Since ui = u is in U ,
we deduce that uj ∈ U for any k ∈ {0, . . . , i}. By definition of M , we have
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ρr,m(σuj−1
.bj .σ

′
uj
, s)−ρr,m(σuj

.σ′
uj+1

, s) ∈M for any j ∈ {1, . . . , i}. From the
previous paragraph, we get ρr,m(σuj−1

.bj . . . bi, s) − ρr,m(σuj
.bj+1 . . . bi, s) ∈

M for any j ∈ {1, . . . , i}. By summing all the vectors, we deduce that
ρr,m(σu0

.b1 . . . bi)−ρr,m(σui
) ∈M . Now, just remark that σu0

= ǫ and ui = u.
Let us consider v ∈ invV (X) and let us prove that v ∈ M . Lemma 14.7

shows that there exists a vector v0 ∈ V such that v0[i] < 0 if s[i] = r − 1 and
v0[i] > 0 if s[i] = 0 for any i ∈ {1, . . . ,m} such that ei,m 6∈ V ⊥. By replacing
v0 by a vector in (N\{0}).v0, we can assume that v0 ∈ invV (X), v0[i]+v[i] < 0
if s[i] = r − 1 and v0[i] + v[i] > 0 if s[i] = 0 for any i ∈ {1, . . . ,m} such that
ei,m 6∈ V ⊥. Since [Zr,m,s ∩ A]V 6= [∅]V , there exists a vector a ∈ Zr,m,s ∩ A.
Let a1 = a+ v0 and let a2 = a+ v0 + v. Remark that a1, a2 ∈ Zr,m,s since for
any i ∈ {1, . . . ,m}, if ei 6∈ V ⊥ then a1[i] = a[i]+v0[i], a2[i] = a[i]+v0[i]+v[i]
and if ei ∈ V ⊥ then a1[i] = a[i], a2[i] = a[i]. As a1, a2 ∈ Zr,m,s, there exist
σ1, σ2 ∈ Σ∗

r,m such that a1 = ρr,m(σ1, s) and a2 = ρr,m(σ2, s). By replacing σ1

by a word in σ1.s
∗ and σ2 by a word in σ2.s

∗ we can also assume that |σ1| and
|σ2| are in m.n.Z. Let P ∈ PV (X). Since ρr,m(σi, s) ∈ A and r|σi|m ∈ 1+|Zm∩
V/invV (P )|.Z, lemma 9.22 proves that γ−1

r,m,σi
(P ) = ξr,m(s) + P − ρr,m(σi, s)

for any i ∈ {1, 2}. As ρr,m(σ2, s) − ρr,m(σ1, s) = v0 ∈ invV (X), we deduce
that γ−1

r,m,σ1
(P ) = γ−1

r,m,σ2
(P ) for any P ∈ PV (X). Therefore there exists a

state q′ ∈ Q′ such that δ(q0, σ1) = q′ = δ(q0, σ2). Let us consider the s-eye Y ′

that contains q′. Since γ−1
r,m,σ1.sn(P ) = ξr,m(s)+P−ρr,m(σi.s

n, s) from lemma

9.22, we deduce that (γ−1
r,m,σ1.sn(P ))P∈PV (X) = (γ−1

r,m,σ1
(P ))P∈PV (X). We have

proved that δ(q′, sn) = q′ and in particular q′ ∈ kers(Y
′). By considering

P ∈ PV (X)\{∅} let us remark that γ−1
r,m,σ1

(P ) = ξr,m(s) + P − ρr,m(σi, s)
is not empty. That means q′ ∈ Q′. Moreover, as for any q′′ ∈ kers(Y

′) there

exists a path q′′
s∗

−→ q′ and Pq′ 6= ∅ we get Pq′′ 6= ∅. Thus kers(Y
′) ⊆ Q′.

From the previous paragraph, we get ρr,m(σ2, s)− ρr,m(σ1, s) ∈M . Now, just
remark that ρr,m(σ2, s)−ρr,m(σ1, s) = v and we have proved that v ∈M . ⊓⊔

The following proposition 14.9 provides a simple algorithm for computing
in polynomial time a (r,m)-sign vector s ∈ Sr,m such that [Zr,m,s∩(ξr,m(w)+
V )]V 6= [∅]V from a FDVA that represents a (r,m,w)-cyclic Presburger defin-
able set X in basis r.

Proposition 14.9. Let X ⊆ Zm be a (r,m,w)-cyclic Presburger-definable set
represented by a FDVA A in basis r, and let V be an affine component of
−→
saff(X). We have [Zr,m,s ∩ (ξr,m(w) + V )]V 6= [∅]V for any (r,m)-sign vector
s ∈ Sr,m such that s ∈ [F0](q) where q is a principal state in a terminal
component T such that VG(T ) = V .

Proof. Let us consider a terminal component T of A, a principal state q ∈ T
and a (r,m)-sign vector s ∈ [F0](q). Let Y be the s-eye that contains q.
As T is terminal we deduce that kers(Y ) ⊆ T . From proposition 13.15, we

deduce that saff(X
Fs,Y
q ) = aq(G) + VG(T ). From X

Fs,Y
q ⊆ Zr,m,s ∩ Xq, we

deduce that V ⊆
−→
saff(Zr,m,s ∩ Xq). As q is reachable, there exists a path
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q0
w
−→ q and we get Xq = γ−1

r,m,w(X). As γ−1
r,m,w(Zr,m,s ∩ X) = Zr,m,s ∩ Xq,

we have proved that V ⊆
−→
saff(Zr,m,s ∩ X) thanks to the covering lemma

9.9. Let A be an affine component of saff(Zr,m,s ∩ X) such that V ⊆
−→
A .

From V ⊆
−→
A ⊆

−→
saff(X) and as V is an affine component of

−→
saff(X), we

deduce that V =
−→
A . Moreover, as Zr,m,s ∩ X is (r,m,w)-cyclic we deduce

that ξr,m(w) ∈ A. Hence A = ξr,m(w)+V . From the dense component lemma
12.1, we get saff(Zr,m,s ∩X ∩A) = A. In particular A ⊆ saff(Zr,m,s ∩A) and
we have proved that [Zr,m,s ∩ (ξr,m(w) + V )]V 6= [∅]V . ⊓⊔

A couple (q0, G) and a set Q′ satisfying proposition 14.8 is obtained by
a quotient of a FDVA A that represents X in basis r by the equivalence
relation ∼V defined over the principal states of A by q1 ∼V q2 if and only
if Xq1

∼V Xq2
]V . Remark that ∼V is a polynomial time equivalence relation

since q1 ∼V q2 if and only V is not included in
−→
saff(Xq1

∆Xq2
), and this

last condition can be decided in polynomial because a FDVA that represents
the Presburger-definable set Xq1

∆Xq2
is computable in quadratic time and

the semi-affine hull direction of this set is computable in polynomial time
thanks to theorem 14.6. The following propositions 14.10 and 14.11 provides
immediately the following corollary 14.12.

Proposition 14.10. Let X be a Presburger-definable set and let V be an

affine component of
−→
saff(X). Given a pair (σ1, σ2) of words in Σ∗

r,m, we
have the equality (γ−1

r,m,σ1
(P ))P∈PV (X) = (γ−1

r,m,σ2
(P ))P∈PV (X) if and only if

γ−1
r,m,σ1

(X) ∼V γ−1
r,m,σ2

(X).

Proof. Consider a pair (σ1, σ2) of words in Σ∗
r,m. From lemma 13.8 we de-

duce that [γ−1
r,m,σi

(X)]V =
⋃V

P∈PV (X)([γ
−1
r,m,σi

(P )]V ∩V (CV,P (X) + V ⊥)) for

any i ∈ {1, 2}. As (CV,P (X))P∈PV (X) is a polyhedral V -partition, we get

[γ−1
r,m,σ1

(X)∆γ−1
r,m,σ2

(X)]V =
⋃V

P∈PV (X)([γ
−1
r,m,σ1

(P )∆γ−1
r,m,σ2

(P )]V ∩V (CV,P (X)+

V ⊥)). Remark that if (γ−1
r,m,σ1

(P ))P∈PV (X) = (γ−1
r,m,σ2

(P ))P∈PV (X) then we

have [γ−1
r,m,σ1

(X)∆γ−1
r,m,σ2

(P )]V = [∅]V and conversely if [γ−1
r,m,σ1

(X)∆γ−1
r,m,σ2

(X)]V =

[∅]V , by intersecting the following equality by CV,P (X) + V ⊥, we get [∅]V =
[γ−1

r,m,σ1
(P )∆γ−1

r,m,σ2
(P )]V ∩V (CV,P (X) + V ⊥):

[γ−1
r,m,σ1

(X)∆γ−1
r,m,σ2

(X)]V =

V
⋃

P∈PV (X)

([γ−1
r,m,σ1

(P )∆Γ−1
r,m,σ2

(P )]V ∩V (CV,P (X)+V ⊥))

From lemma 12.2 we get γ−1
r,m,σ1

(P )∆γ−1
r,m,σ2

(P ) = ∅. ⊓⊔

Proposition 14.11. Let X be a Presburger-definable set and V be an affine

component of
−→
saff(X). Given a word σ ∈ Σ∗

r,m, we have (γ−1
r,m,σ(P ))P∈PV (X) =

(∅)P∈PV (X) if and only if γ−1
r,m,σ(X) ∼V ∅.
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Proof. From lemma 13.8 we deduce that [γ−1
r,m,σ(X)]V =

⋃V
P∈PV (X)([γ

−1
r,m,σ(P )]V ∩V

(CV,P (X) + V ⊥)). Remark that if (γ−1
r,m,σ(P ))P∈PV (X) = (∅)P∈PV (X) then

[γ−1
r,m,σ(X)]V = [∅]V and conversely if [γ−1

r,m,σ(X)]V = [∅]V , by intersecting

the equality [γ−1
r,m,σ(X)]V =

⋃V
P∈PV (X)([γ

−1
r,m,σ(P )]V ∩V (CV,P (X) + V ⊥)) by

CV,P (X) + V ⊥, we get [∅]V = [γ−1
r,m,σ(P )]V ∩V (CV,P (X) + V ⊥). From lemma

12.2 we get γ−1
r,m,σ(P ) = ∅. ⊓⊔

Corollary 14.12. Let X be a (r,m,w)-cyclic Presburger-definable set rep-
resented by a FDVA A in basis r, and let V be an affine component of
−→
saff(X). We can compute in polynomial time a couple (q0, G) such that q0
is a principal state of a FDVG G such that δ(q0, σ1) = δ(q0, σ2) if and only
if (γ−1

r,m,σ1
(P ))P∈PV (X) = (γ−1

r,m,σ2
(P ))P∈PV (X) for any σ1, σ2 ∈ Σ∗

r,m, and we
can compute in polynomial time the set Q′ of principal states reachable for [G]
from q0 such that (γ−1

r,m,σ(P ))P∈PV (X) 6= (∅)P∈PV (X) if and only if q′ ∈ Q′ for

any path q0
σ
−→ q′ with σ ∈ Σ∗

r,m.

Let us consider a (r,m,w)-cyclic Presburger definable set X represented
by a FDVA A in basis r. The following proposition 14.13 provides an algorithm
for computing in polynomial time an integer n1 ∈ {1, . . . , |A|} such that there
exists z0 ∈ N\{0} satisfying n1 = z0.|Zm ∩ V/invV (X)|. Naturally the integer
n1 is not necessary relatively prime with r. However, let us remark that n0 =
h∞r (n1) is also computable in polynomial time (by an Euclid’s algorithm) and
it is also in {1, . . . , n1} ⊆ {1, . . . , |A|}. Moreover, as invV (X) is relatively
prime with r (recall that X is cyclic), we deduce that |Zm ∩ V/invV (X)|
divides n0. That means we have provided a polynomial time algorithm for
computing an integer n0 ∈ {1, . . . , |A|} that satisfies proposition 14.8. Now
let us remark that an integer n ∈ {1, . . . , n0} satisfying proposition 14.8 can
be easily computed in polynomial time. In fact, since n0 is relatively prime
with r, there exists an integer n ∈ {1, . . . , n0} such that rn ∈ 1 + n0.Z. By
enumerating the integers in {1, . . . , n0} we compute in polynomial an integer
n satisfying proposition 14.8.

Proposition 14.13. Let X be a cyclic Presburger-definable set and let V be

an affine component of
−→
saff(X). There exists an integer z0 ∈ N\{0} such that

for any (q0, G) and Q′ satisfying the same conditions as the one provided in
proposition 14.8, and for any (r,m)-sign vector s ∈ Sr,m satisfying [Zr,m,s ∩
(ξr,m(w) + V )]V 6= [∅]V , we have the following equality:

|Zm ∩ V/invV (X)| =
1

z0
(

∑

Y s-eye of [G]

kers(Y )⊆Q′

| kers(Y )|)

Proof. Let us recall that A is the V -affine space A = ξr,m(w) + V . As
⋃

P∈PV (X) P is a non empty set included in Zm ∩ A, there exists a vector
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a0 in Zm∩A. As r and |Zm ∩V/invV (X)| are relatively prime, there exists an
integer z1 ∈ N\{0} such that rz1 ∈ 1+ |Zm∩V/invV (X)|.N. As P −a0 is a rel-
atively prime semi-V -pattern included in V and ρr,m(ez1

0,m, e0,m) = e0,m ∈ V ,
lemma 9.22 proves that γ−z1

r,m,e0,m
(P − a0) = P − a0 for any P ∈ PV (X). In

particular, there exists a minimal integer z0 in N\{0} such that there exists
a vector v0 ∈ Zm ∩ V satisfying γ−z0

r,m,e0,m
(P − a0) = P − a0 + v0 for any

P ∈ PV (X). Let us denote by I the set of indexes i ∈ {1, . . . ,m} such that
ei,m 6∈ V ⊥. Let us consider s ∈ Sr,m such that [A ∩ (ξr,m(w) + V )]V 6= [∅]V .
Let Qs be the union of the s-kernel kers(Y ) where Y is an s-eye of G such
that kers(Y ) ⊆ Q′.

We are going to prove that there exists a one-to-one function from Qs

to {0, . . . , z0 − 1} × B0 by remarking that for any z, z′ ∈ {0, . . . , z0 − 1}
and for any v, v′ ∈ B0 such that (ξr,m(s)+ γ−z

r,m,e0,m
(P − a0 + v))P∈PV (X) and

(ξr,m(s)+γ−z′

r,m,e0,m
(P −a0+v′))P∈PV (X) are equal, we have v = v′ and z = z′.

Thanks to this one-to-one function we will obtain |Qs| = z0.|Zm∩V/invV (X)|
and concluded the proof of the proposition.

Let us prove that for any state q ∈ Qs, there exists z ∈ {0, . . . , z0−1} and
v ∈ B0 such that Pq = ξr,m(s) + γ−z

r,m,e0,m
(P − a0 + v) for any P ∈ PV (X).

Let Y be the s-eye such that q ∈ kers(Y ) ⊆ Q′. As q is reachable, there

exists a path of the form q0
σ
−→ q. As q ∈ kers(Y ), there exists n ∈ N\{0}

such that q
sn

−→ q. By replacing n by an integer enough larger in n.(N\{0}),
we can assume that there exists α, β ∈ N and z ∈ {0, . . . , z0 − 1} such that
n = α + z + β.z0 and |σ|m + α ∈ z1.N. Let q′ = δ(q, sα). As (∅)P∈PV (X) is
not in kers(Y ), we deduce that there exists P ∈ PV (X) such that Pq′ 6= ∅.
Moreover, as Pq′ is (r,m, sn)-cyclic and non-empty, from destruction lemma
13.14, we get ξr,m(s) ∈ saff(Pq′ ). From Pq′ = γ−1

r,m,σ.sα(P ), covering lemma

9.9 proves that saff(Pq′) ⊆ Γ−1
r,m,σ.sα(saff(P )) and P ⊆ A, we deduce that

ξr,m(s) ∈ Γ−1
r,mσ.sα(A). Therefore ρr,m(σ.sα, s) ∈ A. Moreover as |σ.sα|m ∈

1 + z1.N, we deduce from lemma 9.22 that Pq′ = ξr,m(s) +P − ρr,m(σ, s). Let
v′ = a0 − ρr,m(σ, s). As a0 and ρr,m(σ, s) are both in A, we deduce that v′ ∈

Zm∩V . Remark that Pq = γ
−(z+β.z0)
r,m,s (ξr,m(s)+P−a0+v

′) and we have proved

that Pq = ξr,m(s)+γ
−(z+β.z0)
r,m,e0,m (P−a0+v′) for any P ∈ PV (X). Let us consider

an integer u ∈ N such that u.r ∈ 1 + |Zm ∩ V/invV (X)|.N. An immediate
induction over β ∈ N provides γ−β.z0

r,m,e0,m
(P − a0 + v′) = P − a0 + v where v is

the vector in B0 satisfying v ∈ uβ.z0 .v′ + (u(β−1).z0 + · · ·u0.z0).v0 + invV (X).
Hence Pq = ξr,m(s) + γ−z

r,m,e0,m
(P − a+ v) for any P ∈ PV (X).

Now, let us prove that for any z ∈ {0, . . . , z0 − 1} and any v ∈ B0, there
exists a state q ∈ Qs such that Pq = ξr,m(s) + γ−z

r,m,e0,m
(P − a0 + v) for any

P ∈ PV (X). From lemma 14.7 we deduce that there exists a vector v0 ∈ V
such that v0[i] < 0 if s[i] = r − 1 and v0[i] > 0 if s[i] = 0 for any i ∈ I.
By replacing v0 by a vector in (N\{0}).v0, we can assume that v0 ∈ invV (X)
and (a − v + v0)[i] > 0 if s[i] = 0 and (a − v + v0)[i] < 0 if s[i] = r − 1
for any i ∈ I. As [Zr,m,s ∩ A]V 6= [∅]V , there exists a vector a in Zr,m,s ∩ A.
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Remark that for any i ∈ {1, . . . ,m}, if i ∈ I the sign of (a0 − v + v0)[i]
is s[i] and if i 6∈ I, as ei,m ∈ V ⊥, we have (a0 − v + v0)[i] = a0[i] = a[i]
and form a ∈ Zr,m,s, we also deduce that the sign of (a0 − v + v0)[i] is
s[i]. Hence a − v + v0 ∈ Zr,m,s. That implies there exists a word σ ∈ Σ∗

r,m

such that ρr,m(σ, s) = a − v + v0. By replacing σ by a word in σ.s∗, we can
assume that |σ|m ∈ z1.N. From ρr,m(σ, s) ∈ A and |σ|m ∈ z1.N, lemma 9.22
shows that γ−1

r,m,σ(P ) = ξr,m(s) + P − ρr,m(σ, s) = ξr,m(s) + P − a0 + v + v0.
From P + v0 = P , we deduce that γ−1

r,m,σ(P ) = ξr,m(s) + P − a0 + v. Hence

γ−1
r,m,σ.sz(P ) = ξr,m(s)+γ−1

r,m,e0,m
(P −a0 +v). Let q = δ(q0, σ.s

z) and let Y be

the s-eye that contains q. As γ−1
r,m,sz1 (Pq) = Pq for any P ∈ PV (X), we deduce

that q ∈ kers(Y ). Moreover, as there exists P ∈ PV (X)\{∅} we deduce that

Pq 6= ∅. Remark that for any q′ ∈ kers(Y ) there exists a path q′
s∗

−→ q and
Pq 6= ∅, we deduce that Pq′ 6= ∅. Hence kers(Y ) ⊆ Q′. Therefore q ∈ Qs. ⊓⊔

Theorem 14.14. Given a cyclic Presburger-definable set X ⊆ Zm repre-

sented by a FDVA A in basis r, and given an affine component V of
−→
saff(X)

and given a full rank set of indices I of V , the I-representation of invV (X)
is computable in polynomial time. Moreover |Zm ∩ V/invV (X)| is bounded by
the number of principal states of A.

14.3 Boundary of a Presburger-definable FDVA

Let X be a Presburger-definable set and V be an affine component of
−→
saff(X).

The V -boundary boundV (X) of X is defined by the following equality:

boundV (X) =
⋃

P∈PV (X)

boundV (CV,P (X))

In this section, we prove that boundV (X)\(
⋃m

j=1{V ∩e⊥
j,m}) is computable in

polynomial time from a FDVA that represents X .
The set boundV (X) plays an important role as proved by the following

proposition 14.15 (see also figure 14.2).

Proposition 14.15. Let X be a Presburger-definable set and let V be an

affine component of
−→
saff(X). For any H ∈ boundV (X), there exist two dif-

ferent semi-V -patterns P< 6= P> in PV (X), an open convex V -polyhedron
CH satisfying [CH ∩H<]V 6= [∅]V , [CH ∩H>]V 6= [∅]V and such that:

[X∩(CH +V ⊥)]V = [P<∩((CH ∩H<)+V ⊥)]V ∪V [P>∩((CH ∩H>)+V ⊥)]V

Moreover, if X is (r,m,w)-cyclic then one of these two sets is (r,m)-detectable
in X:

(P< ∩ (ξr,m(w) +H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H≥ + V ⊥))

(P< ∩ (ξr,m(w) +H≤ + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H> + V ⊥))
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Fig. 14.2. On top left a semi-Q2-pattern P <, on top right a semi-Q2-pattern P >, on
bottom left an open convex Q2-polyhedron CH and a Q2-hyperplane H , on bottom
right the set (P < ∩ CH ∩H<) ∪ (P > ∩ CH ∩H>).

Proof. Let H ∈ boundV (X) and let us prove that there exist two different
semi-V -patterns P< 6= P> in PV (X), an open convex V -polyhedron CH sat-
isfying [CH ∩ H<]V 6= [∅]V , [CH ∩ H>]V 6= [∅]V and such that [X ∩ (CH +
V ⊥)]V = [P<∩((CH∩H<)+V ⊥)]V ∪V [P>∩((CH∩H>)+V ⊥)]V . From decom-
position theorem 12.4, we have [X ]V =

⋃

P∈PV (X)([P ]V ∩ (CV,P (X) + V ⊥)).

Let H ∈ boundV (X) and let H′ = boundV (X)\{H}. By definition of
boundV (X), there exists P0 ∈ PV (X) such that H ∈ boundV (CV,P0

(X)).
Hence, there exist an open convex V -polyhedron C and #0 ∈ {<,>} such that
[C ∩H<]V 6= [∅]V , [C ∩H>]V 6= [∅]V and CV,P0

(X) ∩V [C]V = [C ∩H#0 ]V .

From lemma 11.10, we deduce that there exists #′ ∈ {<,>}H
′

such that
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[C∩CV,#′ ∩H<]V 6= [∅]V , [C∩CV,#′ ∩H>]V 6= [∅]V . Let us denote by CH the
open convex V -polyhedron CH = C ∩ CV,#′ . Since H′ ∪ {H} = boundV (X)
we deduce that CV,P (X) ∩ [CV,#′ ∩ H#]V is either equal to [∅]V or equal
to [CV,#′ ∩ H#]V for any P ∈ PV (X) and for any # ∈ {<,>}. By defi-
nition of the sequence (CV,P (X))P∈PV (X) (a kind of partition of [V ]V ) and

since [CH ∩ H#]V 6= [∅]V , there exists a unique P# ∈ PV (X) such that
CV,P#(X) ∩V [CH ∩ H#]V = [CH ∩ H#]V . Since CV,P0

(X) ∩V [CH ]V =
[CH ∩ H#0 ]V we deduce that CV,P0

(X) ∩V [CH ∩ H#0 ]V = [CH ∩ H#0 ]V

and CV,P0
(X) ∩V [CH ∩ H#1 ]V = [∅]V where #1 ∈ {<,>}\{#0}. Hence

P#0 = P0 and P#1 6= P0. That means P< 6= P> and we have proved that
[X∩(CH +V ⊥)]V = [(P<∩((CH ∩H<)+V ⊥))∪(P>∩((CH ∩H>)+V ⊥))]V

with P< 6= P> in PV (X).
Now, assume that X is (r,m,w)-cyclic, let A be the V -affine space A =

ξr,m(w) + V . Let H ∈ boundV (X), let P< and P> be two different semi-
V -patterns in PV (X), let CH be an open convex V -polyhedron such that
[CH ∩H<]V 6= [∅]V , [CH ∩H>]V 6= [∅]V and such that [X ∩ (CH + V ⊥)]V =
[P< ∩ ((CH ∩H<) + V ⊥)]V ∪V [P> ∩ ((CH ∩H>) + V ⊥)]V , and let us prove
that one of these two sets is (r,m)-detectable in X :

(P< ∩ (ξr,m(w) +H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H≥ + V ⊥))

(P< ∩ (ξr,m(w) +H≤ + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H> + V ⊥))

Let X ′ = X ∩ A. Corollary 13.11 shows that Zm ∩ A is (r,m)-detectable

in X . By replacing CH by
−→
CH , we can assume that CH =

−→
CH . Let X ′ =

X ∩ A. Corollary 13.11 shows that Zm ∩ A is (r,m)-detectable in X and in
particular X ′ is (r,m)-detectable in X . Since X is (r,m,w)-cyclic and P is
(r,m)-detectable in X from corollary 13.9, we deduce that any P ∈ PV (X) is
(r,m,w)-cyclic. From lemma 9.20, we deduce that any P ∈ PV (X) is relatively
prime with r and included in A.

Let us prove that by modifying CH , we can assume thatX ′\(ξr,m(w)+H)∩
(ξr,m(w)+CH+V ⊥) = (P<∩(ξr,m(w)+CH∩H<+V ⊥))∪(P>∩(ξr,m(w)+CH∩
H> + V ⊥)). Let Z = (X ′\(ξr,m(w) + V ) ∩ (ξr,m(w) + CH + V ⊥))∆((P< ∩
(ξr,m(w) + CH ∩ H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) + CH ∩ H> + V ⊥))). From
[X∩(CH+V ⊥)]V = [(P<∩((CH∩H<)+V ⊥))∪(P>∩((CH∩H>)+V ⊥))]V , we
deduce that [Z]V = [∅]V . Since X ′, P< and P> are included in A, we deduce

that saff(Z) ⊆ A. In particular
−→
saff(Z) ⊆ V . Since [Z]V = [∅]V , we deduce

that V is not included in
−→
saff(Z). Assume by contradiction that H ⊆

−→
saff(Z).

There exists an affine component W of
−→
saff(X) such that H ⊆W . Since H is

a V -hyperplane, either W = H or W = V . The last case is not possible since

V is not included in
−→
saff(Z). Hence W = H is an affine component of

−→
saff(Z).

Since saff(Z) = ξr,m(w) +
−→
saff(Z) we deduce that ξr,m(w) + H is an affine

component of saff(Z). From the dense component lemma 12.1, we deduce that
saff(Z ∩ (ξr,m(w)+H)) = ξr,m(w)+H . As Z ∩ (ξr,m(w)+H) = ∅, we deduce
a contradiction. Hence, there exists a finite set H0 of V -hyperplane such that
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−→
H0 = H0, H 6∈ H0 and such that

−→
saff(Z) ⊆

⋃

H0∈H0
H0. Thanks to lemma

11.10, we deduce that there exists # ∈ {<,>}H0 such that [CH∩CV,#∩H>] 6=
[∅]V and [CH ∩ CV,# ∩ H<] 6= [∅]V . Hence, by replacing CH by CH ∩ CV,#,
since Z ∩ CV,# = ∅, we can assume without loss of generality that Z = ∅.
Thus X ′\(ξr,m(w)+V )∩(ξr,m(w)+CH +V ⊥) = (P<∩(ξr,m(w)+CH ∩H< +
V ⊥)) ∪ (P> ∩ (ξr,m(w) + CH ∩H> + V ⊥)).

Assume first that Zm ∩ (ξr,m(w) + V ) is (r,m)-detectable in X and let us
show that X ′′ = (P< ∩ (ξr,m(w) +H< +V ⊥))∪ (P> ∩ (ξr,m(w) +H> +V ⊥))
is (r,m)-detectable in X . Let us consider a pair (σ1, σ2) of words in Σ∗

r,m

such that γ−1
r,m,σ1

(X) = γ−1
r,m,σ2

(X). Let us consider x ∈ γ−1
r,m,σ1

(X ′′). Then

γr,m,σ1
(x) ∈ (P< ∩ (ξr,m(w) + H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) + H> + V ⊥)).

By definition of v, there exists an integer k ∈ N enough larger such that
γr,m,σ1

(x+k.v) is in X ′′∩(ξr,m(w)+CH +V ⊥) and such that γr,m,σ2
(x+k.v) ∈

ξr,m(w) +CH + V ⊥. Since X ′′ ∩ (ξr,m(w) +CH + V ⊥) = X ′\(ξr,m(w) +H)∩
(ξr,m(w) + CH + V ⊥), we deduce that γr,m,σ1

(x + k.v) ∈ X ′\(ξr,m(w) +H).
Since X ′ and Zm ∩ (ξr,m(w) +H) are both (r,m)-detectable in X , we deduce
that γr,m,σ2

(x+ k.v) ∈ X ′\(ξr,m(w) +H). Moreover, as γr,m,σ2
(x+ k.v)(x) ∈

(ξr,m(w) +CH + V ⊥), we have proved that γr,m,σ2
(x+ k.v) ∈ X ′\(ξr,m(w) +

H)∩(ξr,m(w)+CH +V ⊥). Since this last set is equal to X ′′∩(ξr,m(w)+CH +
V ⊥) we get γr,m,σ2

(x+k.v) ∈ X ′′. By definition of v, we get γr,m,σ2
(x) ∈ X ′′.

Therefore X ′′ is (r,m)-detectable in X .
We deduce that if Zm ∩ (ξr,m(w) + H) is (r,m)-detectable in X , since

P< ∩ (ξr,m(w) +H) and P> ∩ (ξr,m(w) +H) are both (r,m)-detectable in X
as the intersection of (r,m)-detectable sets, the following two sets are (r,m)-
detectable in X :

(P< ∩ (ξr,m(w) +H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H≥ + V ⊥))

(P< ∩ (ξr,m(w) +H≤ + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H> + V ⊥))

Now, assume that Zm ∩ (ξr,m(w) +H) is not (r,m)-detectable in X
Let us first show that there exists a pair (σ1, σ2) of words such that

γ−1
r,m,σ1

(X) = γ−1
r,m,σ2

(X), Γ−1
r,m,σ1

(ξr,m(w) + V ) and Γ−1
r,m,σ2

(ξr,m(w) + V ) are
equal, Zm∩Γ−1

r,m,σ1
(ξr,m(w)+H) is not empty, and such that Γ−1

r,m,σ1
(ξr,m(w)+

H + V ⊥) and Γ−1
r,m,σ2

(ξr,m(w) +H + V ⊥) have an empty intersection. Since
Zm∩(ξr,m(w)+H) is not (r,m)-detectable in X , there exists a pair (σ1, σ2) of
words in Σ∗

r,m such that γ−1
r,m,σ1

(X) = γ−1
r,m,σ2

(X) and such that γ−1
r,m,σ1

(Zm ∩
(ξr,m(w) + H)) and γ−1

r,m,σ2
(Zm ∩ (ξr,m(w) + H)) are disjoint. Remark that

γ−1
r,m,σi

(Zm∩(ξr,m(w)+H)) = Zm∩Γ−1
r,m,σi

(ξr,m(w)+H) for any i ∈ {1, 2}. By
replacing (σ1, σ2) by (σ2, σ1), we can assume that Zm ∩ Γ−1

r,m,σ1
(ξr,m(w) +H)

is not empty. Since Zm ∩ (ξr,m(w) + V ) is (r,m)-detectable in X , we deduce
that Zm ∩ Γ−1

r,m,σ1
(ξr,m(w) + V ) and Zm ∩ Γ−1

r,m,σ2
(ξr,m(w) + V ) are equal.

Moreover, as Zm ∩Γ−1
r,m,σ1

(ξr,m(w)+H) is non empty and H ⊆ V , we deduce
that the sets Zm∩Γ−1

r,m,σ1
(ξr,m(w)+V ) and Zm∩Γ−1

r,m,σ2
(ξr,m(w)+V ) are non

empty. Taking the semi-affine hull of these sets, we get Γ−1
r,m,σ1

(ξr,m(w)+V ) =

Γ−1
r,m,σ2

(ξr,m(w)+V ). Assume by contradiction that Γ−1
r,m,σ1

(ξr,m(w)+H+V ⊥)
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and Γ−1
r,m,σ2

(ξr,m(w) + H + V ⊥) have a non empty intersection and let x

be a vector in this intersection. From x ∈ Γ−1
r,m,σ1

(ξr,m(w) + H + V ⊥) we

deduce that there exists v⊥ ∈ V ⊥ such that x − v⊥ ∈ Γ−1
r,m,σ1

(ξr,m(w) +
H) ⊆ Γ−1

r,m,σ1
(ξr,m(w) + V ). From Γ−1

r,m,σ1
(ξr,m(w) + V ) = Γ−1

r,m,σ2
(ξr,m(w) +

V ), we deduce that x − v ∈ Γ−1
r,m,σ2

(ξr,m(w) + V ). Moreover, since x ∈

Γ−1
r,m,σ2

(ξr,m(w) + H + V ⊥), we get x − v ∈ Γ−1
r,m,σ2

(ξr,m(w) + H). There-
fore Γ−1

r,m,σ1
(ξr,m(w) +H) and Γ−1

r,m,σ2
(ξr,m(w) + H) are equal and we get a

contradiction.
Since Γ−1

r,m,σ1
(ξr,m(w) +H + V ⊥) and Γ−1

r,m,σ2
(ξr,m(w) +H + V ⊥) have an

empty intersection, there exists # ∈ {<,>} such that Γ−1
r,m,σ1

(ξr,m(w) +H +

V ⊥) ⊆ Γ−1
r,m,σ1

(ξr,m(w) +H# + V ⊥).
Let us consider the (r,m,w)-cyclic Presburger definable set X ′

H = X ′ ∩

(ξr,m(w) +H) and the semi-H-pattern P#
H = P# ∩ (ξr,m(w) +H), and let us

prove the following equality:

γ−1
r,m,σ1

(X ′
H ∩ (ξr,m(w) + CH ∩H)) = γ−1

r,m,σ1
(P#

H ∩ (ξr,m(w) + CH ∩H))

Remark that γ−1
r,m,σ2

(X ′\(ξr,m(w) +H)) ∩ Γ−1
r,m,σ1

(ξr,m(w) + CH ∩ H + V ⊥)

is equal to γ−1
r,m,σ2

(X ′)\Γ−1
r,m,σ2

(ξr,m(w) +H + V ⊥) ∩ Γ−1
r,m,σ1

(ξr,m(w) +CH ∩

H + V ⊥). Since Γ−1
r,m,σ1

(ξr,m(w) +H + V ⊥) and Γ−1
r,m,σ2

(ξr,m(w) +H + V ⊥)
have an empty intersection, and γ−1

r,m,σ1
(X ′) = γ−1

r,m,σ2
(X ′), we deduce that

γ−1
r,m,σ2

(X ′\(ξr,m(w) + CH ∩ H + V ⊥)) ∩ Γ−1
r,m,σ1

(ξr,m(w) + CH ∩ H + V ⊥)

is equal to γ−1
r,m,σ1

(X ′
H ∩ (ξr,m(w) + CH ∩ H + V ⊥)). On the other hand,

since X ′\(ξr,m(w) + H + V ⊥) ∩ (ξr,m(w) + VH + V ⊥) =
⋃

#′∈{<,>}(P
#′

∩

(ξr,m(w) + CH ∩ H#′

+ V ⊥))), we get γ−1
r,m,σ2

(X ′\(ξr,m(w) + H + V ⊥) ∩

(ξr,m(w)+VH +V ⊥))∩Γ−1
r,m,σ1

(ξr,m(w)+H+V ⊥) =
⋃

#′∈{<,>}(γ
−1
r,m,σ2

(P#′

)∩

Γ−1
r,m,σ2

(ξr,m(w) + CH ∩ H#′

+ V ⊥) ∩ Γ−1
r,m,σ1

(ξr,m(w) + H + V ⊥)). Remark

that Γ−1
r,m,σ2

(ξr,m(w) + H#′

+ V ⊥) and Γ−1
r,m,σ1

(ξr,m(w) + H + V ⊥) have
an empty intersection if #′ is not equal to # and Γ−1

r,m,σ2
(ξr,m(w) + CH ∩

H# + V ⊥) ∩ Γ−1
r,m,σ1

(ξr,m(w) + H + V ⊥) = Γ−1
r,m,σ2

(ξr,m(w) + CH + V ⊥) ∩

Γ−1
r,m,σ1

(ξr,m(w)+H+V ⊥). As Γ−1
r,m,σ1

(ξr,m(w)+V ) = Γ−1
r,m,σ2

(ξr,m(w)+V ) and
−→
CH = CH , we deduce that Γ−1

r,m,σ2
(ξr,m(w) + CH + V ⊥) = Γ−1

r,m,σ1
(ξr,m(w) +

CH + V ⊥). Moreover, since γ−1
r,m,σ2

(P#) = γ−1
r,m,σ1

(P#), we have proved

that γ−1
r,m,σ2

(X ′\(ξr,m(w) +H + V ⊥)) ∩ Γ−1
r,m,σ1

(ξr,m(w) + CH ∩H + V ⊥) =

γ−1
r,m,σ1

(P# ∩ (ξr,m(w)+CH ∩H+V ⊥)). Combining the two equalities proved
in this paragraph, we are done.

Let us prove that CH ∩H is a non H-degenerate H-polyhedron. The proof
is obtained thanks to lemma 11.6. Since [CH ∩ H#]V 6= [∅]V , there exists a
vector v# ∈ H# ∩ CH . Now just remark that there exists k<, k> in Q+\{0}
such that v = k<.v< +k>.v> is in H . In particular v ∈ H ∩CH . Thus H ∩CH

is non-H-degenerate.
Next, let us prove that [X ′

H ∩ (ξr,m(w) + CH ∩H)]H = [P#
H ∩ (ξr,m(w) +

CH ∩ H)]H . Since γ−1
r,m,σ1

(Zm ∩ (ξr,m(w) + H)) is non empty, there ex-
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ists a (r,m)-decomposition (w, s) such that ρr,m(w, s) is in this set. By re-
placing w by a word in w.s∗, since invV (P#) is relatively prime with r,
we can assume that r|σ1.w|m ∈ 1 + |Zm ∩ V/invV (P#)|.Z. From lemma
9.22 we get γ−1

r,m,σ1.w(P#) = ξr,m(w) + P# − ρr,m(σ1.w, s). In particular,

if [X ′
H ]H = [∅]H , then [γ−1

r,m,σ1.w(X ′
H)]H = [∅]H and from the equality

γ−1
r,m,σ1

(X ′
H ∩ (ξr,m(w) + CH ∩ H)) = γ−1

r,m,σ1
(P#

H ∩ (ξr,m(w) + CH ∩ H))

we deduce that [γ−1
r,m,σ1.w(P#

H ∩ (ξr,m(w) + CH ∩ H))]H = [∅]H . Since CH ∩

H is non H-degenerate, we get [P#
H ]H = [∅]H and we have proved that

[X ′
H ∩ (ξr,m(w) + CH ∩ H)]H = [P#

H ∩ (ξr,m(w) + CH ∩ H)]H . So, we can
assume that [X ′

H ]H 6= [∅]H . In this case H is an affine component of the
(r,m,w)-cyclic Presburger definable set X ′

H . In particular invH(X ′
H) is rela-

tively prime with r and by replacing w by a word in w.s∗ we can assume that
r|σ1.w|m ∈ 1 + |Zm ∩H/invH(X)|.Z. Since ρr,m(σ.w, s) ∈ Zm ∩ (ξr,m(w) +H),
from lemma 9.22 we deduce that γ−1

r,m,σ1.w(P ) = ξr,m(s) + P − ρr,m(σ1.w, s).

From [X ′
H ]H =

⋃H
P∈PH(X′

H )([P ]H ∩H CH,P (X ′
H) + H⊥), we deduce that

[γ−1
r,m,σ1.w(X ′

H)]H =
⋃H

P∈PH(X′
H

)([γ
−1
r,m,σ1.w.s(P )]H ∩H CH,P (X ′

H)+H⊥). From

the equality [X ′
H ∩ (ξr,m(w) + CH ∩ H)]H = [P#

H ∩ (ξr,m(w) + CH ∩ H)]H ,
decomposition theorem 12.4 shows that there exists P ∈ PH(X ′

H) such that

[CH ∩H ]H ⊆H CH,P (X ′
H) and such that γ−1

r,m,σ1.w(P ) = γ−1
r,m,σ1.w(P#

H ). Since

γ−1
r,m,σ1.w(P ) = ξr,m(s) + P − ρr,m(σ1.w, s) and γ−1

r,m,σ1.w(P#
H ) = ξr,m(s) +

P#
H − ρr,m(σ1.w, s) we get P = P#

H . Thus [X ′
H ∩ (ξr,m(w) + CH ∩ H)]H =

[P#
H ∩ (ξr,m(w) + CH ∩H)]H and we are done.
Let us consider the set E = (P<∩(ξr,m(w)+H<+V ⊥))∪(P#∩(ξr,m(w)+

H + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H≥ + V ⊥)) and remark that these set is equal
to one of the following two sets and it is such that [Z]H = [∅]H where Z =
(X ′∆E) ∩ (ξr,m(w) + CH + V ⊥).

(P< ∩ (ξr,m(w) +H< + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H≥ + V ⊥))

(P< ∩ (ξr,m(w) +H≤ + V ⊥)) ∪ (P> ∩ (ξr,m(w) +H> + V ⊥))

Let us prove that E is (r,m)-detectable inX . Consider a pair (w1, w2) of words
inΣ+

r,m such that γ−1
r,m,w1

(X) = γ−1
r,m,w2

(X). SinceX ′ is (r,m)-detectable inX ,
we deduce that tγ−1

r,m,w1
(X ′) = γ−1

r,m,w2
(X ′). From Z = (X ′∆E) ∩ (ξr,m(w) +

CH + V ⊥), we deduce that Z ′ = (γ−1
r,m,w1

(E)∆γ−1
r,m,w2

(E))∩ (C′ +V ⊥) where

C′ is the open convex V -polyhedron such that C′ + V ⊥ = Γ−1
r,m,w1

(ξr,m(w) +

CH +V ⊥)∩Γ−1
r,m,w2

(ξr,m(w)+CH +V ⊥) and Z ′ = (γ−1
r,m,w1

(E)∆γ−1
r,m,w2

(E))∩

(C′ + V ⊥). Since [Z]H = [∅]H , from covering lemma 9.9, we get [Z ′]H = [∅]H .
Moreover, as [C′]V = [CH ]V , we deduce that C′ is non V -degenerate and such
that [C′∩H<]V and [C′∩H>]V are both non equal to [∅]V . Let us remark that
γ−1

r,m,w1
(E)∆γ−1

r,m,w2
(E) is a semi-H-pattern and C′∩H is a non-H-degenerate

H-polyhedron from lemma 11.11. Since [Z ′]H = [∅]H , we deduce from lemma
12.2 that γ−1

r,m,w1
(E) = γ−1

r,m,w(E). Thus E is (r,m)-detectable. We are done.
⊓⊔
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Recall that a semi-V -pattern P detectable in a (r,m,w)-cyclic set X are
relatively prime with r. The following proposition will become useful in the
last section in order to check that some sets that must be detectable in X if
X is Presburger-definable are effectively detectable in X .

Proposition 14.16. Let A be a FDVA, let P1 = B1+M , P2 = B2+M be two
semi-V -patterns where B1, B2 are two finite subsets of Zm, and M is a V -
vector lattices included in Zm relatively prime with r, let H be a V -hyperplane,
let a0 ∈ Qm and let (#1,#2) ∈ {(<,≥), (≤, >)}. Assume that there exists
a final function Fi such that Pi is represented by AFi . We can decide in
polynomial time if there exists a final function F such that the following set
is represented by AF :

(P1 ∩ (a0 +H#1 + V ⊥)) ∪ (P2 ∩ (a0 +H#2 + V ⊥))

Proof. From proposition 4.6 we deduce in polynomial time a set U of pairs
(σa, σb) of words in Σ∗

r such that |σa|+m.Z = |σb|+m.Z for any (σa, σb) ∈ U
and such that a set X ′ ⊆ Zm is represented by a FDVA of the form AF if
and only if γ−1

r,m,σa
(X ′) = γ−1

r,m,σb
(X ′) for any (σa, σb) ∈ U . Let X ′ be the set

X ′ = (P1 ∩ (a0 +H#1 + V ⊥)) ∪ (P2 ∩ (a0 +H#2 + V ⊥)). Since γ−1
r,m,σa

(Pi) =
γ−1

r,m,σb
(Pi) for any i ∈ {1, 2}, for proving the proposition, it is sufficient to

show that given a pair (σa, σb) of words such that |σa| + m.Z = |σb| + m.Z
and γ−1

r,m,σa
(Pi) = γ−1

r,m,σb
(Pi) for any i, we can decide in polynomial time

if γ−1
r,m,σa

(X ′) = γ−1
r,m,σb

(X ′). In polynomial time, we can compute a vector

α ∈ Zm ∩V such that H# = {x ∈ V ; 〈α, x〉#0} for any # ∈ {<,≤,=,≥, >}.
Let z ∈ {0, . . . ,m − 1} such that |σa| + m.Z = z + m.Z = |σb| + m.Z, let
αz be the vector in Zm such that

〈

α, γz
r,m,0(x)

〉

= 〈αz, x〉 for any x ∈ Qm,

and let Vz be the vector space Vz = Γ−z
r,m,0(V ). Proposition 9.18 proves that

we can compute in polynomial time two finite subsets B′
1 and B′

2 of Zm such

that γ−1
r,m,σa

(Pi) = B′
i + γ

−|σ|
r,m,0(M). Since M is relatively prime with r, we

deduce that γ
−|σ|
r,m,0(M) is equal to Mz = γ−z

r,m,0(M). Note that γ−1
r,m,σb

(Pi) =

B′
i + Mz. Let ca = r

z−|σa|
m . 〈α, a0〉 and cb = r

z−|σb|

m . 〈α, a0〉. Observe that
x ∈ Γ−1

r,m,σa
(a0 + H# + V ⊥) if and only if Γr,m,σa

(x) ∈ a0 + H# + V if
and only if 〈α, Γr,m,σa

(x)〉# 〈α, a0〉 if and only if 〈αz, x〉#ca. We deduce the
following equalities (the equality with σb is obtained by symmetry):

{

γ−1
r,m,σa

(X ′) = {x ∈ B′
1 +Mz; 〈αz , x〉#1ca} ∪ {x ∈ B′

2 +Mz; 〈αz, x〉#2ca}

γ−1
r,m,σb

(X ′) = {x ∈ B′
1 +Mz; 〈αz , x〉#1cb} ∪ {x ∈ B′

2 +Mz; 〈αz, x〉#2cb}

If ca = cb then γ−1
r,m,σa

(X ′) = γ−1
r,m,σ2

(X ′). Otherwise, by symmetry, we can
assume that ca < cb. In this case, the set γ−1

r,m,σa
(X ′)∆γ−1

r,m,σb
(X ′) is equal to

the following set:

{x ∈ (B′
1 +Mz)∆(B′

2 +Mz); ca(−#2) 〈αz, x〉#1cb}
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Let us consider the set B equal to the union of the set of vectors b ∈ B1 such
that there does not exist b2 ∈ B2 such that b− b2 ∈Mz and the set of vectors
b ∈ B2 such that there does not exist b1 ∈ B1 satisfying b− b1 ∈Mz. Observe
that B is computable in polynomial time and (B′

1+Mz)∆(B′
2+Mz) = B+Mz.

Thus we have reduced our problem to decide if there exists b ∈ B such that
the following set is non empty where c′1 = ca − 〈αz, b〉, c′2 = cb − 〈αz, b〉, and
(#′

1,#
′
2) = (−#2,#1):

{x ∈Mz; c
′
1#

′
1 〈αz, x〉#′

2c
′
2}

From an Hermite representation of Mz, we deduce in linear time a Z-basis v1,
..., vd of Mz. Note that the set {〈αz, x〉 ; x ∈Mz} is equal to

∑d
i=1 Z. 〈αz, vi〉.

Thus, considering the lattice generated by {〈αz, vi〉 ; 1 ≤ i ≤ d}, we compute
in polynomial time a rational number µ > 0 such that {〈αz , x〉 ; x ∈ Mz} is
equal to Z.µ. We deduce that {x ∈ Mz; c

′
1#

′
1 〈αz , x〉#′

2c
′
2} is non empty if

and only if there exists an integer z ∈ Z such that
c′1
µ

#′
1z#

′
2

c′2
µ

. This property
property is decidable in linear time. We are done. ⊓⊔

14.3.1 A polynomial time algorithm

As for any pair of serialized encoded FDVA (A1,A2), we can compute in
quadratic time a serialized encoded FDVA A that represents X1∆X2 where
Xi is the set represented by Ai, the following proposition 14.17 shows that
our computation problem can be effectively done in polynomial time thanks
to the semi-affine hull direction computation.

Proposition 14.17. Let X be a Presburger-definable set represented by a

FDVA A and let V be an affine component of
−→
saff(X). Consider IA(V ), the

set of pairs of states (q1, q2) ∈ T × T where T is a terminal component such
that VG(T ) = V and such that q1 ∼V q2. We have the following equality:

boundV (X)\(
m
⋃

j=1

{V ∩ e
⊥
j,m}) = comp(

⋃

(q1,q2)∈IA(V )

−→
saff(Xq1

∆Xq2
))

Proof. Let J be the set of indices in {1, . . . ,m} such that V ∩ e⊥j,m is a
V -hyperplane. As boundV (X) contains only V -hyperplanes, we deduce that
boundV (X)\(

⋃m
j=1{V ∩ e⊥j,m}) and boundV (X)\(

⋃

j∈J{V ∩ e⊥j,m}) are equal.
We denote by H0 this class. The semi-affine space S =

⋃

H∈H0
H satisfies

comp(S) = H0. Consider the semi-affine space S′ =
⋃

(q1,q2)∈IA(V )

−→
saff(Xq1

∆Xq2
).

We have to prove that S = S′.
Let us first prove the inclusion S′ ⊆ S. Let (q1, q2) ∈ IA(V ) and let

W =
−→
saff(Xq1

∆Xq2
). Naturally, if W = ∅, we immediately have W ⊆ S. So

we can assume that W 6= ∅. Let us consider an affine component A0 of W .
From theorem 13.17 there exists a1, a2 ∈ Qm satisfying the following equal-

ity (where i ∈ {1, 2}) and such that −1 < ai[j] < 0 for any (i, j) ∈ {1, 2}× J :
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Xqi
=

⋃

P∈PV (X)

⋃

#∈SV,P (X)

Pqi
∩ (ai + CV,# + V ⊥)

We denote by vi the vector vi = ΠV (ai) for i ∈ {1, 2}. Remark that
Pq1

= Pq2
for any P ∈ PV since q1 ∼V q2. We denote by Pq1,q2

this semi-V -
pattern.

Let us prove that there exists H ∈ boundV (X), # ∈ {<,>} and a V -

affine space A such that A0 ⊆
−→
saff(Zm ∩A∩ (((v1 +H#)∆(v2 +H#))+V ⊥)).

The set Xq1
∆Xq2

is included into the finite union of sets Pq1,q2
∩ (((v1 +

CV,#)∆(v2 + CV,#)) + V ⊥) over P ∈ PV (X) and # ∈ SV,P (X). As CV,# =
⋂

H∈boundV (X)H
#H , we deduce that Xq1

∆Xq2
is included into the finite

union of sets Pq1,q2
∩ (((v1 + H#)∆(v2 + H#)) + V ⊥) over P ∈ PV (X),

H ∈ boundV (X) and # ∈ {<,>}. From insecable lemma 9.2, we deduce
that there exists P ∈ PV (X), H ∈ boundV (X) and # ∈ {<,>} such that

A0 ⊆
−→
saff(Pq1,q2

∩ (((v1 + H#)∆(v2 + H#)) + V ⊥)). As Pq1,q2
is a semi-V -

pattern, it is included into a finite union of sets of the form Zm ∩A where A
is a V -affine space. From insecable lemma 9.2 we deduce that there exists a

V -affine space A such that A0 ⊆
−→
saff(Zm∩A∩(((v1+H#)∆(v2+H#))+V ⊥)).

Let us show that H 6∈ {V ∩e⊥j,m; j ∈ J}. As A0 6= ∅, it is sufficient to show

that otherwise, the set Zm ∩ A ∩ (((v1 +H#)∆(v2 +H#)) + V ⊥) is empty.
Remark that this set is included in (Zm∩(a1 +H#+V ⊥))∆(Zm∩(a1 +H# +
V ⊥)). If H = V ∩ e⊥j,m where j ∈ J , there exists ǫ ∈ {−1, 1} such that H# =

{x ∈ V ; ǫ.x[j]#0}. Remark that ai+H
#+V ⊥ = {x ∈ Qm; ǫ.(x[j]−ai[j])#0}.

As a1[j] and a2[j] are two rational numbers in {x ∈ Q; −1 < x < 0}. We
deduce that Zm ∩ (a1 + H# + V ⊥) and Zm ∩ (a2 + H# + V ⊥) are equal.
Therefore (Zm ∩ (a1 +H# +V ⊥))∆(Zm ∩ (a1 +H# +V ⊥)) is empty. We have
proved that H 6∈ {V ∩ e⊥j,m; j ∈ J}.

Let us prove that A0 ⊆ H . Consider α ∈ Zm ∩ V \{e0,m} such that H# =
{x ∈ V ; 〈α, x〉#0}. Let K = {k ∈ Z; k ≤ max{| 〈α, v1〉 |, | 〈α, v2〉 |}} and
remark that for any x ∈ Zm ∩ (((v1 + H#)∆(v2 + H#)) + V ⊥), we have
〈α, x〉 ∈ K. Hence Zm ∩ A ∩ (((v1 + H#)∆(v2 + H#)) + V ⊥) is included
into

⋃

k∈K{x ∈ A; 〈α, x〉 = k}. From insecable lemma 9.2, we deduce that
A0 ⊆ H .

We have proved that A0 ⊆ S for any affine component A0 of W . Therefore
W ⊆ S. We deduce that S′ ⊆ S.

Now, let us prove the converse inclusion S ⊆ S′. Consider a V -hyperplane
H0 ∈ H0 = boundV (X)\(

⋃

j∈J (V ∩ e⊥j,m)). Let H = boundV (X)\{H0}. We

denote by α0 ∈ V \{e0,m} a vector such that H#0

0 = {x ∈ V ; 〈α0, x〉#00
for any #0 ∈ {<,>}. Given # ∈ {<,>}H and #0 ∈ {<,>}, we denote by
(#,#0) the sequence in {<,>}boundV (X) naturally defined. Remark that for
any sequence # ∈ {<,>}H and for any #0 ∈ {<,>} such that [CV,(#,#0)]V 6=
[∅]V , there exists a unique P#,#0

∈ PV (X) such that (#,#0) ∈ SV,P#,#0
.

Let us prove that there exists # ∈ {<,>}H such that [CV,(#,<)]V and
[CV,(#,>)]V are both not equal to [∅]V , and such that P#,< 6= P#,>. By
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contradiction, if for any # ∈ {<,>}H such that [CV,(#,<)]V and [CV,(#,>)]V
are both not equal to [∅]V , we have P#,< = P#,>, decomposition theorem
12.4 shows that boundV (X) ⊆ H which is impossible. Hence, there exists at
least one sequence # ∈ {<,>}H such that [CV,# ∩H<

0 ]V and [CV,# ∩H>
0 ]V

are both not equal to [∅]V and such that P#,< 6= P#,>.
From the previous paragraph, we deduce that the semi-V -pattern P0 =

P#,<∆P#,> is not empty. Moreover, as P#,< and P#,> are both (r,m)-
detectable in X , we deduce that P0 is also (r,m)-detectable in X and for
any reachable state q ∈ Q, the set (P0)q is well defined.

Let us prove that there exists a terminal component T such that VG(T ) =
V and such that (P#,<)q 6= (P#,>)q for any state q ∈ T . As P0 is not empty,
there exists a (r,m)-decomposition (σ0, s) ∈ ρ−1

r,m(P0). By replacing σ0 by a
word in σ0.s

∗, we can assume that there exists a loop labelled by a word in
s+ on the state q′0 = δ(q0, σ0). In particular invV ((P0)q′

0
) is relatively prime

with r and ξr,m(s) ∈ (P0)q′
0
. From destruction lemma 13.14, we deduce that

Pq′
0
⊆ ξr,m(s)+Zm∩V for any P ∈ PV (X). As (P0)q′

0
is non empty, there exists

#0 ∈ {<,>} such that (P#,#0
)q′

0
6= ∅. From proposition 14.11, we deduce that

V is included in
−→
saff(Xq′

0
). As Xq′

0
⊆ Γ−1

r,m,σ0
(X), covering lemma 9.9 shows

that V is an affine component of
−→
saff(Xq′

0
). Proposition 14.5 applied to Xq′

0

shows that there exists a terminal component T reachable from q′0 such that

VG(T ) = V . Consider a state q ∈ T and let us consider a path q′0
σ1−→ q. From

proposition 14.11, we deduce that there exists P ∈ PV (X) such that Pq 6= ∅.
Therefore γ−1

r,m,σ1
(Pq′

0
) 6 ∅. From Pq′

0
⊆ ξr,m(s) + Zm ∩ V , we deduce that

γ−1
r,m,σ1

(ξr,m(s) + Zm ∩ V ). From the dense pattern corollary 9.23 we deduce
that γ−1

r,m,σ1
((P0)q′

0
) 6= ∅. That means (P#,<)q 6= (P#,>)q for any q ∈ T .

As there exists a loop on each state q of T , we deduce that Pq is relatively
prime with r for any P ∈ PV (X) and for any q ∈ T . Hence, there exists an
integer n relatively prime with r such that invV (Pq) ⊆ n.(Zm ∩ V ) for any
P ∈ PV (X) and for any q ∈ T .

From an immediate induction and lemma 11.10, we deduce that there
exists a sharing of J into J = J<∪J> such that [CV,#∩C ∩H#0

0 ]V 6= [∅]V for
any #0 ∈ {<,>} where C =

⋂

j∈J<
{x ∈ V ; x[j] < 0}

⋂

j∈J>
{x ∈ V ; x[j] >

0}. In particular there exists a vector v#0
∈ CV,#∩C ∩H#0

0 for each #0 ∈ {<
,>}. By replacing v#0

by a vector in (N\{0}).v#0
, we can also assume that

v#0
∈ n.(Zm ∩ V ).

Let us show that there exists a (r,m)-sign vector s ∈ Sr,m and a state
q ∈ T such that s

1−r
∈ (P0)q and such that s[j] = r − 1 for any j ∈ J< and

such that s[j] = 0 for any j ∈ J>. Consider a state q′ ∈ T . As (P0)q′ is not
empty, there exists a vector x is this set. As v#0

∈ Zm ∩ V and (P0)q′ is a
semi-V -pattern, we deduce that xk = x + k.n.v#0

is in (P0)q′ for any k ∈ Z.
As v#0

[j] < 0 for any j ∈ J< and v#0
[j] > 0 for any j ∈ J , we deduce that

there exists k ∈ N enough larger such that xk[j] < 0 for any j ∈ J< and such
that xk[j] > 0 for any j ∈ J>. Let us consider a (r,m)-decomposition (σ, s) of
xk and remark that s[j] = r − 1 for any j ∈ J< and s[j] = 0 for any j ∈ J>.
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Moreover, s
1−r

∈ (P0)q where q = δ(q′0, σ). As (P0)q 6= ∅, proposition 14.11
proves that Xq 6= ∅. As T is a terminal component and q is reachable from T ,
we deduce that q ∈ T .

Consider a (r,m)-decomposition (σ#0
, s#0

) of s
1−r

+v#0
for each #0 ∈ {<

,>}. By replacing σ#0
by a word in σ#0

.s∗#0
, as n is relatively prime with r,

we can assume that r|σ#0
| ∈ 1 +n.N for any #0 ∈ {<,>}. We denote by w#0

the word w#0
= σn

#0
.

Let us show that s< = s = s>. For any j ∈ {1, . . . ,m}\J , as V ∩ e⊥j,m
is not a V -hyperplane, we deduce that ej,m ∈ V ⊥. That means v[j] = 0
for any v ∈ V . In particular ( s

1−r
+ v#0

)[j] = s
1−r

[j] and we deduce that
s<[j] = s[j] = s>[j]. For any j ∈ J<, as s[j] = r − 1 and v#0

[j] < 0, we get
s#0

[j] = r− 1 = s[j]. Symmetrically, for any j ∈ J>, we get s#0
[j] = 0 = s[j].

Therefore s< = s = s>.
Let us prove that γ−1

r,m,w#0
(Pq) = Pq for any P ∈ PV (X) and for any

#0 ∈ {<,>}. Let P ∈ PV (X). Remark that γr,m,σ#0
(x) ∈ x+γr,m,σ#0

(e0,m)+
n.Zm for any x ∈ Zm. Hence γr,m,w#0

(x) ∈ x + n.Zm for any x ∈ Zm.

As Mq,P is a n-mask, we deduce that γ−1
r,m,w#0

(Mq,P ) = Mq,P . Moreover,

from s
1−r

∈ (P0)q we deduce that s
1−r

∈ Aq. Hence Aq = s
1−r

+ V . So

Γ−1
r,m,σ#0

(Aq) = r−|σ#0
|.( s

1−r
−γr,m,σ#0

(e0,m))+V . Recall that ρr,m(σ#0
, s) =

s
1−r

+ v#0
and remark that ρr,m(σ#0

, s) = γr,m,σ#0
(e0,m) + r|σ#0

|. s
1−r

. We

get Γ−1
r,m,σ#0

(Aq) = s
1−r

− r−|σ#0
|.v#0

+ V = Aq. An immediate induction

show that Γ−1
r,m,w#0

(Aq) = Aq. As Pq = Mq,P ∩ Aq, we get γ−1
r,m,w#0

(Pq) =

γ−1
r,m,w#0

(Mq,P ) ∩ Γ−1
r,m,w#0

(Aq) = Mq,P ∩ Aq = Pq. We have proved that

γ−1
r,m,w#0

(Pq) = Pq for any P ∈ PV (X) and for any #0 ∈ {<,>}.

Let us prove that δ(q, w∗
#0

) ⊆ T for any #0 ∈ {<,>}. From the previous

paragraph, we deduce that for any k ∈ N, the set γ−k
r,m,w#0

((P0)q) = (P0)q is

not empty. From proposition 14.11, we deduce that γ−k
r,m,w#0

(Xq) is also non

empty. As T is a terminal component, we deduce that δ(q, wk
#0

) ∈ T .
As T is a finite set, there exists a state q#0

∈ T such that there exists a

path q
w

r#0
#0−−−→ q#0

and a loop q#0

w
k#0
#0−−−→ q#0

where r#0
∈ N and k#0

∈ N\{0}.
From theorem 13.17, we deduce that there exists a vector a ∈ Qm such

that:
Xq =

⋃

P ∈ PV (X)
#′ ∈ SV,P (X)

(Pq ∩ (a+ CV,#′ + V ⊥))

As γ−1
r,m,w#0

(Pq) = Pq for any P ∈ PV (X) and for any #0 ∈ {<,>} we deduce

the following equality for any #0 ∈ {<,>} and for any k ∈ r#0
+ N.k#0

:

Xq#0
=

⋃

P ∈ PV (X)
#′ ∈ SV,P (X)

(Pq ∩ (Γ−1
r,m,wk

#0

(a) + CV,#′ + V ⊥))
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As Pq<
= Pq>

for any P ∈ PV (X), we deduce that q< ∼V q>. Hence
(q<, q>) ∈ IA(V ).

Let us prove that Xq#0
∩( s

1−r
+CV,#∩C∩H0) = Pq#0

∩( s
1−r

+CV,#∩C∩
H0). Let us consider a vector x ∈ ( s

1−r
+ CV,# ∩ C ∩H0). By developing the

expression Γ−1
r,m,wk

#0

(a), we deduce that limk→∞ Γ−1
r,m,wk

#0

(a) = s
1−r

−
v#0

r
|σ#0

|
−1

.

As v#0
∈ CV,# ∩ C ∩ H#0

0 and 1

r
|σ#0

|
−1

∈ Q+\{0}, we deduce that there

exists k ∈ r#0
+ N.k#0

enough larger such that x ∈ Γ−1
r,m,wk

#0

(a) +CV,(#,#0) ∩

C ∩ H0 + V ⊥. Therefore Xq ∩ {x} = P#0
∩ {x} and we have proved that

Xq#0
∩ ( s

1−r
+ CV,# ∩ C ∩H0) = P#0

∩ ( s
1−r

+ CV,# ∩ C ∩H0).
We deduce that (P0)q ∩ ( s

1−r
+H0)∩ ( s

1−r
+CV,# ∩C ∩H0) ⊆ Xq<∆Xq>

.

Since [CV,# ∩ C ∩ H<
0 ]V and [CV,# ∩ C ∩H>

0 ]V are both not equal to [∅]V ,
lemma 11.11 shows that CV,#∩C∩H0 is a non H0-degenerateH0-polyhedron.
Moreover, since (P0)q ∩ ( s

1−r
+ H0) is a non-empty semi-H0-pattern, from

lemma 12.2, we deduce that
−→
saff((P0)q ∩ ( s

1−r
+ H0) ∩ ( s

1−r
+ CV,# ∩ C ∩

H0)) = H0. Hence H0 ⊆
−→
saff(Xq<

∆Xq>
). As (q<, q>) ∈ IA(V ), we also get

−→
saff(Xq<

∆Xq>
) ⊆ S′. We deduce that H0 ⊆ S′. We have proved that S ⊆ S′.

⊓⊔

From the previous proposition 14.17, theorem 14.6 and theorem 13.4, we
deduce the following main theorem of this paper.

Theorem 14.18. Let X be a Presburger-definable set represented by a se-

rialized encoded FDVA, and let V be an affine component of
−→
saff(X). The

boundary boundV (X)\(
⋃m

j=1{V ∩ e
⊥
j,m}) is computable in polynomial time.

14.3.2 An example

Let us consider the set X = {x ∈ N2; x[1] ≤ 2.x[2]} given in figure 14.3.
The minimal FDVA A2,2(X) that represents X is given in figure 14.4. We

denote by q−1 = {x ∈ N2; x[1] ≤ 2.x[2] − 1}, q0 = {x ∈ N2; x[1] ≤ 2.x[2]}
and q1 = {x ∈ N2; x[1] ≤ 2.x[2] + 1} the states of this FDVA.

Remark that T = {q−1, q0, q1} is the unique terminal component. More-
over, the algorithm that computes the vector space associated to an untran-
sient component provides VG(T ) = Q2. Remark that from proposition 14.5, we

get
−→
saff(X) = VT (T ) = Q2. That means V = Q2 is the only affine component

of
−→
saff(X).

Let us prove that
−→
saff(Xqi

∆Xqj
) = H for any i 6= j. In figure 14.5, we have

represented the FDVA Cartesian products of the FDVA Aqi
and the FDVA

Aqj
that recognize the sets Xqi

∆Xqj
where i, j ∈ {−1, 0, 1}. These FDVA

(when i 6= j) have only one terminal component T ′ = {(Xq0
∆Xq1

), (Xq−1
∆Xq0

)}

and we have VG′(T ′) = H . Therefore
−→
saff(Xqi

∆Xqj
) = H for any i 6= j.
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V ∩ e⊥
1,m

H

Fig. 14.3. On the left the Presburger-definable set X = {x ∈ N2; (x[1] ≤ 2.x[2]).
On the right boundV (X) where V = Q2 and H = {x ∈ V ; x[1] = 2.x[2]}.

x ∈ N2; x[1] ≤ 2.x[2] − 1

x ∈ N2; x[1] ≤ 2.x[2]

x ∈ N2; x[1] ≤ 2.x[2] + 1

(1,0)
(0,0),(1,0)

(0,1),(1,1)
(0,1)

(0,0),(1,0) (0,1),(1,1)

(0,0),(1,1)

{(0,0)}

{(0,0)}

q0

q−1 q1

Fig. 14.4. The minimal FDVA A2,2({x ∈ N2; x[1] ≤ 2.x[2]})

Symmetrically, we get
−→
saff(Xqi

∆Xqj
) = H for any i 6= j. We deduce

that IA(V ) = {(qi, qj); i 6= j} and
⋃

(qi,qj)∈IA(V )

−→
saff(Xqi

∆Xqj
) = H . From

proposition 14.17, we get boundV (X)\{V ∩ e⊥1,m, V ∩ e⊥2,m} = {H}.
Now, just remark that the previous computation can be done in polyno-

mial time from serialized encoded FDVA. Remark also that on this example
boundV (X) = {H,V ∩ e⊥1,m}.
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Xq−1
∆Xq−1 Xq0∆Xq0 Xq1∆Xq1

Xq−1
∆Xq0 Xq0∆Xq1

Xq−1
∆Xq1 {(0,0)}

(0,0),(1,0) (0,1),(1,1)

(0,1)

(1,0) (1,1) (0,0) (0,1)

(1,0) (0,0),(1,0)

(0,0) (1,1)

(1,0)

(0,1),(1,1) (0,1)

(0,0),(1,0) (0,1),(1,1)(0,0),(1,1)

{(0,0)}

Fig. 14.5. The Cartesian product A
′ of Aq0 and Aq1 that represents the symmetrical

difference Xq0∆Xq1 where X is represented by the FDVA A given in figure 14.4.
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The polynomial time algorithm

In this section we provide a polynomial time algorithm for deciding if the set
represented by a FDVA is Presburger-definable and in this case we provide in
polynomial time a Presburger formula that defines the same set.

The algorithm is based on the fact that even if the set X represented by a
FDVA A is not Presburger-definable, the algorithms developed in the previous
sections can be applied in order to extract from A sets of the form P ∩H#

where P is a semi-V -pattern relatively prime with r included in a V -affine
space and H is a V -hyperplane, and if X is Presburger definable then these
sets are (r,m)-detectable in X and X is equal to a boolean combination of
these sets.

In the remaining of this section we assume that A is a positive (r,m,w)-
cyclic FDVA that represents a set X0 ⊆ Nm in basis r and dimension m.
Naturally these conditions are not restrictive thanks to the cyclic reduction
provided by proposition 7.4 and thanks to the positive reduction given by
proposition 7.5.

Since a positive final function F is such that [F ](q) ∈ {{e0,m}, ∅}, without
ambiguity such a function can be denoted as the set of principal states q ∈ Q
such that [F ](q) = {e0,m}. In the sequel, a positive final function F is always
denoted as a subset of Q.

The following proposition shows that given a set X ′ ⊆ Nm that can be
represented by a FDVA of the form AF where F is an unknown final function,
the computation of a positive final function F ′ such that X ′ is represented by
AF ′

can be reduced the membership problem for X ′.

Proposition 15.1. Let A be a FDVA. We denote by Y the set of e0,m-eye Y
such that Y is reachable for [G] from the initial state. For any eye Y ∈ Y,
let us consider a word σY ∈ Σ∗

r,m such that δ(q0, σY ) ∈ kere0,m
(Y ). Any set

X ′ ⊆ Nm such that there exists a final function F satisfying X ′ is represented
by AF is represented by AF ′

where F ′ is the union of eyes Y ∈ Y such that
ρr,m(σY , e0,m) ∈ X ′.
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Proof. Let X be the set represented by AF ′

and let us prove that X = X ′.
Consider x ∈ X . Let (σ, e0,m) be a (r,m)-decomposition of x. There exists an
eye Y ∈ Y such that δ(q0, σ) ∈ Y . Since δ(q0, σY ) ∈ kere0,m

(Y ), by replacing σ
by a word in σ.e∗

0,m, we can assume without loss of generality that δ(q0, σ) =
δ(q0, σY ). Since there exists a final function F such that X ′ is represented by
AF , we deduce that γ−1

r,m,σ(X ′) = γ−1
r,m,σY

(X ′). From ρr,m(σY , e0,m) ∈ X ′ and
the previous equality, we get ρr,m(σ, e0,m) ∈ X ′. Therefore x ∈ X ′ and we have
proved the inclusion X ⊆ X ′. For the converse inclusion, let x ∈ X ′. Consider
a (r,m)-decomposition (σ, e0,m) of x and let Y ∈ Y such that δ(q0, σ) ∈ Y .
By replacing σ by a word in σ.e∗0,m since δ(q0, σY ) ∈ kers(Y ), we can assume
that δ(q0, σ) = δ(q0, σY ). As γ−1

r,m,σ(X ′) = γ−1
r,m,σY

(X ′) and ρr,m(σ, e0,m) ∈
X ′, we get ρr,m(σY , e0,m) ∈ X ′. We have proved that δ(q0, σY ) ∈ F ′. Thus
δ(q0, σ) ∈ F ′ and we have proved that x ∈ X . We have proved the other
inclusion X ′ ⊆ X . ⊓⊔

Observe that we can decide in linear time if X0 is empty. Thus, we can
assume that X0 is non-empty (otherwise we decide that X0 is Presburger-
definable and defined by the formula false). Theorem 14.6 proves that a
non-empty semi-vector space S such that saff(X0) = ξr,m(w) + S if X0 is
Presburger-definable is computable in polynomial time.

Let us fix an affine component V of S and let TV be the finite union of
terminal components T ∈ TA such that VG(T ) = V . By construction of the
semi-affine space S, for any affine component V of S, there exists at least one
terminal component T such that VG(T ) = V .

Observe that if X0 is Presburger-definable then Zm ∩ (ξr,m(w) + V ) is
non empty from the dense component lemma 12.1. Since this property can
be decided in polynomial time by proposition 8.15, we can assume that this
set is non-empty (otherwise we decide that X0 is not Presburger-definable)
and from this same proposition we compute in polynomial time a vector a0 ∈
Zm ∩ (ξr,m(w) + V ).

Theorem 14.14 proves that we can compute in polynomial time a V -vector
lattice M included in Zm such that if X0 is Presburger-definable then M =
invV (X0) is relatively prime with r and |Zm ∩V/invV (X0)| is bounded by the
number of principal states of A. Theorem 8.10 proves that we can compute
in polynomial time the characteristic sequence n1, ..., nd of M in Zm ∩ V
and a Z-basis v1, .., vd of Zm ∩ V such that n1.v1, ..., nd.vd is a Z-basis of
M . Observe that |Zm ∩ V/M | = n1 . . . nd. We can assume that n1 . . . nd is
relatively prime with r and it is bounded by the number of principal states
of A (otherwise we decide that X0 is not Presburger-definable). Let B be

the finite set B = {a0 +
∑d

i=1 ki.vi; 0 ≤ k1 < n1 ∧ . . . ∧ 0 ≤ kd < nd}.
Observe that the cardinal of B is equal to n1 . . . nd. Thus B is computable in
polynomial time. Moreover, by definition of invV (X0) = M , we deduce that if
X0 is Presburger-definable, for any semi-V -pattern P ∈ PV (X0), there exists
a subset B′ ⊆ B such that P = B′ +M .
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Theorem 13.12 shows that we can compute in polynomial time a partition
B0, B1, ..., Bn of B such that a semi-V -pattern P of the form P = B′ +M
where B′ ⊆ B is represented by a FDVA of the form AF if and only if there
exists J ⊆ {1, . . . , n} such that B′ =

⋃

j∈J Bj . Let i ≥ 1. Observe that there

exists a final function F such that Nm∩ (Bi +M) is represented by AF . Since
we can decide in polynomial time if a vector x is in Nm∩(Bi+M), proposition
15.1 proves that we can compute in polynomial time a positive final function
Qi such that Nm ∩ (Bi +M) is represented by AQi .

Note that Zi = X0 ∩ (Bi + M) = X0 ∩ (Nm ∩ (Bi + M)) is represented
by the FDVA AF0∩Qi . Theorem 14.6 proves that a semi-vector space Si such
that saff(Z0) = ξr,m(w) + Si if X0 is Presburger-definable is computable in
polynomial time. Let us consider the set I of i ∈ {1, . . . , n} such that V ⊆ Si.

Let us show that if X0 is Presburger-definable, then any state q ∈ Qi is co-
reachable from TV . Consider a state q ∈ Qi, there exists a word σ ∈ Σ∗

r,m such
that δ(q0, σ) = q and ρr,m(σ, e0,m) ∈ Bi+M . In particular ρr,m(σ, e0,m) ∈ a0+
V . Considering a semi-V -pattern P ∈ PV (X)\{∅} and recall that since P is
(r,m)-detectable inX (from corollary 13.9), the semi-V -pattern P is relatively
prime with r and included into the V -affine space a0 + V (from lemma 9.20).
The dense pattern corollary 9.23 proves that γ−1

r,m,σ(P ) 6= ∅. Proposition 14.4
proves that if X0 is Presburger-definable, then TV is co-reachable from q.
Therefore, we have proved that any state q ∈ Qi is co-reachable from TV

if X0 is Presburger-definable. Since this property is decidable in polynomial
time, we can assume that it is verified (otherwise we decide that X0 is not
Presburger-definable).

Now, let us prove that if X0 is Presburger-definable then F0 ∩ TV ⊆
⋃

i∈I Qi. Consider q ∈ F0 ∩ TV . There exists a path q0
σ
−→ q with σ ∈ Σ∗

r,m.
Since q ∈ F0, we get ρr,m(σ, e0,m) ∈ X0. Theorem 13.17 proves that there
exists P ∈ PV (X0)\{∅} such that ρr,m(σ, e0,m) ∈ P . Since there exists a
J ⊆ {1, . . . , n} such that P =

⋃

j∈J Bj + M , we deduce that there exists
j ∈ {1, . . . , n} such that ρr,m(σ, e0,m) ∈ Bj +M . Theorem 13.17 proves that

in this case
−→
saff(Zj) = V . Thus j ∈ J and q ∈

⋃

i∈I Qi and we have proved
that F0 ∩ TV ⊆

⋃n
i=1Qi. Since this property is decidable in polynomial time,

we can assume that it is true (otherwise we decide that X0 is not Presburger-
definable).

If X0 is Presburger-definable then Zi is Presburger-definable and if i ∈ I
then [Zi]

V = V and in this case PV (X0)\{∅} = {Bi+M} since for any semi-V -
pattern P ∈ PV (X0), there exists J ⊆ {1, . . . , n} such that P =

⋃

j∈J Bj +M
(recall that corollary 13.9 proves that any semi-V -pattern P ∈ PV (X0) is
(r,m)-detectable in X0). Theorem 14.18 provides a polynomial time algorithm
for computing a finite set Hi of vector spaces such that if X0 is Presburger-
definable then boundV (Zi)\

⋃m
i=1{V ∩ e⊥i,m} = Hi. We can assume that Hi

is a set of V -hyperplanes (otherwise we decide that X0 is not Presburger-
definable). Proposition 14.15 shows that if X0 is Presburger-definable then
for any H ∈ Hi, there exists #i,H ∈ {≥, >} such that (Bi +M) ∩ (ξr,m(w) +
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H#i,H + V ⊥) is represented by a FDVA of the form AF . Since we can decide
this property in polynomial time thanks to proposition 14.16, we can assume
that such a relation #i,H exists. As we can decide in polynomial time if a
vector x is in Nm ∩ (Bi + M) ∩ (ξr,m(w) + H#i,H + V ⊥), proposition 15.1
proves that we can compute in polynomial time a positive final function Qi,H

such that Nm ∩ (Bi +M)∩ (ξr,m(w) +H#i,H + V ⊥) is represented by AQi,H .
Now observe that if X0 is Presburger-definable, lemma 13.8 proves that

there exists a boolean combination Z ′
i of the set Nm ∩ (Bi + M) and the

sets Nm ∩ (Bi +M) ∩ (ξr,m(w) +H#i,H + V ⊥) such that [X0∆Z
′
i]

V = [∅]V .
Since any state in Qi is co-reachable from TV , if such a boolean combination
exists, there exists a boolean combination Q′

i of the set Qi and the sets Qi,H

where H ∈ Hi such that Q′
i ∩ TV = F0 ∩ TV . In particular F0 ∩ TV is a

boolean combination of the set Qi ∩ TV and the sets Qi,H ∩ TV . Since this
last property is decidable in polynomial time by the lemma 2.1 we can assume
that such a boolean combination exists (otherwise we decide that X0 is not
Presburger-definable). This same lemma 2.1 also proves that we can compute
in polynomial time a boolean formula ψi such that q ∈ F0 ∩ TV is defined
by ψi(q ∈ Qi ∩ TV , (q ∈ Qi,H ∩ TV )H∈Hi

). Observe that the set Q′
i defined

by q ∈ Q′
i if ψi(q ∈ Qi, (q ∈ Qi,H)H∈Hi

) is computable in polynomial time.

Moreover, the set Z ′
i represented by AQ′

i is defined by the Presburger-formula
φi:

φi(x) := (x ∈ Nm ∩ (Bi +M)) ∧ ψi(true, (x ∈ a0 +H#i,H + V ⊥)H∈Hi
)

Now, let us consider the Presburger formula φ′ :=
∨

i∈I φi and the positive
final function Q′ =

⋃

i∈I Q
′
i. Remark that the set Z ′ =

⋃

i∈I Z
′
i is represented

by the FDVA AQ′

and it is defined by the Presburger formula φ′.
Note that X1 = X∆Z ′ is the set represented by the FDVA AF1 where

F1 = F0∆F
′ and X0 is Presburger-definable if and only if X1 is Presburger-

definable. Moreover, by construction of F ′, any state q ∈ F ′ is co-reachable
from TV and F ′ ∩ TV = F0 ∩ TV . That means the set of strongly-connected
components of AF1 reachable from the initial state and co-reachable from a
final state is strictly included in the strongly connected components of AF0

satisfying this same property.
Thus, by repeating the previous constructions we obtain a finite sequence

X0, X1,..., Xk where k is bounded by the number of strongly connected com-
ponents of A, and a sequence φ1, ..., φk of Presburger-formulas φi defining
Xi−1∆Xi such that Xk = ∅. Note that X0 is therefore Presburger-definable
since we have the following equality:

X0 = (X0∆X1)∆ · · ·∆(Xn−1∆Xk)

Moreover, from φ1, ..., φk we get a Presburger-formula φ that defines X .
We have proved the following theorem.

Theorem 15.2. Let X ⊆ Zm be the set represented by a FDVA A in basis r
and in dimension m. We can decide in polynomial time if X is Presburger-
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definable. Moreover, in this case, we can compute in polynomial time a
Presburger-formula φ that defines X.
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décembre 2003.
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Notations
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CV,# 61
Fs,Y 20
Gr,m(X) 12
H# 60
M/M ′ 41
Sr 9
Sr,m 9
VG(T ) 77
Vr 21
XF 17
X⊥ 38
Xm 3
XV 69
Xq 15
Xs 21
Y X 3
Zr,m,s 19
[F ] 11
[G] 11
[X ]V 57
∆V 57
ΓV,r,m,σ 67
Γr,m,σ 16
HV (C) 64
L 5
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L1.L2 5
N 3
PV (X) 70
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group(X) 38
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invV (X) 52, 92
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L
−→ 5
σ
−→ 5
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