
Efficient and scalable parallel graph partitioning

Jun-Ho Hera,1, François Pellegrinib,2

aProject Bacchus of INRIA Bordeaux – Sud-Ouest,
351, cours de la Libération, 33405 Talence, France

bENSEIRB-MATMECA, LaBRI & Project Bacchus of INRIA Bordeaux – Sud-Ouest,
351, cours de la Libération, 33405 Talence, France

Abstract

The realization of efficient parallel graph partitioners requires the paralleliza-
tion of the multi-level framework which is commonly used to improve the
quality and speed of sequential partitioners. The two most critical issues in
this framework are the coarsening phase, and the local refinement step per-
formed in the uncoarsening phase. These two phases are difficult to paral-
lelize, because the direct transposition in parallel of the matching algorithms
used for coarsening, and of the inherently sequential Fiduccia-Mattheyses
type algorithms traditionally used for local optimization, require much com-
munication and synchronization, which hinder scalability.

This paper describes new parallel algorithms which tackle these two is-
sues: a simplified probabilistic matching algorithm, and a parallel banded
diffusive algorithm, both of which are implemented in the PT-Scotch paral-
lel graph partitioning software. Experimental results illustrate the efficiency
and the scalability of these methods.

Key words: combinatorial optimization, graph partitioning, heuristics,
multi-level, parallel algorithms, scientific computing

Email addresses: jhher@labri.fr (Jun-Ho Her), francois.pellegrini@labri.fr
(François Pellegrini)

1This author’s post-doctoral position is funded by ANR through the SOLSTICE project
(ANR-06-CIS6-010-01).

2This author’s work is partially supported by ANR through the SOLSTICE project
(ANR-06-CIS6-010-01).

Preprint submitted to Elsevier June 10, 2009

1. Introduction

Graph partitioning is a combinatorial problem which aims at finding, in a
given (possibly weighted) graph, a small vertex set or edge set whose removal
splits the graph into a prescribed number of parts of roughly equivalent sizes
or weights. This problem is strongly related to many practical problems in the
fields of scientific computing and engineering, such as domain decomposition
for parallel iterative linear system solvers, the layout of VLSI circuits, or
image segmentation [1].

Since the graph partitioning problem is NP-complete in the general case [2],
many heuristics have been proposed to yield acceptable partitions in reason-
able time. Among them, the multi-level approach, which was proposed in
the beginning of the 1990s [3, 4], has been proved to be a very success-
ful paradigm, which became the core of many sequential graph partitioning
tools [5, 6, 7]. The multi-level method consists of three phases, which are
recursive coarsening, initial partitioning, and recursive uncoarsening. In this
last phase is most often included a partition refinement step, aimed at op-
timizing the projected partitions at every level, so that the granularity of
the solution is the one of the original graph and not the one of the coars-
est graph. Most often, this partition refinement is performed by means of
local optimization algorithms which derive from the Kernighan-Lin [8] or
Fiduccia-Mattheyses (FM) [9] algorithms.

However, because of their ever increasing sizes, the graphs to process can
no longer fit in the memory of sequential computers. Several parallel (hyper-
)graph partitioning tools have been developed to tackle this issue [10, 11, 12,
13], which base on the parallelization of the multi-level framework.

Because of the inherently sequential nature of the FM refinement al-
gorithm, existing parallel tools which base their refinement algorithms on
relaxed versions of the FM heuristic are likely to encounter quality or scal-
ability problems for graphs of billions of vertices processed on thousands of
processes. This is why a new refinement algorithm, called banded diffusive

refinement, has been devised, which simulates the behavior of liquid in a sys-
tem consisting of barrels and pipes [14]. This nature-inspired algorithm has
two advantageous features against the classical FM-like heuristics: its high
scalability, due to its intrinsically parallel nature, and its ability to yield small
and smooth partition boundaries. The latter feature is an additional quality
metric of great interest for iterative linear system solvers [15, 16, 17, 18].
The application considered in this paper is domain decomposition for paral-

2

lel iterative and hybrid [19] linear system solvers, such as the ones developed
within the Bacchus project of INRIA Bordeaux – Sud-Ouest.

This paper presents the algorithms which have been implemented in the
PT-Scotch parallel graph partitioning library, including a parallel version
of the banded diffusive refinement method. Many building blocks of our
implementation are based on the ones which had been formerly developed for
the efficient parallel ordering, by nested dissection, of very large symmetric
sparse matrices [20]. However, significant improvements have been brought
to some algorithms, such as the parallel coarsening phase, which will be
discussed in Section 3.2.

The present work adopts a parallel recursive bipartitioning approach for
graph partitioning with the following parallel strategy. After some bipartition
is computed, the processes which were used for that purpose are also split
into two subsets, such that each subset deals recursively with one of the
two separated subgraphs. This allows each of the process subsets to work
independently at the same time, and increases communication locality. We
describe in detail the parallel recursive bipartitioning stratedgy in Section 3.1.

The rest of the paper is organized as follows. Section 2 discusses related
work on parallel k-way graph partitioning. Parallelization issues regarding
recursive bipartitioning and the banded diffusive refinement algorithm are
described in Section 3. Section 4 presents experimental results and a com-
parison with those of ParMeTiS. The final section draws some conclusions
and poses future work.

2. Related work

2.1. Parallel refinement algorithms

There have already been several significant research efforts on parallel
(hyper-)graph partitioning based on the multi-level framework, which can be
found in [21, 22, 23, 24]. Since the most related issue to the work presented
in this paper is (parallel) refinement algorithms for the uncoarsening phase,
we limit ourselves to that issue in the following survey.

The main problem which arises when trying to parallelize iterative local
optimization algorithms such as FM is the loss of global synchronization in
the computation and update of gains attached to vertex movements. Indeed,
two processes can locally decide to move one of the vertices they own to
another part, because it will locally improve the partition with respect to
the current configuration, while the aggregation of all of these individually

3

beneficial moves may result in a globally worse partition. Since this problem
happens only when neighbor vertices which belong to different processes are
swapped, several techniques have been proposed to avoid potentially harmful
interactions of distinct processes on neighbor vertices.

For instance, Karypis and Kumar have proposed a parallel greedy refine-

ment algorithm which consists of c passes, where c is the number of inde-
pendent colors of the finer graph [21]. During the ith pass, only vertices
of color i are considered, so as to guarantee that no concurrent moves can
involve neighboring vertices. After all vertices belonging to the same color
have been moved (or not), vertex movement gains are globally recomputed.
Their solution is based on synchronization steps which depend only on graph
topology, that is, the number of independent colors which can be found in the
graph, in this case by means of a Luby coloring [25], irrespective of the distri-
bution of graph vertices onto processes. The problem of the above approach
is that it looses some of the local optimization features of the sequential FM
algorithm. In this latter, an initial displacement of a frontier vertex often
resulted in cascading moves of its neighbors, to level them with the new
position of the frontier and reduce the number of cut edges. By allowing
independent moves to happen anywhere on the frontier, the probability of
having long segments of the frontier leveled in the same direction decreases,
thus increasing the number of cut edges.

To address this problem and handle synchronously large portions of the
frontier, Walshaw and Cross have proposed another greedy refinement method
based on isolated boundary regions, called interface regions [22]. Unlike the
previous approach, this latter heavily depends on the current state of the
partition to isolate portions of the frontier suitable for parallel processing.
Devine et al. have proposed a parallel two-way refinement method based on
the FM heuristic for hypergraph partitioning [23]. It consists of sequences
of two consecutive passes, called a pass-pair, such that in a given pass only
vertices belonging to one of the partitions are moved to the other, therefore
avoiding any swapping effect. Trifunovic and Knottenbelt have proposed a
k-way version of the pass-pair refinement to parallelize the greedy refinement
algorithm [24].

Despite these research efforts, the above solutions are still trapped by
the intrinsic sequentiality of FM-like heuristics. Relaxing in some way this
sequentiality constraint always leads to poorer partition quality, all the more
that the proposed methods, which perform multiple moves at the same time,
can no longer benefit from the hill-climbing features of the initial FM algo-

4

rithm, in which sequences of inefficient moves could be undone, and instead
behave as gradient-like methods, more likely to be trapped in local optima
of the partition cost function. Therefore, the stability of the quality of these
algorithms is not guaranteed when the number of processes increase.

2.2. Partition quailty metrics

Since the main application related to this paper is domain decomposi-
tion for iterative linear system solvers, we also need to address the specific
concerns of this community. Farhat et al. [16] and Vanderstraeten et al. [18]
independently posed the problem that a significant number of iterations are
required to converge when the subdomains have longer boundaries or irregu-
lar boundary shapes. To quantify these parameters, several authors defined
metrics for the boundary shape, referred to as aspect ratio, using several ge-
ometric invariants of each subdomain. For instance, for meshes related to
two-dimensional problems, an acceptable candidate is the ratio between the
circumfence of a subdomain (Euclidian length of path consisting of edges
linking frontier vertices) and the square root of the enclosed area.

Because it is very hard to incorporate aspect ratio criteria in graph-based
local optimization algorithms, several authors proposed global heuristics in-
spired from natural phenomena. Diekmann et al. devised a method sim-
ulating the behavior of growing soap bubbles in some finite space through
breadth-first search (BFS) traversals of the graph [15]. This method starts
from randomly picking as many seed vertices (that is, roots of the BFS-trees)
as the desired number of parts, and then performs concurrent BFS traver-
sals from each seed vertex, flagging each vertex with the color of the first
BFS tree which hits it, until all vertices have been reached. Then, it tries to
seek new positions for the seed vertices, by selecting in each part the vertex
having shortest paths to all of the other vertices of the part, as an analogy
to finding the mass center of the Euclidian domain. This process is iterated
until convergence, that is, seed vertices no longer move and shapes of parts
no longer evolve.

Meyerhenke and Schamberger have reinforced this bubble-growing model
through concurrently growing the bubbles to improve execution time with
almost the same quality. However, no significant improvement in execution
time was achieved [17, 26]. In [27], Wan et al. proposed a distributed network
partitioning algorithm making each vertex of a graph diffuse probabilistically
its current state information through its neighbors based on a diffusion model,
called influence model, which had been first introduced in [28]. Since the

5

target application of this work is sensor networks, leader (source) vertices
corresponding to the parts are naturally fixed as the predefined base stations.

However, these meta-heuristics have two drawbacks. Firstly, they lack
of proper load balancing mechanisms. For example, in the bubble-growing
scheme, a seed vertex unfortunately picked close to the periphery of the graph
will have less space to extend its domain, resulting in unbalanced domain
sizes. Secondly, they are computationally expensive because they operate on
all of the graph vertices, while local optimization methods handle a number
of vertices which is smaller by several orders of magnitude, in accordance to
separator theorems [29].

Recently, the banded diffusive method has been proposed by the second
author [14] to address concurrently these two issues. Moreover, this method
is highly parallelizable, so that its parallel version is likely to replace advanta-
geously state-of-the-art parallel refinement algorithms. A brief review of the
sequential banded diffusive method and its parallelization will be presented
in Section 3.3.

3. Parallel graph partitioning

3.1. Parallel multi-level recursive bipartitioning

The parallelization of the multi-level framework for graph partitioning
raises several algorithmic concerns. Firstly, the matching algorithm used in
the parallel coarsening phase must not be biased, for instance by favoring
mating with neighbor vertices located on the same process over ones located
on other processes. In the sequential algorithm, synchronization of mating
decisions was implicitly resolved by the order in which the vertices were
considered, and biases could be avoided by considering vertices to be mated
in pseudo-random order. In parallel, ties on mating decisions related to
non-local edges have to be broken as evenly as possible, without creating
dependency chains across processes that could loop into deadlocks or lead
to synchronizing all decisions in a sequential way. Secondly, state-of-the-
art sequential local optimization algorithms, such as the FM algorithm, are
hard to parallelize, while global optimization algorithms are too expensive,
as exposed in the previous section.

In a previous work on the parallelization of nested dissection ordering [20],
our team devised a parallel multi-level framework which provides workable
solutions to these two problems. Our framework comprised three different

6

levels of concurrency, corresponding to three key steps of the nested dissec-
tion process: the nested dissection algorithm itself, the multi-level coarsening
algorithm used to compute separators at each step of the nested dissection
process, and the refinement of the obtained separators. This parallel frame-
work has been adapted to the parallel recursive graph bipartitioning case,
for which edge separators are sought rather than vertex separators.

The first level of concurrency derives from the intrinsically recursive and
concurrent nature of the nested dissection and recursive graph bisection
methods themselves. Once a separator has been computed in parallel on
p processes, all of these processes build the two distributed subgraphs corre-
sponding to the two separated parts, and fold each of the parts to two distinct
sets of ⌈p

2
⌉ and ⌊p

2
⌋ processes. Every process can then recursively proceed

independently on each subgroup of p

2
(then p

4
, p

8
, etc.) processes, until each

subgroup is reduced to a single process, after which recursive bipartitioning
will go on sequentially by means of the sequential routines of the Scotch

library.

The second level of concurrency concerns the computation of separators,
which is performed by using a multi-level framework. The mating of fine
vertices to be coarsened is performed in parallel by means of a synchronous
probabilistic algorithm which reduces communication while enforcing unbi-
ased matings, irrespective of the initial distribution of graph vertices; this
algorithm will be described in the next section. After this mating phase
ends, either all coarsened vertices are kept on their local processes (that
is, the processes owning the fine vertices from which mating requests origi-
nated), which decreases the number of vertices owned by every process and
speeds-up future computations, or else coarsened graphs are folded and du-
plicated, which reduces inter-process communication in the further stages of
the algorithm and increases the number of working copies of the graph, which
is likely to improve the final quality of the separators. These two behaviors
are illustrated in Figure 1.

The third level of concurrency concerns the refinement heuristics which
are used to improve the projected separators. At the coarsest levels of the
multi-level algorithm, when computations are restricted to individual pro-
cesses, the sequential FM algorithm of Scotch is used, while in parallel,
for distributed graphs, we have devised a parallel banded diffusion scheme,
which will be described in Section 3.3.

7

P3
P2

P1
P0

P1

P2

P0 P3

P0

P1

P2

P3

P1

P2

P0 P3

P1

P2

P0 P3

Figure 1: Diagram of the parallel computation of the separator of a graph distributed
across four processes, by parallel coarsening with folding-with-duplication, multi-sequential
computation of initial partitions that are locally projected back and refined on every
process, and then parallel uncoarsening of the best partition encountered.

3.2. Parallel matching

Parallel matching algorithms are a very active research topic, because
maximal matchings are an essential tool for the solving of many combinatorial
scientific computing problems [30, 31, and included references].

In the context of graph coarsening, this problem is relaxed, because
matchings do not need to be maximal. Instead, they should exhibit ran-
domness properties suitable to the preservation, by the coarsened graphs,
of the topological properties of the finer graphs to which they are applied.
Else, the projection to the finer graphs of partitions computed on the coarser
graphs would not be likely to represent good solutions of the original problem,
because of the biases introduced by coarsening artifacts.

The critical issue for the computation of matchings on distributed graphs
is the breaking of mating decision ties for edges spanning across processes.
Any process willing to mate one of its local vertices to a remote adjacent
vertex has to perform some form of query-reply communication with the
process holding the remote vertex. Because of communication latency and
overhead, mating requests are usually aggregated per neighbor process, re-
sulting in a two-phase algorithm. In the first phase, processes send mating
requests to their neighbors. In the second phase, neighbors answer positively
or negatively depending whether the requested vertices are free, have already
been matched in a previous phase, or are temporarily unavailable because
they have themselves requested another remote vertex for mating. The asyn-

8

chronicity between requests and replies creates ties and dependency chains
which hinder the convergence of the algorithm. For instance, when several
vertices request the same vertex, only one of the requests can be satisfied
at most. Moreover, when the requested vertex has itself asked for another
vertex, none of the requests will be satisfied, because the vertex cannot know
whether its own request will be satisfied or not before replying to its ap-
plicants. This phenomenon increases along with the probability of neighbor
vertices to be remote: when graphs are arbitrarily distributed (which is usu-
ally the case before they are partitioned for the first time), when they have
high degrees, and/or when the number of processes is high.

The most popular method to avoid dependency chains is to prevent po-
tential sought-after vertices from being applicants themselves, basing on an
independent set coloring of the graph [21]. Each of the colors is considered
in turn, and only vertices of the current color can perform mating requests.
Since, by definition, independent set coloring guarantees that no two neigh-
bor vertices can have the same color, potential mates cannot be applicants,
and thus will always be able to answer positively to one of their own ap-
plicants. Colors are processed in a round-robin way until all vertices are
matched or have all of their neighbors matched, or until some minimum
coarsening threshold is reached.

In all parallel coarsening algorithms we are aware of, independent sets
are computed in parallel by means of Luby’s algorithm [25]. First, every
graph vertex is assigned a random number. Then, vertices having the highest
number among all of their neighbors are painted with the first color, after
which these vertices are removed from the graph. Remaining vertices having
the highest number among all of their remaining neighbors are painted with
the second color and removed, and so on until all of the vertices have been
considered. This algorithm is simple and elegant, but it has some drawbacks.
The sizes of the color sets are usually unbalanced, the last ones being much
smaller than the first ones; it is often the case that the last set comprises
only one single vertex, as illustrated in Table 1. This imbalanced distribution
adversely affects convergence time: larger sets increase the probability that
multiple requests are directed to the same vertices, therefore reducing their
probability of success, while smaller sets result in less work being carried out
and communication rounds being dominated by network latency. A solution
to this problem could be to rework Luby’s algorithm so as to improve the
balance of color sets. However, this is not likely to reduce the number of
color sets, that is, communication rounds.

9

998699 908307 848574 804471 777182 757239 743009 733290
720049 700112 661773 590857 478982 338154 200174 99186
41975 15071 4750 1377 372 108 20 6

Table 1: Sizes of Luby’s color sets for graph 10millions. This graph has 10, 423, 737
vertices, 78, 649, 134 edges and an average degree of 15.09. Our test implementation of
Luby’s algorithm, applied to the randomly permuted vertex set, yields 24 color sets with
the above distribution.

The approach we have chosen bases on probabilities. This idea, first ex-
posed by Chevalier in [32], consists in allowing a vertex to send a request only
when the random number it draws is above some threshold. In [32] and [20],
this threshold depended on the numbers of local and remote neighbors of the
vertex. We opted for a more naive algorithm, less susceptible to graph distri-
bution biases: every unmatched vertex can send a request with probability
0.5. Our algorithm, which consists of successive matching rounds, works as
follows. Initially, all local vertices are put in a wait queue, in random order.
During a matching round, all queued vertices are processed one by one. For
each vertex, a random bit value is considered. If it is zero, the vertex is put
back into the queue, else one of its yet unmatched neighbors of highest edge
weight is randomly selected for mating, according to the heavy edge match-
ing method [33]. If the selected vertex is local, the matching is immediately
accepted; else, a mating request is enqueued in the message destined to its
owner process. After all vertices have been considered, mating request mes-
sages are exchanged between processes, and are processed in random order
by their recipients. Each of the requests is considered in message order. If the
sought-after vertex is itself a sender, no reply will be returned. Else, if the
vertex is not already matched, the matching is accepted; else, a negative an-
swer is crafted, so that the vertex will no longer be considered as unmatched
by the sending process (however, other processes may not yet be aware of
this information until one of their local vertices sends a request directed to-
wards this vertex). Then, reply messages are send back, and mating data for
local and ghost vertices are updated accordingly. The above communication
round is repeated several times, after which a final local matching sweep is
performed to match locally, either with a local unmatched neighbor or with
itself, every vertex remaining in queue.

In order to evaluate this approach, we have instrumented our matching
algorithm to output two values after each round. The first value is the ratio

10

Pass
Matching Coarsening

Avg. M.a.d. Avg. M.a.d.

C1 53.3 12.3 50.4 0.7
C2 68.7 13.6 51.6 2.2
C3 76.2 12.2 52.5 3.3
C4 81.0 10.6 53.2 4.0
C5 84.5 9.1 53.7 4.5
LF 100.0 0.0 59.4 6.8

Table 2: Average and mean absolute deviation of the percentage of the vertices processed,
and of the coarsening ratio of the processed vertices, after each of five collective matching
rounds (C) and after the local final (LF) round. These data were collected by recursively
coarsening our test graphs on numbers of processes ranging from 2 to 512.

of matched vertices, expressed as a percentage of the total number of fine
vertices. This value is equal to 100 % after the final pass. The second value
is the coarsening ratio among matched vertices, that is, the number of coarse
vertices computed to date, divided by the number of processed fine vertices.
By nature, this value ranges between 50 %, in the ideal case where all fine
vertices have been paired into coarse vertices, and 100 %, in the case where
no neighbors could be found and all coarse vertices are each made of one
single fine vertex.

Table 2 presents the data collected when recursively coarsening our test
graphs down to one thousand of vertices per process, for a number of pro-
cesses ranging from 2 to 512. It shows the mean value and the mean absolute
deviation of each of the two aforementioned values, for each of the collective
rounds and for the final local round. The number of collective rounds has
been set to 5, to keep it small comparatively to the size of the color sets
computed by Luby’s algorithm. Assuming, as a rule of thumb, a match-
ing probability of a bit lower than 0.5 (depending on the probability of the
requested vertex to be inactive and of the probability of collision between
matching requests, based on graph topology), 5 collective passes were sup-
posed to be enough to match more than 80 % of the vertices.

Experimental figures corroborate our assumptions and validate our ap-
proach. Five collective rounds are enough to match more than 80 % of the
graph vertices, with a low resulting coarsening ratio of 53.7 %. This ratio
indicates that remote mating is efficient, and that no topological biases, due
to initial graph data distribution across processes, are likely to occur. Conse-

11

quently, the final, local round is not likely to induce an important topological
bias, since it only involves 15 % of the vertices on average, after many remote
matings have been performed. A sixth collective round could has been tried,
but as it did not significantly changed partition results, it was not used for
the rest of our tests.

3.3. Parallel refinement by banded diffusion

In a previous contribution [14], the second author proposed a global,
diffusion-based, optimization algorithm, called jug of the Danaides, as a
replacement for parallelized FM-like local optimization algorithms. This
method simulates the propagation of two antagonistic liquids (in the bipar-
titioning case, though the method can be extended to any number of them)
flowing from two opposite source vertices as if the graph edges were pipes,
until they meet and annihilate, therefore defining a new frontier. Both source
vertices flow in W

2
units of liquid per iteration, where W is the sum of the

graph vertex weights, and each vertex loses in the same time a number of
units of liquid equivalent to its own weight, so that the system is bound
to converge. In practice, it is not necessary to wait until full convergence,
because what matters is to know which liquid dominates in each vertex.

In order to find two relevant source vertices, as well as to reduce problem
complexity, our diffusion algorithm does not operate on the full uncoarsened
graph but on a band graph which is extracted from it by keeping only vertices
that are at small distance from the projected separator (typically less than 3).
Vertices which do not belong to the band graph are merged into two anchor

vertices of weights equivalent to the ones of the merged vertices, as illustrated
in Figure 2, which serve as source vertices for the diffusion algorithm.

Band graphs have been successfully implemented in the sequential case
to compute vertex separators by means of genetic or constrained FM algo-
rithms [34], and also in parallel to compute distributed band graphs prior
to their centralization on each of the processes so as to be able to run se-
quential FM algorithms on these smaller graphs [20]. Now, by providing a
parallel version of the jug of the Danaides diffusion algorithm in addition to
the parallel extraction of distributed band graphs, all sequential bottlenecks
are removed from the parallel multi-level frameworks.

While sequential band graphs have only one anchor vertex per part, we
did not transpose this to the parallel case, because anchor vertices would
have had very high degrees, possibly creating communication bottlenecks
and interfering with the internals of some optimization algorithms. In the

12

Figure 2: Multi-level banded refinement scheme. A band graph of small width is created
around the projected finer separator, with anchor vertices representing all of the removed
vertices in each part. After some optimization algorithm (whether local or global) is ap-
plied, the refined band separator is projected back to the full graph, and the uncoarsening
process goes on.

Figure 3: Computation of a distributed band graph from a partitioned graph distributed
on three processes. The solid line is the current partition frontier, while dotted lines
represent the separation between process domains. Merged vertices in each part are now
represented by a clique of local anchor vertices, one per process and per part.

parallel bipartitioning case, there are two anchor vertices per process, so
that each of the anchor vertices is connected to all of the local vertices of the
last layer belonging to the same part, as well as to all of the remote anchor
vertices of the same part, forming two distributed cliques, as illustrated in
Figure 3. Of course, for numbers of processes above the ten of thousands,
another system should be implemented, for instance some flavor of tree.

The parallel version of our diffusive algorithm does not substantially dif-
fer from its sequential counterpart [14]. It relies on the low-level halo ex-
change routines of the PT-Scotch library to spread on local ghost nodes
the amount of liquids borne by each non-local neighbor vertex as the result
of the previous iteration, and uses these values to compute the new amounts
for all of its local vertices.

4. Experimental results

Being part of the PT-Scotch software, the code related to this work
has been designed for architectures with distrbuted memory. It is written in

13

Graph
Size (×103)

δ Description
|V | |E|

10millions 10424 78649 15.09 3D electromagnetics, CEA
23millions 23114 175686 15.20 3D electromagnetics, CEA
45millions 45241 335749 14.84 3D electromagnetics, CEA
82millions 82294 609508 14.81 3D electromagnetics, CEA
audikw1 944 38354 81.28 3D mechanics mesh, Parasol
brgm 3699 151940 82.14 3D geophysics mesh, BRGM
cage15 5154 47022 18.24 DNA electrophoresis, UF
coupole8000 1768 41657 47.12 3D structural mechanics, CEA
thread 30 2220 149.32 Connector problem, Parasol

Table 3: Characteristics of the graphs that we use in the experiment. |V | and |E| are
the vertex and edge cardinalities, in thousands. δ is the average degree. CEA is the
French atomic energy agency, BRGM is the leading French public institution involved in
the Earth Science field for the sustainable management of natural resources and surface,
UF stands for the University of Florida sparse matrix collection [35], and Parasol is a
former European project [36].

ANSI C and uses the MPI communication API for message passing.
All experiments were performed on the Platine supercomputer at CCRT.

This machine is a Bull Novascale cluster of 932 compute nodes interconnected
via an Infiniband network. Each node has four dual-core Intel Itanium II
processors.

The main characteristics of the graphs that we have used in our experi-
ments are shown in Table 3.

The metric that we will consider for evaluating the quality of partitions
is the cut size, that is, the number of edges the ends of which are assigned
to two different processes.

14

Test Number of processors:Number of parts
case 32:2 32:32 32:1024 128:2 128:128 128:1024 384:2 384:256 384:1024 Ppeak:2
10millions

CPTS 4.75E+04 6.78E+05 3.89E+06 4.71E+04 1.38E+06 3.88E+06 4.70E+04 1.96E+06 3.90E+06 4.89E+04
CPM 5.12E+04 7.14E+05 3.97E+06 5.16E+04 1.46E+06 3.94E+06 5.28E+04 2.02E+06 3.97E+06 5.16E+04
tPTS 5.10 19.11 32.53 4.05 10.27 12.27 7.40 16.15 15.81 3.51(64)
tPM 18.43 7.89 6.81 7.65 5.27 4.16 29.60 29.76 24.65 7.65(128)
23millions

CPTS 9.10E+04 9.45E+05 5.19E+06 9.26E+04 1.88E+06 5.18E+06 9.07E+04 2.65E+06 5.20E+06 9.26E04
CPM 9.93E+04 9.80E+05 5.36E+06 9.43E+04 1.98E+06 5.33E+06 1.06E+05 2.79E+06 5.37E+06 9.79E+04
tPTS 12.49 46.89 74.29 6.15 21.50 26.64 10.25 20.21 20.67 6.15(128)
tPM 43.07 19.67 18.00 12.99 7.36 6.25 17.53 14.00 16.09 10.35(192)
45millions

CPTS 1.15E+05 1.13E+06 7.24E+06 1.11E+05 2.52E+06 7.26E+06 1.06E+05 3.65E+06 7.29E+06 1.05E+05
CPM 1.26E+05 1.38E+06 7.57E+06 1.33E+05 2.72E+06 7.58E+06 1.39E+05 3.81E+06 7.62E+06 1.26E+05
tPTS 24.24 102.29 150.56 10.69 39.91 49.51 13.85 28.08 30.04 10.26(192)
tPM 84.55 48.24 36.21 26.28 17.22 12.55 28.72 25.65 23.15 21.51(256)
82millions

CPTS 1.46E+05 1.90E+06 1.08E+07 1.44E+05 3.95E+06 1.09E+07 1.40E+05 5.57E+06 1.09E+07 1.45E+05
CPM 1.78E+05 2.12E+06 1.13E+07 1.69E+05 4.18E+06 1.14E+07 1.73E+05 5.95E+06 1.14E+07 1.61E+05
tPTS 46.48 189.42 297.76 17.98 75.86 91.52 23.26 46.91 61.54 16.93(192)
tPM 176.40 85.87 76.42 48.38 24.43 21.63 32.83 30.22 26.90 30.00(256)

Table 4: Comparison between PT-Scotch (PTS) and ParMeTiS (PM) for representative numbers of processes and parts.
CPTS and CPM (tPTS and tPM) are the size of the edge cut (the execution time in seconds) for PTS and PM, respectively.
Ppeak is the number of processors on which PTS and PM recorded peak performance for each graph. The number in parentheses
right after the execution time indicates actual Ppeak. Daggers indicate abortion due to an invalid MPI operation.

15

Test Number of processors:Number of parts
case 32:2 32:32 32:1024 128:2 128:128 128:1024 384:2 384:256 384:1024 Ppeak:2
audikw1

CPTS 1.08E+05 2.08E+06 1.00E+07 1.06E+05 4.22E+06 9.99E+06 1.05E+05 5.81E+06 9.96E+06 1.11E+05
CPM 1.14E+05 2.04E+06 9.76E+06 1.12E+05 4.15E+06 9.75E+06 1.15E+05 5.76E+06 9.76E+06 1.12E+05
tPTS 3.51 11.84 17.35 2.90 8.72 9.29 5.87 10.72 10.06 3.01(128)
tPM 3.90 3.59 5.27 2.42 2.01 2.97 4.45 4.62 4.51 2.37(192)
brgm

CPTS 3.46E+05 3.50E+06 2.17E+07 3.49E+05 7.60E+06 2.17E+07 3.30E+05 1.09E+07 2.15E+07 3.49E+05
CPM † † † † † † † † † †
tPTS 7.86 22.15 58.17 5.34 18.93 24.28 8.39 19.33 19.40 5.34(128)
tPM † † † † † † † † † †
cage15

CPTS 7.66E+05 3.39E+06 9.26E+06 7.53E+05 5.16E+06 8.93E+06 7.80E+05 6.22E+06 8.72E+06 7.53E+05
CPM 8.39E+05 3.98E+06 1.04E+07 8.44E+05 6.05E+06 1.06E+07 7.85E+05 7.32E+06 1.09E+07 8.23E+05
tPTS 31.07 82.96 100.97 29.70 62.80 64.90 41.86 85.30 79.14 29.70(128)
tPM 11.24 9.67 13.13 6.81 5.69 8.90 26.51 25.67 21.42 6.45(64)
coupole8000

CPTS 3.08E+03 9.56E+04 3.17E+06 3.08E+03 3.92E+05 3.17E+06 3.08E+03 7.88E+05 3.17E+06 3.08E+03
CPM 3.13E+03 9.91E+04 3.28E+06 3.20E+03 4.19E+05 3.28E+06 3.14E+03 8.39E+05 3.28E+06 3.14E+03
tPTS 1.68 6.76 10.65 0.83 2.96 3.73 2.05 4.80 4.88 0.83(128)
tPM 3.46 2.84 2.51 1.47 1.62 1.31 0.87 0.89 0.94 0.87(384)
thread

CPTS 5.60E+04 6.15E+05 1.82E+06 5.60E+04 1.03E+06 1.82E+06 5.60E+04 1.29E+06 1.82E+06 5.62E+04
CPM 5.62E+04 6.03E+05 1.84E+06 5.67E+04 1.02E+06 1.85E+06 5.73E+04 1.29E+06 1.84E+06 5.63E+04
tPTS 0.53 0.97 1.07 0.60 1.08 1.05 0.85 1.27 1.28 0.47(16)
tPM 0.77 0.75 1.99 0.70 0.67 1.98 2.00 0.89 2.07 0.52(8)

Table 5: Continuation of Table 4.

16

Table 4 presents the execution times and the cut sizes yielded by PT-

Scotch and ParMeTiS for our test graphs, for representative numbers of
processes and parts.

On most of these test cases, the partitions computed by PT-Scotch

compare favorably to the ones produced by ParMeTiS. This gain can
be as high as 20 % when bipartitioning graph 82millions, irrespective of
the number of processes. PT-Scotch always computes better results for
small numbers of parts, while ParMeTiS produces marginally better cuts
for three graphs, namely audikw1, thread and brgm, when the number
of parts increases. This phenomenon is due to the fact that, to date, PT-

Scotch performs k-way partitioning by means of recursive bipartitioning,
while ParMeTiS uses a direct k-way algorithm. Consequently, the quality of
the partitions produced by PT-Scotch is likely to degrade for large numbers
of parts, because of the greedy nature of the recursive bipartitioning scheme
which prevents reconsidering earlier choices. It is therefore not surprising
that the three graphs for which ParMeTiS gains over PT-Scotch are the
ones of higher degree, for which bad decisions in the earlier bipartitioning
stages produce higher penalties in terms of cut.

However, this phenomenon is most often compensated by the improve-
ment in quality yielded by folding-with-duplication and multi-sequential phases.
Indeed, for most of the test graphs, both PT-Scotch and ParMeTiS ex-
hibit stable partition quality for all numbers of parts and up to 384 processes
(which is the largest number of processes in our experiment), as can be seen
for instance for graph 10millions in Figure 4.

However, in the case of graph cage15, partition quality for ParMeTiS

decreases as the number of processes and parts increases, while it improves
for PT-Scotch. This graph, which is not a mesh, has many topological
irregularities (in terms of degrees and connectivity) which are likely to create
coarsening artefacts, and therefore require efficient local optimization during
the uncoarsening phase of the multi-level framework. As we have exposed
in Section 2.1, and as had been already evidenced in the context of parallel
ordering [20], the relaxation of the sequentiality constraint in the FM imple-
mentation of ParMeTiS hinders its efficiency when the number of processes
increases.

To compare the relative efficiency of partition quality between PT-Scotch

and ParMeTiS based on the data collected, we have plotted the ratio be-
tween the cut sizes yielded by these two tools, in Figures 5 and 6. On mesh
graphs, the relative efficiency becomes close to 1 as the number of pars in-

17

creases. Our assumption is that the decrease in partition quality due to the
greedy nature of our recursive bipartitioning algorithm starts to overwhelm
the gain of our refinement methods for thousands of partitions.

The negative impact of recursive bipartitioning is of course even more per-
ceptible for run time. While PT-Scotch can be more than three times faster
than ParMeTiS in the bipartitioning case, such as for graph 82millions,
when the number of parts increases, its execution time suffers a penalty fac-
tor which tends to a constant proportional to the inverse of the coarsening
ratio, as evidenced in Figures 7 and 8. These figures represent the running
times of PT-Scotch for our test graphs, with respect to the numbers of
processes and parts. As the number of parts increase, the height of the plots
increases and tends to a limit value.

Figure 7 plots the execution times of PT-Scotch for graphs 10millions,
23millions, 45millions and 82millions, which have similar topological
characteristics. We could not collect data on 2 processors for 45millions,
and from 2 to 16 processors for 82millions, as the pieces of the distributed
graphs counld not fit in the memory of the nodes. The same also happened
to ParMeTiS.

In order to analyze the time scalability of PT-Scotch, we focus on the
bipartitioning case, for which the penalty factor has no impact. A quick
look at the plots shows that PT-Scotch is scalable up to 64 processors
for graph 10millions, and up to 128 processors for 23millions. However,
the peak speed is still reached at 128 processors for 45millions, without
significant speed-up for 192 processors. For 82millions, we can see a slight
speed-up for 192 processors, while the rise in run time which appeared on 256
processors for graph 45millions is reduced. As argued in [21], significant
increase in the graph size was required, for ParMeTiS to achieve constant
parallel efficiency. This does not seem to be different with PT-Scotch from
the asymptotic point of view. Consequently, to evidence some speed-up on
256 processes, a graph at least four times larger than 23millions is required,
as the plots suggest.

Figure 8 plots the execution times of PT-Scotch for graphs audikw1,
coupole8000, cage15, and brgm. Even though these graphs may have
different topological properties than the ones of Figure 7, the same scalability
properties and limits can be evidenced: the small sizes of the graphs limit
the time scalability to 128 processes.

18

As a last comparison between PT-Scotch and ParMeTiS, the last col-
umn of Table 4 presents the best execution time, and the associated cut size,
obtained by PT-Scotch and ParMeTiS when bipartitioning each of the
graphs. We can see that PT-Scotch mostly produces partitions of better
quality in smaller time. Moreover, PT-Scotch shows peak performance us-
ing less numbers of processors than ParMeTiS for mesh graphs. This lack of
scalability is, in our opinion, caused by our recursive bipartitioning scheme,
which requires many data movements between processes, all the more when
graph pieces are spread across many of them.

5. Conclusions

In this paper, we have described the design of a parallel graph partitioning
software, based on a parallel multi-level framework taking advantage of novel
parallel algorithms for matching and refinement. We compared the results of
our implementation with another parallel graph partitioner, ParMeTiS and
showed that PT-Scotch most often produces partitions of higher quality.
In particular, when considering the bipartitioning case, for which we do not
take into account the penalty induced by our recursive bipartitioning method,
PT-Scotch can be up to three times faster than ParMeTiS. We evidenced
reasonable scalability with respect to the number of processes, for graphs
of sufficient sizes. We assume that scalability is hindered by the recursive
bipartitioning scheme, which requires many data movements.

Even though we did not present any empirical result on the smoothness of
partition boundaries, we believe PT-Scotch produces smoother partition
boundaries than the ones yielded by any other existent parallel graph parti-
tioner. We base this assumption on our direct transposition in parallel of the
sequential diffusive algorithm which already showed promising results [14].

It has been previously noted that recursive bipartitioning not only results
in longer run time but also brings poorer partition quality, due to the greedy
nature of the algorithm, compared to direct k-way partitioning [37]. As
described in the previous section, we evidenced that, for the test graphs we
considered, the overhead of recursive bipartitioning starts to overwhelm the
gain of our refinement algorithm when considering more than a thousand of
parts.

Consequently, we are currently developing a parallel direct k-way graph
partitioning method, basing on our parallel multi-level framework, by ex-

19

tending our diffusion method to the k-way case. This extension has already
been done in the sequential case by [38], basing on our findings, and its par-
allelization should be as straightforward as it has been for the 2-way case.
This should give us the best of both worlds, in term of speed as well as in
term of quality.

Yet, several limitations of the graph partitioning model have been re-
ported [39]. A first shortcoming is the intrinsic inaccuracy of the edge cut
metric to model actual communication costs. In this respect, hypergraph
partitioning has been advocated as a more accurate model [40]. However,
hypergraph partitioners are to date much more expensive to run than graph
partitioners, which still leaves some room for the latter in practice.

Another limitation is the fact that recent parallel computing architec-
tures are characterized by ever increasing numbers of processors and heavily
heterogeneous communication subsystems. Taking into account the under-
lying topology of the target machine is therefore essential to the effective
minimization of running time. Static mapping is the corresponding combi-
natorial problem, which aims at assigning statically parallel processes onto
physical processors, so as to reduce a more realistic message congestion cost.

To date, the sequential Scotch tool allows one to compute static map-
pings rather than plain graph partitions, basing on recursive bipartitioning
of both the source graph and the target architecture graph [41, 42]. This
communication model is being extended to the parallel case, so that the up-
coming version of our PT-Scotch tool will also be able to compute static
mappings in parallel.

References

[1] I. S. Dhilon, Y. Guan, B. Kulis, Weighted graph cuts without eigenvec-
tors: A multilevel approach, IEEE Trans. Pattern Analysis and Machine
Intelligence 29 (11) (2007) 1944–1957.

[2] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-complete
graph problems, Theoretical Computer Science 1 (1976) 237–267.

[3] T. Bui, C. Jones, A heuristic for reducing fill in sparse matrix factor-
ization, in: Proc. 6th SIAM Conf. on Parallel Processing for Scientific
Computing, 1993, pp. 445–452.

20

[4] J. Cong, M. Smith, A parallel bottom-up clustering algorithm with ap-
plications to circuit partitioning in VLSI design, in: Proc. 30th An-
nual ACM/IEEE International Design Automation Conference, 1993,
pp. 755–760.

[5] S. T. Barnard, H. D. Simon, A fast multilevel implementation of recur-
sive spectral bisection for partitioning unstructured problems, Concur-
rency: Practice and Experience 6 (2) (1994) 101–117.

[6] B. Hendrickson, R. Leland, A multilevel algorithm for partition-
ing graphs, in: Proc. ACM/IEEE conference on Supercomputing
(CDROM), 1995, pp. 28–es.

[7] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM Journal on Scientific Computing
20 (1) (1998) 359–392.

[8] B. W. Kernighan, S. Lin, An efficient heuristic procedure for partition-
ning graphs, BELL System Technical Journal (1970) 291–307.

[9] C. M. Fiduccia, R. M. Mattheyses, A linear-time heuristic for improv-
ing network partitions, in: Proc. 19th Design Automation Conference,
IEEE, 1982, pp. 175–181.

[10] MeTiS: Family of multilevel partitioning algorithms, http://glaros.
dtc.umn.edu/gkhome/views/metis.

[11] Jostle: Graph partitioning software, http://staffweb.cms.gre.ac.
uk/~c.walshaw/jostle/.

[12] Zoltan: Parallel partitioning, load balancing and data-management ser-
vices, http://www.cs.sandia.gov/Zoltan/.

[13] Parkway: Parallel hypergraph partitioning software, http://www.doc.
ac.uk/~at701/parkway/.

[14] F. Pellegrini, A parallelisable multi-level banded diffusion scheme for
computing balanced partitions with smooth boundaries, in: Proc. Euro-
Par’07, Rennes, Vol. 4641 of LNCS, Springer, 2007, pp. 191–200.

21

[15] R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Aspect ratio for
mesh partitioning, in: Proc. Euro-Par’98, Vol. 1470 of LNCS, 1998, pp.
347–351.

[16] C. Farhat, N. Maman, G. Brown, Mesh partitioning for implicit com-
putation via domain decomposition: impact and optimization of the
subdomain aspect ratio, Int. J. Numer. Math. Eng. 38 (1995) 989–1000.

[17] H. Meyerhenke, S. Schamberger, Balancing parallel adaptive FEM com-
putations by solving systems of linear equations, in: Proc. Europar’05,
Vol. 3648 of LNCS, 2005, pp. 209–219.

[18] R. Vanderstraeten, R. Keunings, C. Farhat, Beyond conventional mesh
partitioning algorithms, in: SIAM Conf. on Par. Proc., 1995, pp. 611–
614.

[19] J. Gaidamour, P. Hénon, A parallel direct/iterative solver based on a
Schur complement approach, in: Proc. 11th Int. Conf. on Comp. Sci.
and Eng., 2008, pp. 98–105.

[20] C. Chevalier, F. Pellegrini, PT-Scotch: A tool for efficient parallel
graph ordering, Parallel Computing 34 (2008) 318–331.

[21] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for
irregular graphs, SIAM Review 41 (2) (1999) 278–300.

[22] C. Walshaw, M. Cross, Parallel optimisation algorithms for multilevel
mesh partitioning, Parallel Computing 26 (2000) 1635–1660.

[23] K. Devine, E. Boman, R. Heaphy, R. Bisseling, U. Catalyurek, Parallel
hypergraph partitioning for scientific computing, in: Proc. 20th IEEE
International Parallel and Distributed Processing Symposium, 2006.

[24] A. Trifunovic, W. Knottenbelt, Parallel multilevel algorithms for hy-
pergraph partitioning, Journal of Parallel and Distributed Computing
68 (5) (2008) 563–581.

[25] M. Luby, A simple parallel algorithm for the maximal independent set
problem, SIAM Journal on Computing 15 (4) (1986) 1036–1055.

[26] H. Meyerhenke, S. Schamberger, A parallel shape optimizing load bal-
ancer, in: Proc. Euro-Par’06, Vol. 4128 of LNCS, 2006, pp. 232–242.

22

[27] Y. Wan, S. Roy, A. Saberi, B. Lesieutre, A stochastic automaton-based
algorithm for flexible and distributed network partitioning, in: Proc.
Swarm Intelligence Symposium, IEEE, 2005, pp. 273–280.

[28] C. Asavathiratham, S. Roy, B. C. Lesieutre, G. C. Verghese, The influ-
ence model, IEEE Control Systems Magazine 21 (6) (2001) 52–64.

[29] R. J. Lipton, R. E. Tarjan, A separator theorem for planar graphs, SIAM
J. on Appl. Math. 36 (1979) 177–189.

[30] A. Chan, P. Dehne, F. Bose, M. Latzel, Coarse grained parallel algo-
rithms for graph matching, Parallel Computing 34 (1) (2008) 47–62.

[31] B. Hendrickson, A. Pothen, Combinatorial scientific computing: The
enabling power of discrete algorithms in computational science, in: Proc.
VECPAR conf., 2006, pp. 260–280.

[32] C. Chevalier, Conception et mise en oeuvre d’outils efficaces pour le
partitionnement et la distribution parallèles de problèmes numériques
de très grande taille, Thèse de Doctorat, LaBRI, Université Bordeaux I
(Sep. 2007).

[33] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, Tech. Rep. 95-035, University of Minnesota
(Jun. 1995).

[34] C. Chevalier, F. Pellegrini, Improvement of the efficiency of genetic algo-
rithms for scalable parallel graph partitioning in a multi-level framework,
in: Proc. Euro-Par’06, Dresden, Vol. 4128 of LNCS, 2006, pp. 243–252.

[35] T. Davis, University of Florida Sparse Matrix Collection, http://www.
cise.ufl.edu/research/sparse/matrices/.

[36] PARASOL project (EU ESPRIT IV LTR Project No. 20160) (1996–
1999).

[37] H. D. Simon, S.-H. Teng, How good is recursive bipartition, SIAM J.
Scientific Computing 18 (5) (1997) 1436–1445.

[38] H. Meyerhenke, B. Monien, T. Sauerwald, A new diffusion-based multi-
level algorithm for computing graph partitions of very high quality, in:
Proc. 22nd IPDPS, 2008.

23

[39] B. Hendrickson, T. G. Kolda, Graph partitioning models for parallel
computing, Parallel Computing 26 (2000) 1519–1534.

[40] U. Çatalyurek, C. Aykanat, A hypergraph-partitioning approach for
coarse-grain decomposition, in: Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing (CDROM), 2001,
pp. 28–es.

[41] F. Pellegrini, Static mapping by dual recursive bipartitioning of process
and architecture graphs, in: Proc. SHPCC’94, Knoxville, IEEE, 1994,
pp. 486–493.

[42] F. Pellegrini, J. Roman, Experimental analysis of the dual recur-
sive bipartitioning algorithm for static mapping, Research Report,
LaBRI, Université Bordeaux I, available from http://www.labri.fr/

~pelegrin/papers/scotch expanalysis.ps.gz (Aug. 1996).

24

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e

Processors

10millions (PTS)

k=2
k=4
k=8
k=16

k=32
k=64
k=128
k=256

k=512
k=1024
k=2048

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e

Processors

10millions (PM)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e

Processors

cage15 (PTS)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e

Processors

cage15 (PM)

Figure 4: Cut sizes of PT-Scotch (PTS, left) and ParMeTiS (PM, right) for graphs
10millions and cage15.

25

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

10millions

k=2
k=4

k=32
k=64

k=1024
k=2048

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

23millions

k=2
k=4

k=32
k=64

k=1024
k=2048

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

audikw1

k=2
k=4

k=32
k=64

k=1024
k=2048

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

cage15

k=2
k=4

k=32
k=64

k=1024
k=2048

Figure 5: Cut size ratio between PT-Scotch (PTS) and ParMeTiS (PM) for graphs
10millions, 23millions, audikw1, and cage15. CPTS and CPM are the size of the
edge cut for PTS and PM, respectively.

26

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

coupole8000

k=2
k=4

k=32
k=64

k=1024
k=2048

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

2 4 8 16 32 64 128 192 256 384

C
u
t

s
iz

e
 r

a
ti

o
 (
C

P
T

S
/C

P
M

)

Processors

thread

k=2
k=4

k=32
k=64

k=1024
k=2048

Figure 6: Cut size ratio between PT-Scotch (PTS) and ParMeTiS (PM) for graphs
coupole8000 and thread. CPTS and CPM are the size of the edge cut for PTS and
PM, respectively.

27

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

10millions

k=2
k=4
k=8
k=16

k=32
k=64
k=128
k=256

k=512
k=1024
k=2048

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

23millions

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

45millions

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

82millions

Figure 7: Execution times of PT-Scotch for graphs 10millions, 23millions, 45mil-

lions and 82millions.

28

 1

 10

 100

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

audikw1

k=2
k=4
k=8
k=16

k=32
k=64
k=128
k=256

k=512
k=1024
k=2048

 1

 10

 100

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

coupole8000

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

cage15

 10

 100

 1000

2 4 8 16 32 64 128 192 256 384

R
u
n
 t

im
e
 (

in
 s

e
c
.)

Processors

brgm

Figure 8: Execution times of PT-Scotch for graphs audikw1, coupole8000, cage15

and brgm.

29

