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The parallel ordering of large graphs is a difficult problem, because neither minimum-
degree algorithms, nor the best graph partitioning methods that are necessary to nested
dissection, parallelize or scale well. This paper presents a set of algorithms, implemented
in the PT-Scotch software package, which allows one to order large graphs in parallel,
yielding orderings the quality of which is equivalent to the one of state-of-the-art sequential
algorithms.

1. Introduction

Graph partitioning is an ubiquitous technique which has applications in many fields of
computer science and engineering. It is mostly used to help solving domain-dependent
optimization problems modeled in terms of weighted or unweighted graphs, where find-
ing good solutions amounts to computing, eventually recursively in a divide-and-conquer
framework, small vertex or edge cuts that balance evenly the weights of the graph parts.

Because there always exists large problem graphs which cannot fit in the memory of
sequential computers and cost too much to partition, parallel graph partitioning tools have
been developed [1,2], but their outcome is mixed. In particular, in the context of parallel
graph ordering which is the one of this paper, they do not scale well, as partitioning
quality tends to decrease, and thus fill-in tends to increase much, when the number of
processors which run the program increase.

The purpose of the PT-Scotch software (“Parallel Threaded Scotch”, an extension
of the sequential Scotch software), developed at LaBRI within the ScAlApplix project
of INRIA Futurs, is to provide efficient parallel partitioning of graphs with sizes up to a
billion vertices, distributed over a thousand processors. Scalability issues have therefore
to receive much attention.

One of the target applications of PT-Scotch within the ScAlApplix project is graph
ordering, which is a critical problem for the efficient factorization of symmetric sparse
matrices, not only to reduce fill-in and factorization cost, but also to increase concurrency
in the elimination tree, which is essential in order to achieve high performance when
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solving these linear systems on parallel architectures. We therefore focus in this paper
on this specific problem, although we expect some of the algorithms presented here to be
reused in the near future in the context of edge, k-way partitioning.

The two most classically-used reordering methods are Minimum Degree and Nested
Dissection. The Minimum Degree algorithm [3] is a local heuristic which is extremely
fast and very often efficient, but it is intrinsically sequential, so that attempts to derive
parallel versions of it have not been successful [4], especially for distributed-memory ar-
chitectures. The Nested Dissection method [5], on the other hand, is very suitable for
parallelization, since it consists in computing a small vertex set that separates the graph
into two parts, ordering the separator vertices with the highest indices available, then
proceeding recursively on the two separated subgraphs until their size is smaller than a
specified threshold.

This paper presents the algorithms which have been implemented in PT-Scotch to
parallelize the Nested Dissection method. The distributed data structures used by PT-

Scotch will be presented in the next section, while the algorithms that operate on them
will be described in Section 3. Section 4 will show some results, and the concluding section
will be devoted to discussing some on-going and future work.

2. Distributed data structures

Since PT-Scotch extends the graph ordering capabilities of Scotch in the parallel
domain, it has been necessary to define parallel data structures to represent distributed
graphs as well as distributed orderings.

2.1. Distributed graph

Like for centralized graphs in Scotch as well as in other software packages, distributed
graphs are classically represented in PT-Scotch by means of adjacency lists. Vertices
are distributed across processors along with their adjacency lists and with some duplicated
global data, as illustrated in Figure 1. Global data comprise baseval, the starting index of
all numberings, which can be set to 0 for C-style arrays or to 1 for Fortran-style arrays, and
procglbnbr, the number of processors across which the graph is distributed. In order to
allow users to create and destroy vertices without needing any global renumbering, every
processor is assigned a user-defined range of global vertex indices, recorded in the proc

dsptab array which is also duplicated. Local subgraphs located on every processor can
therefore be updated independently, as long as the number of vertices possessed by some
process p does not exceed (procdsptab[p + 1] − procdsptab[p]).

Since many algorithms require that local data be attached to every vertex, and since
global indices cannot be used for that purpose, all vertices owned by any processor
p are also assigned local indices, suitable for the indexing of compact local data ar-
rays. These local indices range from baseval to (proccnttab[p] + baseval) − 1, in-
clusive, and the corresponding global number of any local vertex index i is therefore
(procdsptab[p]+i−baseval). This local indexing is extended so as to encompass all
non-local vertices which are neighbors of local vertices, which are referred to as “ghost”
or “halo” vertices. Ghost vertices are numbered by ascending processor number and by
ascending global number, such that, when vertex data have to be exchanged between
neighboring processors, these data can be agglomerated in a cache-friendly way on the
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sending side, and be received in place in the ghost data arrays on the receiving side.
A low-level halo exchange routine is provided by PT-Scotch, to diffuse data beared

by local vertices to the ghost copies possessed by all of its neighboring processors. This
low-level routine is used by many algorithms of PT-Scotch, for instance to spread vertex
labels of selected vertices in the induced subgraph building routine (see Section 3.1), or to
share matching data in the coarse graph building routine (see Section 3.2). This routine
is also available, as a collective communication routine, to PT-Scotch library users,
who have to provide on every processor a reference to the vertex data array they want to
diffuse, the size of which should be equal to vertgstnbr, the overall number of local and
ghost vertices possessed by the processor, and the local entries of which are filled with
useful data to spread, along with the MPI datatype of the array cells.

Because global and local indexings coexist, two adjacency arrays are in fact main-
tained on every processor. The first one, edgeloctab, usually provided by the user, holds
the global indices of the neighbors of any given vertex, while the second one, edgegst
tab, which is internally maintained by PT-Scotch, holds the local and ghost indices
of the neighbors. The starting index of the adjacency list of some local vertex i in the
processor’s adjacency array is given by vertloctab[i], and its after-end index by vend

loctab[i]. However, when adjacency arrays are fully ordered and without any unused
space, such as for subgraphs created by PT-Scotch itself during its multi-level nested
dissection ordering process, only one vertloctab array, of size (vertlocnbr + 1) needs
to be allocated, and vendloctab is set to point to (vertloctab+1), since vendloctab[i]
is then always equal to vertloctab[i + 1]. Since only local vertices are processed by the
distributed algorithms, the adjacency of ghost vertices is never stored on the processors.

When the edgegsttab arrays are created, some global, duplicated data is aggregated for
future use, such as proccnttab, an array of size procglbnbr which contains the number
of local vertices possessed by every processor, and procvrttab, which contains the prefix
sum, starting from baseval, of the entries of proccnttab, both of which are used when
gathering vertex data by means of the MPI Gather routine.

2.2. Distributed ordering

During its execution, PT-Scotch builds a distributed tree structure, spreading on all
of the processors onto which it is run, and the leaves of which represent fragments of the
inverse permutation describing the computed ordering. We use the inverse permutation
rather than the direct permutation because the inverse permutation can be built and
optimized in a fully distributed way: every subgraph to be reordered is described only by
the number of vertices to reorder, and by the smallest index of the new ordering to assign
to the subgraph vertices. Once a subgraph (either a separator or a leaf of the separation
tree) is to be reordered, a new permutation fragment is created on every processor which
owns some of its vertices. The size of a fragment is the number of vertices of the subgraph
that are locally owned by the processor, and the starting ordering index of the fragment
is the smallest ordering index assigned to the subgraph, plus the sum of the sizes of the
subgraph permutation fragments owned by processors of smaller ranks. The order in
which the global indices of the subgraph vertices are located in the fragment describes
how subgraph vertices are ordered in the inverse permutation.
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Figure 1. Data structures of a graph distributed across three processors. The global
image of the graph is shown above, while the three partial subgraphs owned by the three
processors are represented below. Adjacency arrays with global vertex indexes are stored
in edgeloctab arrays, while local compact numberings of local and ghost neighbor vertices
are internally available in edgegsttab arrays. Local vertices owned by every processor
are drawn in white, while ghost vertices are drawn in black. For each local vertex i

located on processor p, the global index of which is (procdsptab[p] + i − baseval), the
starting index of the adjacency array of i in edgeloctab (global indices) or edgegst

tab (local indices) is given by vertloctab[i], and its after-end index by vendloctab[i].
For instance, local vertex 2 on processor 1 is global vertex 12; its start index in the
adjacency arrays is 2 and its after-end index is 5; it has therefore 3 neighbors, the global
indices of which are 19, 2 and 11 in edgeloctab.
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3. Algorithms for efficient parallel reordering

The parallel computation of orderings in PT-Scotch involves three different levels
of concurrency, corresponding to three key steps of the nested dissection process: the
nested dissection algorithm itself, the multi-level coarsening algorithm used to compute
separators at each step of the nested dissection process, and the refinement of the obtained
separators. Each of these steps is described below.

3.1. Nested dissection

As said above, the first level of concurrency relates to the parallelization of the nested
dissection method itself, which is straightforward thanks to the intrinsically concurrent
nature of the algorithm. Starting from the initial graph, arbitrarily distributed across p

processors but preferably balanced in terms of vertices, the algorithm proceeds as illus-
trated in Figure 2 : once a separator has been computed in parallel, by means of a method
described below, each of the p processors participates in the building of the distributed
induced subgraph corresponding to the first separated part (even if some processors do not
have any vertex of it). This induced subgraph is then folded onto the first ⌈p

2
⌉ processors,

such that the average number of vertices per processor, which guarantees efficiency as
it allows the shadowing of communications by a subsequent amount of computation, re-
mains constant. During the folding process, vertices and adjacency lists owned by the ⌊p

2
⌋

sender processors are redistributed to the ⌈p

2
⌉ receiver processors so as to evenly balance

their loads.
The same procedure is used to build, on the ⌊p

2
⌋ remaining processors, the folded

induced subgraph corresponding to the second part. These two constructions being com-
pletely independent, the computations of the two induced subgraphs and their folding
can be performed in parallel, thanks to the temporary creation of an extra thread per
processor. When the vertices of the separated graph are evenly distributed across the
processors, this feature favors load balancing in the subgraph building phase, because
processors which do not have many vertices of one part will have the rest of their vertices
in the other part, thus yielding the same overall workload to create both graphs in the
same time. This feature can be disabled when the communication system of the target
machine is not thread-safe.

At the end of the folding process, every processor has a folded subgraph fragment of
one of the two folded subgraphs, and the nested dissection process car recursively proceed
independently on each subgroup of p

2
(then p

4
, p

8
, etc.) processors, until each subgroup

is reduced to a single processor. From then on, the nested dissection process will go
on sequentially on every processor, using the nested dissection routines of the Scotch

library, eventually ending in a coupling with minimum degree methods [6] (which are thus
only used in a sequential context).

3.2. Graph coarsening

The second level of concurrency concerns the computation of separators. The approach
we have chosen is the now classical multi-level one [7–9]. It consists in repeatedly com-
puting a set of increasingly coarser albeit topologically similar versions of the graph to
separate, by finding matchings which collapse vertices and edges, until the coarsest graph
obtained is no larger than a few hundreds of vertices, then computing a separator on this
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Figure 2. Diagram of a nested dissection step for a (sub-)graph distributed across four
processors. Once the separator is known, the two induced subgraphs are built and folded
(this can be done in parallel for both subgraphs), yielding two subgraphs, each of them
distributed across two processors.

coarsest graph, and projecting back this separator, from coarser to finer graphs, up to the
original graph. Most often, a local optimization algorithm, such as Kernighan-Lin [10] or
Fiduccia-Mattheyses [11] (FM), is used in the uncoarsening phase to refine the partition
that is projected back at every level, such that the granularity of the solution is the one
of the original graph and not the one of the coarsest graph.

The main features of our implementation are outlined in Figure 3. The matching of
vertices is performed in parallel by means of a synchronous probabilistic algorithm. Every
processor works on a queue storing the yet unmatched vertices which it owns, and repeats
the following steps. The queue head vertex is dequeued, and a candidate for mating
is chosen among its unmatched neighbors, if any; else, the vertex is left unmatched at
this level and discarded. If the candidate vertex belongs to the same processor, the
mating is immediatly recorded, else a mating request is stored in a query buffer to be
sent to the proper neighbor processor, and both vertices (the local vertex and its ghost
neighbor) are flagged as temporarily unavailable. Once all vertices in queue have been
considered, query buffers are exchanged between neighboring processors, and received
query buffers are processed in order to satisfy feasible pending matings. Then, unsatisfied
mating requests are notified to their originating processors, which unlock and reenqueue
the unmatched vertices. This whole process is repeated until the list is almost empty;
we do not wait until it is completely empty because it might require too many collective
steps for just a few remaining vertices. It usually converges in 5 iterations.

Once the matching phase is complete can the coarsened subgraph building phase take
place. This latter can be parametrized so as to allow one to choose between two options.
Either all coarsened vertices are kept on their local processors (that is, processors that
hold at least one of the ends of the coarsened edges), as shown in the first steps of Figure 3,
which decreases the number of vertices owned by every processor and speeds-up future
computations, or else coarsened graphs are folded and duplicated, as shown in the next
steps of Figure 3, which increases the number of working copies of the graph and can thus
reduce communication and increase the final quality of the separators.

As a matter of fact, separator computation algorithms, which are local heuristics, heav-
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ily depend on the quality of the coarsened graphs, and we have observed with the sequen-
tial version of Scotch that taking every time the best partition among two ones, obtained
from two fully independent multi-level runs, usually improved overall ordering quality. By
enabling the folding-with-duplication routine (which will be referred to as “fold-dup” in
the following) in the first coarsening levels, one can implement this approach in paral-
lel, every subgroup of processors that hold a working copy of the graph being able to
perform an almost-complete independent multi-level computation, save for the very first
level which is shared by all subgroups, for the second one which is shared by half of the
subgroups, and so on.

The problem with the fold-dup approach is that it consumes a lot of memory. When
no folding occurs, and in the ideal case of a perfect and evenly balanced matching, the
coarsening process yields on every processor a part of the coarser graph which is half the
size of the finer graph, and so on, such that the overall memory footprint on every processor
is about twice the size of the original graph. When folding occurs, every processor receives
two coarsened parts, one of which belonging to another processor, such that the size of
the folded part is about the one of the finer graph. The footprint of the fold-dup scheme is
therefore logarithmic in the number of processors, and may consume all available memory
as this number increases. Consequently, as in [12], a good strategy can be to resort to
folding only when the number of vertices of the graph to be considered reaches some
minimum threshold. This threshold allows one to set a trade off between the level of
completeness of the independent multi-level runs which result from the early stages of
the fold-dup process, which impact partitioning quality, and the amount of memory to be
used in the process.

Once all working copies of the coarsened graphs are folded on individual processors,
the algorithm enters a multi-sequential phase, illustrated at the bottom of Figure 3: the
routines of the sequential Scotch library are used on every processor to complete the
coarsening process, compute an initial partition, and project it back up to the largest
centralized coarsened graph stored on the processor. Then, the partitions are projected
back in parallel to the finer distributed graphs, selecting the best partition between the two
available when projecting to a level where fold-dup had been performed. This distributed
projection process is repeated until we obtain a partition of the original graph.

3.3. Band refinement

The third level of concurrency concerns the refinement heuristics which are used to
improve the projected separators. At the coarsest levels of the multi-level algorithm,
when computations are restricted to individual processors, the sequential FM algorithm
of Scotch is used, but this class of algorithms does not parallelize well. Indeed, a parallel
FM-like algorithm has been proposed in ParMeTiS [1] but, in order to relax the strong
sequential constraint that would require some communication every time a vertex to be
migrated has neighbors on other processors, only moves that strictly improve the partition
are allowed, which hinders the ability of the FM algorithm to escape local minima of its
cost function, and leads to severe loss of partition quality when the number of processors
(and thus of potential remote neighbors) increase.

This problem can be solved in two ways: either by developing scalable and efficient local
optimization algorithms, or by being able to use the existing sequential FM algorithm on
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Figure 3. Diagram of the parallel computation of the separator of a graph dis-
tributed across four processors, by parallel coarsening with folding-with-duplication,
multi-sequential computation of initial partitions that are locally projected back and re-
fined on every processor, and then parallel uncoarsening of the best partition encountered.

very large graphs. We have proposed and successfully tested in [13] a solution which
enables both approaches, and is based on the following reasoning. Since every refinement
is performed by means of a local algorithm, which perturbs only in a limited way the
position of the projected separator, local refinement algorithms need only to be passed
a subgraph that contains the vertices that are very close to the projected separator. We
have experimented that, when performing FM refinement on band graphs that contain
only vertices that are at distance at most 3 from the projected separators, the quality
of the finest separator does not only remain constant, but even significantly improves in
most cases. Our interpretation is that this pre-constrained banding prevents the local
optimization algorithms from exploring and being trapped in local optima that would be
too far from the global optimum sketched at the coarsest level of the multi-level process.

The advantage of pre-constrained band FM is that band graphs are of a much smaller
size than their parent graphs, since for most graphs the size of the separators is of several
orders of magnitude smaller that the size of the separated graphs: it is for instance in
O(n

1

2 ) for 2D meshes, and in O(n
2

3 ) for 3D meshes [14]. Consequently, FM or other
algorithms can be run on graphs that are much smaller, without decreasing separation
quality.

The computation and use of distributed band graphs is outlined in Figure 4. Given a
distributed graph and an initial separator, which can be spread across several processors,
vertices that are closer to separator vertices than some small user-defined distance are
selected by spreading distance information from all of the separator vertices, using our
halo exchange routine. Then, the distributed band graph is created, by adding on every
processor two anchor vertices, which are connected to the last layers of vertices of each
of the parts. The vertex weight of the anchor vertices is equal to the sum of the vertex
weights of all of the vertices they replace, to preserve the balance of the two band parts.
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P0 P3

Figure 4. Creation of a distributed band graph. Only vertices closest to the separator
are kept. Other vertices are replaced by anchor vertices of equivalent total weight, linked
to band vertices of the last layer. There are two anchor vertices per processor, to reduce
communication. Once the separator has been refined on the band graph using some local
optimization algorithm, the new separator is projected back to the original distributed
graph.

Once the separator of the band graph has been refined using some local optimization
algorithm, the new separator is projected back to the original distributed graph.

Basing on our band graphs, we have implemented a multi-sequential refinement algo-
rithm, outlined in Figure 5. At every distributed uncoarsening step, a distributed band
graph is created. Centralized copies of this band graph are then gathered on every par-
ticipating processor, which serve to run fully independent instances of our sequential FM
algorithm. The perturbation of the initial state of the sequential FM algorithm on every
processor allows us to explore slightly different solution spaces, and thus to improve refine-
ment quality. Finally, the best refined band separator is projected back to the distributed
graph, and the uncoarsening process goes on.

Centralizing band graphs is an acceptable solution because of the much reduced size of
the band graphs that are centralized on the processors. Using this technique, we expect to
achieve our goal, that is, to be able partition graphs up to a billion vertices, distributed on
a thousand processors,without significant loss in quality, because centralized band graphs
will be of a size of a few million vertices for 3D meshes. In case the band graph cannot be
centralized, we can resort to a fully scalable algorithm, as partial copies can also be used
collectively to run a scalable parallel multi-deme genetic optimization algorithm, such as
the one experimented with in [13].

4. Experimental results

PT-Scotch is written in ANSI C, with calls to the POSIX thread and MPI APIs.
The most significant test graphs that we have used in our tests are presented in Table 1.
All of our experiments were performed on the M3PEC system of Université Bordeaux 1,
an IBM cluster made of SMP nodes comprising 8 dual-core Power5 processors running at
1.5 GHz.

All of the ordering strategies that we have used were based on the multi-level scheme.
During the uncoarsening step, separator refinement was performed by using our sequential
FM algorithm on band graphs of width 3 around the projected separators, both in the
parallel (with multi-centralized copies) and in the sequential phases of the uncoarsening
process.
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Figure 5. Diagram of the multi-sequential refinement of a separator projected back from
a coarser graph distributed across four processors to its finer distributed graph. Once
the distributed band graph is built from the finer graph, a centralized version of it is
gathered on every participating processor. A sequential FM optimization can then be run
independently on every copy, and the best improved separator is then distributed back to
the finer graph.

The quality criterion that we have chosen is the operation count (OPC) required to
factor the reordered matrix using the Cholesky method; it is an indirect measurement of
the overall quality of all bipartitions, in the practical context of nested dissection ordering.

Table 2 presents the OPC computed on the orderings yielded by PT-Scotch and
ParMeTiS. These results have been obtained by running PT-Scotch with the following
strategy: in the multi-level process, graphs are coarsened without any folding until the
average number of vertices per process becomes smaller than 100, after which the fold-
dup process takes place until all graphs are folded on single processors and the sequential
multi-level process relays it.

The improvement in quality brought by PT-Scotch is clearly evidenced, and increases
along with the number of processes, as our local optimization scheme is not sensitive to
this number. While PT-Scotch is, at the time being, about three times slower on
average than ParMeTiS, it can yield operation counts that are as much as two times
smaller than the ones of ParMeTiS, which is of interest as factorization times are more
than one order of magnitude higher than ordering times. Most of the time we consume
is spent in the coarsening phase, the efficiency and scalability of which has yet to be
improved.

In order to evidence the memory overhead of the fold-dup process, we have run two
tests with different folding strategies. As said above, both strategies end up by performing
fold-dup when the average number of vertices per processor falls under 100, but they differ
in the following way: in the first one, referred to as NoFD, no folding is performed in the
first coarsening stages at all; in the second one, called AllFD, fold-dup is performed at
every step from the very first one, such that after log2(p) steps each of the p processors
holds a centralized copy of the graph, onto which the sequential algorithm is run.
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Graph
Size (×103) Average

OSS
|V | |E| degree

altr4 26 163 12.50 3.65e+8
audikw1 944 38354 81.28 5.48e+8
bmw32 227 5531 48.65 2.75e+8
conesphere1m 1055 8023 15.21 1.83e+12
coupole8000 1768 41657 47.12 7.48e+10
oilpan 74 1762 47.77 2.74e+9
thread 30 2220 149.32 4.14e+10

Table 1
Description of some of the test graphs that we use. |V | and |E| are the vertex and edge
cardinalities, in thousands, and OSS is the operation count of the Cholesky factorization
performed on orderings computed using the sequential Scotch software.

The factorization results presented in table 3 show that both strategies are very close in
term of OPC. Therefore, fully independent multi-level runs are not mandatory to achieve
good ordering quality, which is hopeful as the AllFD strategy consumes a lot more memory
than NoFD. It can however be noted that, because of the higher number of runs that it
performs, the output of AllFD is more predictible, i.e. there are less variations in quality
due to execution factors such as randomness.

The high memory consuption of the AllFD strategy is clearly evidenced in Table 4. The
average amount of memory per processor needed by NoFD ranges between a half and a
fourth of the one required by AllFD. These values can be easily explained by the cost of
duplicating data at each fold-dup step. Indeed, to perform fold-dup on the first k levels
requires Θ(k) times the amount of memory to store the initial graph, whereas performing

simple coarsening requires only Θ
(

∑k
i=1

1

2i

)

= Θ(2) times this initial amount of memory.
Nevertheless, for smaller graphs like altr4 or thread, both values are very similar for 64
processors, since then the NoFD strategy performs fold-dups from the third coarsening
level.

Table 5, which contains the time measurements of both strategies, shows that the AllFD
strategy is often the fastest when the number of processors increases. Only does graph
coupole8000 always have better times with the NoFD strategy, because it has enough
vertices to cover communication latency. These results clearly show that the coarsening
process is critical in terms of communication efficiency. The AllFD strategy is faster
because early folding processes gather the vertices of the coarsened graphs onto a smaller
number of processors, which increases the ratio of local end vertices in the mating process
and reduces the amount of communication to be performed, both in number of messages
and in message size. This is why running times explode for smaller graphs (all of them
except coupole8000) when running NoFD with 64 processors. Until the coarsening
process is not improved, a good strategy could therefore be to resort to fold-dup when
the number of vertices is still high, about 10000 per processor.
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5. Conclusion

We have presented in this paper the parallel algorithms that we have implemented in
PT-Scotch to compute in parallel efficient orderings of large graphs. The first results
are encouraging, as they meet the expected performance requirements in term of quality,
but have to be improved in term of scalability.

Memory consumption is clearly a problem to be solved. This can be done by not
keeping the edgeloctab of intermediate graphs, as it is not needed by most algorithms.
Therefore, the edgegsttab could replace the edgeloctab in place, without any memory
overhead. This is currently under development.

Although it corresponds to a current need within the ScAlApplix project, to obtain
as quickly as possible high quality orderings of graphs with a size of a few tens of millions
of vertices, sparse matrix ordering is not the application field in which we expect to find
the largest problem graphs, as existing parallel direct sparse linear system solvers cannot
currently handle full 3D meshes of a size larger than about fifty million unknowns.

Therefore, basing on the software building blocks that we have already written, we plan
to extend the capabilities of PT-Scotch to compute k-ary edge partitions of large meshes
for subdomain-based iterative methods, as well as static mappings of process graphs, as
the Scotch library does sequentially.
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Test Number of processors or threads

case 2 4 8 16 32 64

altr4

OPTS 3.84e+8 3.75e+8 3.93e+8 3.69e+8 4.09e+8 4.15e+8

OPM 4.20e+8 4.49e+8 4.46e+8 4.64e+8 5.03e+8 5.16e+8
tPTS 0.42 0.30 0.24 0.30 0.52 1.55
tPM 0.31 0.20 0.13 0.11 0.13 0.33

audikw1

OPTS 5.73e+12 5.65e+12 5.54e+12 5.45e+12 5.45e+12 5.45e+12

OPM † † 7.78e+12 8.88e+12 8.91e+12 1.07e+13
tPTS 105.48 102.42 96.48 77.65 70.88 108.89
tPM 32.69 23.09 17.15 9.804 5.65 3.82

bmw32

OPTS 3.50e+10 3.49e+10 3.14e+10 3.05e+10 3.02e+10 3.00e+10

OPM 3.22e+10 4.09e+10 5.11e+10 5.61e+10 5.74e+10 6.31e+10
tPTS 8.89 7.41 5.68 5.45 8.36 17.64
tPM 3.39 2.28 1.51 0.92 0.68 1.08

conesphere1m

OPTS 1.88e+12 1.89e+12 1.85e+12 1.84e+12 1.86e+12 1.77e+12

OPM 2.20e+12 2.46e+12 2.78e+12 2.96e+12 2.99e+12 3.29e+12
tPTS 31.34 20.41 18.76 18.37 25.80 92.47
tPM 22.40 11.98 6.75 3.89 2.28 1.87

coupole8000

OPTS 8.68e+10 8.54e+10 8.38e+10 8.03e+10 8.26e+10 8.21e+10

OPM † † 8.17e+10 8.26e+10 8.58e+10 8.71e+10
tPTS 114.41 116.83 85.80 60.23 41.60 28.10
tPM 63.44 37.50 20.01 10.81 5.88 3.14

thread

OPTS 3.52e+10 4.31e+10 4.13e+10 4.06e+10 4.06e+10 4.50e+10

OPM 3.98e+10 6.60e+10 1.03e+11 1.24e+11 1.53e+11 –
tPTS 3.66 3.61 3.30 3.65 5.68 11.16
tPM 1.25 1.05 0.68 0.51 0.40 –

Table 2
Comparison between ParMeTiS (PM) and PT-Scotch (PTS) for several graphs. OPTS

and OPM are the OPC for PTS and PM, respectively. Dashes indicate abortion due to
memory shortage. Daggers indicate erroneous output permutations. ParMeTiS yielded
erroneous permutations for all numbers of processors with graph oilpan.
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Strategy Number of processors

case 2 4 8 16 32 64

altr4 – OPCseq = 3.65e + 8
NoFD 3.84e+8 3.75e+8 3.93e+8 3.69e+8 4.09e+8 4.15e+8

AllFD 3.75e+8 3.92e+8 3.80e+8 3.77e+8 3.88e+8 4.16e+8
audikw1 – OPCseq = 5.48e + 12

NoFD 5.73e+12 5.65e+12 5.54e+12 5.45e+12 5.45e+12 5.45e+12

AllFD 5.69e+12 5.67e+12 5.96e+12 5.86e+12 5.88e+12 –
bmw32 – OPCseq = 2.75e + 10

NoFD 3.50e+10 3.49e+10 3.14e+10 3.05e+10 3.02e+10 3.00e+10
AllFD 3.14e+10 3.62e+10 3.67e+10 3.29e+10 3.04e+10 2.80e+10

conesphere1m – OPCseq = 1.83e + 12
NoFD 1.88e+12 1.89e+12 1.85e+12 1.84e+12 1.86e+12 1.77e+12

AllFD 2.04e+12 2.85e+12 2.39e+12 1.87e+12 1.80e+12 1.79e+12
coupole8000 – OPCseq = 7.48e + 10

NoFD 8.68e+10 8.54e+10 8.38e+10 8.03e+10 8.26e+10 8.21e+10

AllFD 8.66e+10 8.53e+10 8.09e+10 8.20e+10 8.25e+10 –
oilpan – OPCseq = 2.74e + 9

NoFD 4.08e+9 3.79e+9 3.31e+9 3.99e+9 3.29+9 3.59e+9
AllFD 3.45e+9 3.38e+9 3.19e+9 3.77e+9 3.28e+9 3.30e+9

thread – OPCseq = 4.14e + 10
NoFD 3.52e+10 4.31e+10 4.13e+10 4.06e+10 4.06e+10 4.50e+10
AllFD 4.20e+10 4.01e+10 3.97e+10 4.17e+10 4.25e+10 4.03e+10

Table 3
OPC of orderings computed by PT-Scotch with two different folding strategies. Dashes
indicate abnormal termination due to memory shortage.
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Strategy Number of processors

case 2 4 8 16 32 64

altr4

NoFD 4.51e+6 3.06e+6 1.91e+6 1.46e+6 1.31e+6 1.24e+6

AllFD 7.55e+6 5.42e+6 3.85e+6 2.64e+6 1.75e+6 1.29e+6
audikw1

NoFD 9.18e+8 6.54e+8 4.05e+8 2.37e+8 1.37e+8 7.99e+7

AllFD 1.42e+9 1.16e+9 8.77e+8 6.26e+8 4.37e+8 –
bmw32

NoFD 1.21e+8 8.35e+7 5.35e+7 3.23e+7 1.91e+7 1.33e+7

AllFD 1.51e+8 1.08e+8 7.69e+7 5.07e+7 3.32e+7 2.29e+7
conesphere1m

NoFD 2.38e+8 1.54e+8 9.75e+7 5.83e+7 3.44e+7 2e+7

AllFD 3.91e+8 2.91e+8 2.17e+8 1.54e+8 1.09e+8 7.51e+7
coupole8000

NoFD 1.04e+9 6.97e+8 4.28e+8 2.58e+8 1.51e+8 8.67e+7

AllFD 1.67e+9 1.07e+9 7.06e+8 4.43e+8 2.74e+8 –
oilpan

NoFD 3.86e+7 2.65e+7 1.7e+7 1.02e+7 6.1e+6 3.57e+6

AllFD 4.93e+7 3.43e+7 2.32e+7 1.48e+7 1.04e+7 6.94e+6
thread

NoFD 4.91e+7 3.74e+7 2.37e+7 1.66e+7 1.31e+7 1.18e+7

AllFD 7.31e+7 5.98e+7 4.44e+7 3.2e+7 2.17e+7 1.35e+7

Table 4
Average memory usage per processor, in bytes, when running of PT-Scotch two different
folding strategies. Dashes indicate abnormal termination due to memory shortage.
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Strategy Number of processors

case 2 4 8 16 32 64

altr4

NoFD 0.42 0.30 0.24 0.30 0.52 1.55
AllFD 0.42 0.31 0.29 0.33 0.39 0.76

audikw1

NoFD 105.48 102.42 96.48 77.65 70.88 108.89

AllFD 70.86 70.53 75.14 75.90 69.82 –
bmw32

NoFD 8.89 7.41 5.68 5.45 8.36 17.64
AllFD 7.73 6.49 5.59 5.38 5.82 8.05

conesphere1m

NoFD 31.34 20.41 18.76 18.37 25.80 92.47
AllFD 31.32 22.27 20.19 18.69 19.06 23.64

coupole8000

NoFD 114.41 116.83 85.80 60.23 41.60 28.10

AllFD 86.11 93.78 85.23 70.33 54.81 –
oilpan

NoFD 2.53 1.81 1.33 1.10 1.51 3.75
AllFD 2.05 1.65 1.39 1.31 1.49 2.23

thread

NoFD 3.66 3.61 3.30 3.65 5.68 11.16
AllFD 2.45 2.89 3.22 3.99 5.76 9.03

Table 5
Ordering times of PT-Scotch (in seconds) when performing two different folding strate-
gies. Dashes indicate abnormal termination due to memory shortage.


