

On the Use of H-Matrix Arithmetic in PaStiX, A Preliminary Study

June 26th, 2015 - Workshop Fast Direct Solvers

M. Faverge, G. Pichon, P. Ramet, J. Roman [Inria Bordeaux and Labri] A. Aminfar, E. Darve, C. Dudley [Stanford University]

Outline

- Sparse Direct Solvers
- Introducing H-Matrix in PaStiX
- Complexity Study
- Black Box Approach
- Ourrent Experiments Towards H-PaStiX

Sparse Direct Solvers

Ínría

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Context

Problem - Solve Ax = b

- Cholesky: factorize $A = LL^T$ (symmetric pattern $(A + A^T)$ for LU)
- Solve Ly = b
- Solve $L^T x = y$

Sparse Direct Solvers: PaStiX approach

- 1. Order unknowns to minimize the fill-in
- 2. Compute a symbolic factorization to build L structure
- 3. Factorize the matrix in place on L structure
- 4. Solve the system with forward and backward triangular solves

Nested Dissection

Considering a graph $G = (V, E, \sigma_p)$ V: vertexes, E: edges, σ_p : unknowns permutation

Algorithm to compute σ_p

- **1.** Partition $V = A \cup B \cup C$
- **2.** Order *C* with larger numbers: $V_A < V_B < V_C$
- 3. Apply the process recursively on A and B

Three-levels of nested dissection on a regular cube

Symbolic Factorization

General approach

Innía

- 1. Build a partition with the nested dissection process
- 2. Compress information on data blocks
- 3. Compute elimination tree thanks to the quotient graph

Numerical Factorization

Algorithm to eliminate the block column k

- 1. Factorize the diagonal block
- 2. Solve off-diagonal blocks in the current column (TRSM)
- 3. Update the underlying matrix with the column's contribution (GEMM)

Update

- Compacted matrix-matrix product
- Update divided into the number of off-diagonal blocks receiving contributions

Motivations

Cost of Direct Solvers

- Expensive with respect to iterative solvers
- · Burden on scalability, especially because of memory consumption
- More robust, and allow to tackle hard problems

Low-rank strategies

- Compress some information in the direct solver
- Provide a "good" preconditionner for iterative methods

Objective: target large difficult problems with a low-rank strategy that keeps the general idea of a supernodal approach

Introducing H-Matrix in PaStiX

Innia

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Scenario

Steps

- 1. Use direct approach on small supernodes
- 2. Compress large supernodes: dense diagonal block and off-diagonal blocks
- 3. Compute a low-rank factorization with both dense and low-rank blocks
- 4. Use the resulting solution as a "good" preconditionner for iterative methods

Advantages

- Keep the inherent parallelism of the Right-Looking approach in PaStiX
- Do not update an H-structure with an H-structure

HODLR Compression

Build an HODLR tree: dense diagonal blocks and low-rank off-diagonal blocks

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman – Workshop Fast Direct Solvers

Low-rank Compression

M

 $M \in \mathbb{R}^{n \times n}, U, V \in \mathbb{R}^{n \times r}, K \in \mathbb{R}^{r \times r}$

Storage in $2nr + r^2$ instead of n^2 Low rank compression with BDLR, ACA, SVD...

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman – Workshop Fast Direct Solvers

Using HODLR in PaStiX

Compress Information

- Large diagonal block: HODLR
- Large off-diagonal blocks: low-rank

Underlying Contributions

- Dense to low-rank
- Dense to HODLR
- Low-rank to low-rank
- Low-rank to HODLR

Open Issues

HODLR management

- Factorization and Solve relying on HODLR kernels
- Update: has to be tuned for PaStiX
- Initialization: set the HODLR tree (median bisection?)

Compression structures

- The rank may grow during the factorization. When to compress? in *A*? after some steps?
- How to choose the low-rank accuracy?
- How to control the number of iterations?

Compression evolution on the Last Supernode of a $30^3\,$ laplacian

Compressed with HODLR using SVD and 1e-2 tolerance

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Apply an Update

Applying an update to a HODLR structure

- Divide the contribution to fit the HODLR tree
- Update dense or low-rank structures instead of the complete HODLR structure
- · Objective: build a low-rank symbolic structure

To enhance efficiency, it is important to study the structure of off-diagonal blocks contributing to a diagonal block

Complexity Study

Innía

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Context of the Study (1)

Conditions

- For bounded-density graphs [Miller, Valaris - 1991]
- $\bar{G} = (\bar{V}, \bar{E})$ with $|\bar{V}| = p$
- Partition into $\overline{V} = A \cup B \cup C$

Partitioning a graph

 p^{σ} -Separation Theorem [Lipton, Tarjan - 1979]

- $0 < \alpha < 1, \beta > 0, \frac{1}{2} \le \sigma < 1$
- $|A| \le \alpha p, |B| \le \alpha p$

•
$$|C| \leq \beta p^{\sigma}$$

Context of the Study (2)

The University of Florida Sparse Matrix Collection

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Compression Ratio

Properties

- $|C| = q \le \beta p^{\sigma}$
- $|H| = h = \Theta(q)$: inner and outer parts are well balanced
- $r = \Theta(q^x) = \Theta(p^{\sigma x})$ with $0 \le x < 1$ adaptive

HODLR

- AmirHossein Aminfar, Eric Darve: A Fast and Memory Efficient Sparse Solver with Applications to Finite-Element Matrices
- Storage: $\Theta(rq)$ for a *q*-by-*q* block of rank *r*
- Factorization: $\Theta(r^2q)$ for a *q*-by-*q* block of rank *r*
- Solve: $\Theta(r^2h)$ when solving h unknowns with the previous factorization

Complexity on a Block-Column - Dense / Compressed

(nría_

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

21/37

Update Low-Rank with Low-Rank (1)

Evolution of a LR structure

- Start with sparse CSC format
- Compress with the corresponding lines/columns into LR (no cheap)
- · Update this low-rank structure with low-rank contributions

Innia

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman – Workshop Fast Direct Solvers

Update Low-Rank with Low-Rank (2)

$$A \leftarrow B + C$$

$$B = U_B V_B^T, C = U_C V_C^T$$

$$A = U_B V_B^T + U_C V_C^T = \begin{pmatrix} U_B & U_C \end{pmatrix} \times \begin{pmatrix} V_B^T \\ V_C^T \end{pmatrix}$$

${\it QR}$ factorizations

- $(U_B U_C) = Q_U R_U$
- $(V_B V_C) = Q_V R_V$
- Cost in $\Theta(n_z r^2)$ with r the rank and n_z the number of non-zeros

Update Low-Rank with Low-Rank (3)

$$A = (Q_U R_U) \times (Q_V R_V)^T$$

Build the new low-rank structure

- **1.** Perform an SVD of $R_U R_V^T = u \sigma v^T$
- 2. Keep r largest singular values

3.
$$A = (Q_U \ u \ \sigma^{\frac{1}{2}})(Q_V \ v \ \sigma^{\frac{1}{2}})^T$$

Result

- Computational cost in $\Theta(r^3 + n_z r^2)$
- Memory requirement in $\Theta(n_z r)$

Complexity on a Block-Column

In practice

- For a *d*-dim bounded-density graph, $\sigma = \frac{d-1}{d}$
- The rank $r = \Theta(q^x)$ is taken with $x = \frac{d-2}{d-1}$

 $compl(\bar{G}, H) \leq contrib_{C} + compl(A, H_{A}) + compl(B, H_{B})$

Overall complexity depending on $contrib_C = \Theta(p^y)$ [Charrier, Roman - 1989]

•
$$y < 1 \rightarrow \Theta(n)$$

•
$$y = 1 \rightarrow \Theta(n \ln(n))$$

•
$$y > 1 \to \Theta(n^y)$$

Results for the Factorization on general 2D/3D graphs

We consider a subgraph of size p with a separator C, while the original matrix is of size n.

Similar results for HSS (Randomized Sparse Direct Solvers, by Jianlin Xia), except for OPC in 3D: HSS is in $\Theta(n^{\frac{4}{3}} \ln(n))$

Results for the Overall Solver on general 3D Graphs

If the resulting solver is used as a preconditioner for iterative methods

Operations

- Factorization in $\Theta(n^{\frac{4}{3}})$
- Solve in $\Theta(n \ ln(n))$

Overall cost

- Considering *m* iterations in the iterative refinement
- Cost: $k_1 \times n^{\frac{4}{3}} + k_2 \times n \ln(n)$
- The number of iterations should be lower than $\Theta(\frac{n^{\frac{1}{3}}}{n\,ln(n)})$ if one wants to keep a complexity in $\Theta(n^{\frac{4}{3}})$

4

Black Box Approach

Innía

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Compression library dependency

- Require a dense library with a compression strategy (HODLR, $\mathcal{H}, \mathcal{H}^2,$ HSS...)
- · Need compression/factorization/solve operations
- Do not require to compute an LU factorization in the compressed format

Implement H-PaStiX in order to depend on an hierarchical compression method, but without modifying the original implementation

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman – Workshop Fast Direct Solvers

Formulas

Classic LU

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} \times \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix} = \begin{pmatrix} L_{11} \times U_{11} & L_{11} \times U_{12} \\ L_{21} \times U_{11} & L_{21} \times U_{12} + L_{22} \times U_{22} \end{pmatrix}$$

H-LU

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11}^* & 0 \\ L_{21} & A_{22}^* \end{pmatrix} \times \begin{pmatrix} I & U_{12} \\ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11}^* & A_{11}^* \times U_{12} \\ L_{21} & L_{21} \times U_{12} + A_{22}^* \end{pmatrix}$$

- **1.** Factorize A_{11} in A_{11}^*
- **2.** $L_{21} = A_{21}$
- **3.** Solve $A_{11}^* * U_{12} = A_{12}$
- **4.** Compute $A_{22}^{k+1} = A_{22}^k L_{21} * U_{21}$

Solve on A_{kk} instead of solves on L_{kk} and L_{kk} . Do not require to perform a LU decomposition in compressed format

Current Experiments Towards H-PaStiX

Innia

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman - Workshop Fast Direct Solvers

Experiments with the Schur Complement

Context

- Compress only the last diagonal block
- Proof of concept
- · Defining the interface to an H-Matrix library

Strategy

- 1. Eliminate the first block-columns
- 2. Apply updates to the last supernode (in dense)
- 3. Compress this supernode
- 4. Factorize this supernode
- 5. In the forward/backward steps, replace the two solves on the last supernode by a single HODLR solve
- 6. Refine with GMRES

Experiments with a regular grid (3D laplacian)

Method	Tolerance	Compression	Guess	Nb iterations	Norm
ACA	1e-1	4.25	1.76e-01	20	1.01e-08
	1e-2	2.37	1.55e-01	20	1.93e-12
	1e-3	1.61	1.16e-01	12	1.84e-13
	1e-4	1.36	5.50e-02	8	6.82e-13
	1e-5	1.26	3.37e-05	3	1.30e-14
	1e-6	1.18	1.17e-06	3	3.87e-15
BDLR	1e-1	2.48	3.12e-02	10	2.16e-13
	1e-2	2.00	9.31e-03	7	1.87e-14
	1e-3	1.65	1.31e-03	5	2.03e-14
	1e-4	1.42	1.40e-04	4	3.41e-15
	1e-5	1.30	7.84e-06	3	4.16e-15
	1e-6	1.23	1.13e-06	3	2.89e-15
SVD	1e-1	2.99	2.45e-02	9	1.85e-13
	1e-2	2.13	3.81e-03	6	3.65e-14
	1e-3	1.72	2.26e-04	4	1.33e-14
	1e-4	1.48	1.77e-05	3	3.06e-14
	1e-5	1.34	1.19e-06	3	3.39e-15
	1e-6	1.26	9.49e-08	2	3.39e-14

Inría

Experiments with a real-life matrix (audi)

Method	Tolerance	Compression	Guess	Nb iterations	Norm
ACA	1e-1	6.94	2.96e-03	20	4.94e-06
	1e-2	2.94	7.22e-04	20	3.68e-07
	1e-3	2.00	5.66e-05	12	8.50e-13
	1e-4	1.68	2.91e-06	5	4.36e-14
	1e-5	1.50	9.38e-08	3	1.94e-13
	1e-6	1.34	9.05e-09	2	5.87e-13
BDLR	1e-1	4.53	1.20e-03	20	1.84e-06
	1e-2	3.19	3.27e-04	20	1.41e-07
	1e-3	2.43	9.77e-03	15	1.65e-13
	1e-4	1.97	4.02e-06	7	1.68e-13
	1e-5	1.70	3.13e-07	4	3.50e-13
	1e-6	1.52	1.53e-08	3	4.40e-14
SVD	1e-1	5.07	7.48e-04	20	2.16e-07
	1e-2	3.24	1.34e-04	20	1.65e-10
	1e-3	2.45	9.74e-06	7	9.55e-13
	1e-4	1.99	8.27e-07	4	2.75e-13
	1e-5	1.73	8.42e-08	3	4.61e-14
	1e-6	1.54	8.55e-09	2	3.14e-13

Inría

Numerical Results

Accuracy of the resulting solution depends on:

- The compression method (SVD is the best)
- The HODLR tree (structure and depth)
- The given tolerance to HODLR code
- · The number of iterations allowed in the iterative process

Preliminary experiments

- SVD better than BDLR, better than ACA
- Small number of iterations to reach PaStiX original accuracy

E. Darve, M. Faverge, G. Pichon, P. Ramet, J. Roman – Workshop Fast Direct Solvers

Conclusion

Perspectives

- Linear solver for 2D general graphs
- A $\Theta(n^{\frac{4}{3}})$ solver for 3D general graphs
- Memory improvements
- OPC gain, but probably loss in effectiveness (BLAS)
- Large challenging problems

Future Work

- Develop black-box approach
- Study HODLR tree with respect to off-diagonal contributions
- Verify the condition $x = \frac{d-2}{d-1}$ in practice

Thanks!

Complexity on a Block-Column

Cost

•
$$q = \Theta(p^{\sigma}) = h, r = \Theta(p^{\sigma x})$$

• $OPC_C: \Theta(r^2(q+h) + r^3) = \Theta(p^{\sigma(2x+1)} + p^{3\sigma x})$

•
$$NNZ_C: \Theta(r(q+h)) = \Theta(p^{\sigma(x+1)})$$

In practice

- For a *d*-dim bounded-density graph, $\sigma = \frac{d-1}{d}$
- The rank $r = \Theta(q^x)$ is taken with $x = \frac{d-2}{d-1}$
- Exponents for OPC_C : $\sigma(2x+1) = \frac{3d-5}{d}$, $3\sigma x = \frac{3d-6}{d}$
- Exponents for NNZ_C : $\sigma(x+1) = \frac{2d-3}{d}$

Complexity: HODLR vs Randomized HSS

Dimension	Metric	HODLR	HSS	Classic
20	NNZ	$\Theta(n)$	$\Theta(n)$	$\Theta(n\; ln(n))$
20	OPC	$\Theta(n)$	$\Theta(n)$	$\Theta(n^{\frac{3}{2}})$
3D	NNZ	$\Theta(n \ ln(n))$	$\Theta(n \ ln(n))$	$\Theta(n^{\frac{4}{3}})$
	OPC	$\Theta(n^{\frac{4}{3}})$	$\Theta(n^{\frac{4}{3}}ln(n))$	$\Theta(n^2)$