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Abstract

The simulation of the neutron transport inside a nuclear
reactor leads to the computation of the lowest eigen pair
of a simplified transport operator. Whereas the sequential
solution at our disposal today is really efficient, we are not
able to run some industrial cases due to the memory con-
sumption and the computational time. This problem brings
us to study parallel strategies.

In order to re-use an important part of the solver and
to bypass some limitations of conforming cartesian meshes,
we propose a non overlapping domain decomposition based
on the introduction of Lagrange multipliers. The method
performs well on up to100 processors for an industrial test
case.

Keywords: domain decomposition, neutron transport,
Lagrange multiplers, Krylov based Uzawa algorithm.

1 Introduction

The simulation of the neutron transport inside a nuclear
reactor leads to the computation of the lowest eigen pair of a
simplified transport operator [9]. This computation is done
by an accelerated power inverse algorithm. At each itera-
tion, a linear system is solved inexactly by a block Gauss-
Seidel algorithm. For our application, one Gauss-Seidel it-
eration is already sufficient to ensure the right convergence
of the power algorithm. For the approximate resolution
of each linear system, we propose a non overlapping do-
main decomposition based on the introduction of Lagrange
multipliers[12] in order to :

• get a parallel algorithm, which allows to get round
memory consumption problem and to reduce the com-
putational time;

• deal with different numerical approximations (mesh
size and finite element order) in each subdomain. With
this feature, we want to do the right amount of com-
putation1 for the requested accuracy. To use such non-
conforming approximation, the physical knowledge of
the problem is needed;

• minimize the code modifications in our industrial
solver. The introduction of Lagrange multipliers al-
lows us to use in each subdomain the sequential solver
with the same boundary conditions as before.

Some other domain decomposition approaches have pre-
viously been studied in the context of neutron physics
[4, 8]. In [7, 5], the authors propose a domain decomposi-
tion method based on an additive Schwartz algorithm with
Robin transfer condition for diffusion approximation. This
method is very efficient but implies to find a good parameter
α for the Robin transfer condition.

In a first part, the simplified transport equationsSPn and
the basis of the domain decomposition method we propose
are presented. The second part is dedicated to the descrip-
tion of the parallel implementation of a domain decomposi-
tion technique for our problem. Finally, numerical results,
obtained with our parallel implementation, on a standard
benchmark (BenchMarkAIEA [6]) are provided. Whereas
the proposed domain decomposition method can get round
the limitation of conforming cartesian meshes, the numer-

1However in a parallel context, it creates difficulties to finda well bal-
anced partition.



ical results only point out the gain of the parallel method
(computational time and memory consumption).

2 Introduction of the domain decomposition
method

2.1 Presentation of the problem

The simplified transport equationsSPn with two energy
groups2, lead for a reactivity calculation to the following
algebraic problem :

Find the highestkeff such that :

AX =
1

keff

FX (1)

where

A =

(

A11 A12

A21 A22

)

F =

(

F11 0
0 F22

)

X =

(

X1

X2

)

.

• Xg corresponds to the degrees of freedom of neutron
flux for energy groupg;

• A is the transport matrix;

• F is called the fission matrix;

• keff is the highest eigenvalue of the operatorA−1F .
It is called the effective multiplicative coefficient.
keff = 1 means that the chain reaction is stable,
keff < 1 means that the chain reaction slows down
andkeff > 1 means that the chain reaction spirals out
of control.

In theSP1 approximation, the matricesA11 andA22 are
four block matrices as they come from a discretization with
Raviart-Thomas finite elements [1] of a mixed dual formu-
lation of a diffusion problem. More precisely we have, for
each groupg,

Agg =









Ag
x −Bx

Ag
y −By

Ag
z −Bz

Bx
t By

t Bz
t T g









Xg =









Jg
x

Jg
y

Jg
z

φg









where

• φg contains the degrees of freedom of the flux variable;

• Jg
x , Jg

y andJg
z contain the degrees of freedom of the

current variable for each space direction;

• Ag
x, Ag

y andAg
z are banded matrices (tridiagonal with

RT 0 and pentadiagonal withRT 1);

2The use of two energy groups corresponds to industrial cases

• T g is a positive definite diagonal matrix;

• Bx, By andBz are rectangular sparse matrices with 1
and -1 non zero values.

In the general case, the discretization of theSPn equations
leads for each groupg to a matrixAgg made ofn+1

2
coupled

diffusion systems.
To solve problem (1), a Generalized Power Inverse Itera-

tion Algorithm is used [11]. At each inverse power iteration,
a linear system

AX = S (2)

has to be solved. AsA is very large and sparse, the resolu-
tion of (2) is done by a Gauss-Seidel algorithm which needs
the computation of the product byA−1

gg .
To solve each linear system with each matrixAgg , the flux
φg is eliminated in order to bring us to a positive definite
linear system associated with a three-blocks matrix. Its res-
olution is done by a Gauss-Seidel algorithm where the in-
version on each space direction is done exactly by an LU
factorization.

The overall algorithm is resumed in the Algorithm 1
where three loops are imbricated3 with an inner/outer pro-
cess. For each iterative algorithm, the initial guest is there-
sult of the previous resolution of the system with the same
matrix. For our applications, we obtain the best perfor-
mance by doing a single iteration for all Gauss-Seidel loops.
One iteration is the best compromise between the iteration
number of the inverse power algorithm and the computa-
tional time per iteration.

With a Gauss-Seidel algorithm restricted to one iteration
there is only one forward/backward substitution for each di-
mension of space, so pipeline techniques can not be applied
to increase the parallel efficiency. This is one reason for the
introduction of domain decomposition techniques.

2.2 A domain decomposition method
based on Lagrangian multipliers

The domain decomposition method we propose is based
on the introduction of Lagrange multipliers to deal with dif-
ferent numerical approximations (mesh size and finite ele-
ment order) between two adjacent subdomains. At each in-
verse power iteration, the linear system to solve (2) is then
replaced by a new linear system that can be written, for a
partition composed of two subdomains, as:




Ad=1 0 C1→2

0 Ad=2 C2→1

Ct
1→2 Ct

2→1 0









Xd=1

Xd=2

Λ



 =





Sd=1

Sd=2

0





(3)
where

3In the general case (SPn equations), one new loop is added, due to
the block Gauss-Seidel algorithm over the harmonics which are coming
from angular discretization.



Algorithm 1 : Global algorithm

/* Inverse power iteration algorithm

*/
while !Convergencedo

/* Inversion A by Gauss-Seidel */
while !Convergencedo

foreachgroupg do
/* Inversion of Agg by

Gauss-Seidel */
while !Convergencedo

foreach space directiond do
ComputeRhS ;
Solve
(Ag

d − Bt
dT

−1
g Bd)J

g
d = RhS ;

• the unknowns are the solution vectorsXd=1 andXd=2

defined on each subdomain;

• the matricesC1→2 andC2→1 are coupling matrices be-
tween the two subdomains, they depend on the numer-
ical way to discretize each subdomain;

• Λ is the vector which contains the degrees of free-
dom associated with the Lagrange multipliers for the
matching ofXd=1 andXd=2 on the interface between
the two subdomains.

More rigorously, (3) comes from the discretization of the
variational form of the simplified transport equations writ-
ten with the Lagrangian multipliers to take into account the
non-matching grids at the interface of the subdomains [2].
To solve (3), we rewrite it as a saddle point system:

(

ADD C

Ct 0

) (

X

Λ

)

=

(

S

0

)

(4)

with

ADD =

(

Ad=1 0
0 Ad=2

)

C =

(

C1→2

C2→1

)

(5)

X =

(

Xd=1

Xd=2

)

S =

(

Sd=1

Sd=2

)

. (6)

3 Practical implementation of the domain de-
composition method

To solve (4), a Krylov based Uzawa algorithm [3] is
used. The principle of this algorithm is to solve the problem
defined on the interface between the subdomains, that is to
say, findΛ solution of

CtA−1

DDCΛ = CtA−1

DDS (7)

with a Krylov algorithm where a linear combination of sub-
domain vectors associated to the Krylov interface vectors
is added for each Krylov iteration to compute the solu-
tion. When two energy groups are considered, the matrix
CtA−1

DDC is not symmetric. That is why we use a Uzawa-
BiCGStab algorithm (see Algorithm 2) that is an adaptation
of a BiCGStab algorithm [10] (with the vectorr∗0 set to 1)
for saddle point system:

• at line 2, the residualr is computed using only one ap-
plication ofA−1

DD as the computation of the right hand
sideCtA−1

DDS is not necessary;

• at lines 3 and 4, we store an additional vector for each
subdomain;

• at line 5, we computeX thanks to the additional vec-
tors stored for each subdomain;

• since this algorithm is inside a inverse power algo-
rithm, Λ is initialized at line 1 byΛ0 provided by the
previous iteration of the inverse power algorithm.

Algorithm 2 : Uzawa-BiCGStab algorithm

Λ = Λ0; r∗0 = 1 ;1

X = A−1

DD(S − CΛ); r = CT X ;2

p = r;
while !Convergencedo

Xp = A−1

DDCp; Sp = CT Xp;3

α =
< r, r∗0 >

< Sp, r∗0 >
;

s = r − αSp;
Xs = A−1

DDCs; Ss = CT Xs;4

ω =
< Ss, s >

< Ss, Ss >
;

Λ = Λ + αp + ωs ;
X = X − αXp − ωXs ;5

rold = r;
r = s − ωSs ;

β =
< r, r∗0 >

< rold, r
∗

0 >
×

α

ω
;

p = r + β(p − ωSp);
end

We use in parallel the sequential solver, in each subdo-
main, to compute the product byA−1

DD (lines 2, 3, 4). Since
the solver is iterative, we have to initialize carefully thein-
ner iterative process:

• at line 2, the initial guest of the inner solver is the vec-
tor X which is provided by the previous iteration of
the inverse power algorithm. Indeed at convergence
this vector is invariant;



Figure 1. Communication Scheme

• at lines 3 and 4, the solvers use the null vector as initial
guest.

Compared with algorithm 1, we finally add two nested
loops: the first one, over subdomains, is implicit as we are
using a SPMD4 paradigm. The other loop is added to get
convergence of Uzawa-BiCGStab algorithm. For this loop,
we choose to set a fixed number of iterations in the same
way as the original sequential solver. In futur works, we
will have to define finer criteria to improve the convergence.

In our implementation, a subdomain is mapped on each
processor. For instance, processor 1 has to storeAd=1,
Fd=1 andXd=1. Thanks to the specific finite elements and
to the choice of the basis functions for the Lagrange multi-
pliersΛ, each degree of freedom on the interface is linked
between only two subdomains.

Interface vectorΛ and interface vectors issued from
BiCGStab algorithm are decomposed naturally following
the interfaces between subdomains. For each interface vec-
tor ω, we denoteωi,j , the part of the interface vector be-
tween subdomainsi and j (ωj,i refers to the same part).
Since in the case of non-matching grids (or different or-
der of finite elements) the application ofC can reduce the

4Single Program Multiple Data

amount of data to transfer, the matricesCi→j andCj→i and
ωi,j (for each interface vectorω) are stored on the same pro-
cessor. In order to minimize the communication, we choose
to store this data on the processor with the finest discretiza-
tion (see Figure 1). This processor is called the master for
the interface between the subdomainsi andj. A subdomain
can be master for an interface and slave for another one. In
the case of matching grids and same finite element order,
the subdomain with the smallest index is defined as mas-
ter. Since for each couple(i, j) of neighboring subdomains,
Ci→j is made of small identical blocks, only the elementary
blockCElt

i→j is stored.

To ensure high-performance computing, there is no mas-
ter/slave communication scheme: all the scalar products
computed on solution vectors inside the inverse power al-
gorithm and on the interface vectors inside the BiCGStab
algorithm are computed locally and then reduced thanks
to collective communications using “MPIAllreduce” rou-
tine. Moreover, a communication will occur only between
neighboring subdomains to compute the products byC and
Ct. Finally, persistent communications are implemented:
for each vectorsw andX , the computations ofCw (see Al-
gorithm 3) andCT X (see Algorithm 4) use the same buffer
(see Figure 1).

Algorithm 3 : ComputeX+ = CΛ

forall j master interfacedo
ComputeCj→iΛi,j;
Start Sending Data to j;

forall j slave interfacedo
Start receiving Data from j;

forall j master interfacedo
ComputeCi→jΛi,j to updateXi;
Wait data sent to j;

forall j slave interfacedo
Wait Received Data from j;
UseCi→jΛi,j to updateXi;

Algorithm 4 : Computeω = CT X

forall j master interfacedo
Start receiving Data from j;
Computeωi,j = Ct

i→jXi;

forall j slave interfacedo
Computetmpi,j = Ct

i→jXi ;
Start Sendingtmpi,j to j ;

forall j master interfacedo
Wait received data(tmpi,j) from j;
ωi,j+ = tmpi,j ;

forall j slave interfacedo
Wait Data sent to j ;



4 Experimental results
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Figure 2. Number of iterations
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Figure 3. Iteration number for 215 partitions
on a small test case (17 × 17 × 19)

To validate the proposed method we consider a 3D
standard benchmark published by IAEA [6]. Two groups
of energy are involved. The definition of physical constants
is based on a cartesian mesh17 × 17 × 19 made of five
materials. The computational mesh used is289× 289× 38
with the Raviart Thomas finite elementRT 0. The stiffness
matrices are computed with a Gauss-Legendre integration.
The axis x, y and z are partitioned intoNx, Ny and
Nz parts. This leads to a partition of the domain into
Nx × Ny × Nz subdomains. The numerical results are
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Figure 4. Time per iteration
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Figure 5. Total time

given with the following partitions:(Nx × Ny × Nz) ∈
{(2, 1, 1), (2, 2, 1), (3, 3, 1), (4, 4, 1), (5, 5, 1), (6, 6, 1),
(7, 7, 1), (5, 5, 2), (8, 8, 1), (6, 6, 2), (9, 9, 1), (10, 10, 1),
(11, 11, 1), (12, 12, 1), (13, 13, 1)}. With this choice, the
jumps of physical data are located inside the subdomains.
In order to compare with the sequential solver, we consider
matching grids.

The inverse power algorithm has the following conver-
gence criteria:

‖φn − φn−1‖

‖φn‖
< 10−6 and

|λn − λn−1|

|λn|
< 10−5

whereφn is the flux part of the estimated eigenvector and
λn the estimated eigenvalue at iterationn.
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BiCGStab2

To run our code we used the cluster of EDF R&D Rend-
Vous with the following properties:

• Processors: 208 nodes with Intel(R) Xeon(TM) CPU
3.40GHz 2MB Cache;

• Memory: 4 GB PC3200 DDR2 with DualChannel;

• Network: Infiniband openib-2.0.5;

• MPI Implementation: mpich 1.2.7;

• Compiler: g++ 4.1.2 (64 bit);

• OS: Debian etch.

During batch submissions, a node per subdomain is re-
served to avoid concurrence for memory access.

Results with Uzawa-BiCGStab algorithm with two it-
erations are presented. Surprisingly, an Uzawa-CG algo-
rithm (applied to a non-symmetric system) converges to the
correct solution: the results with one and three iterations
are also presented. Uzawa-CG algorithm is interesting be-
cause the computational cost is less important. In the mono-
domain solver (sequential solver), only one call to local
solver is done whereas five calls are needed in our multi-
domain parallel solver with two iterations of BiCGStab al-
gorithm (BiCGStab2)5. So, in parallel, there is at least a
penalty by a factor of 5 compared to the sequential mono-
domain solver. With CG1 the penalty per power iteration is
only 2 (4 for CG3).

5In the same way CG1 (resp. CG3) refers to the multi-domain approach
with one (resp. three) iteration of Conjugate Gradient

All the inner convergence loops have a fixed number of
iterations. So to analyse the impact of domain decomposi-
tion on the convergence, the iteration number of the gener-
alized inverse power algorithm is meaningful (see figure 2).
Without reliable explanation, with two solvers (BiCGStab2,
CG3), the number of iterations is not an increasing function
of the number of subdomains neither of the size of interface
problem.

For a given number of subdomains the choice of the
partition has a great impact on the convergence speed.
With a small test case (the computational mesh is set to
17 × 17 × 19), we run 215 partitions and we observe that
a same number of subdomains can lead to really different
behaviours (see figure 3). At this time we do not know how
to automatically choose a good partition. It explains some6

pathological cases (for instance the partition with 49 or 50
subdomains for BiCGStab2 on figure 2). We have to men-
tion that the number of iterations is remarkably stable with
the CG3 solver (see figure 2).

Of course, the time spent inside each local solver is
smaller when the number of subdomains increases, so the
time spent in one iteration is decreasing (see figure 4). To
measure the time, we consider only the execution of the
inverse power iteration algorithm: it means that the stiff-
ness matrices construction is not measured. The global be-
haviour is time decreasing with the number of subdomains
but due to the jump in the iteration number of the inverse
power algorithm, we observe one increasing zone (see fig-
ure 5).

Although our domain decomposition approach leads to
a penalty factor, with 8 subdomains (resp. 4), the multi-
domain approach BiCGStab2 (resp. CG1) is faster than the
sequential mono-domain solver.

This domain decomposition method reduces signifi-
cantly the execution time and, furthermore, we can run
larger industrial test cases. For speedup studies, the multi-
domain approach with two subdomains is defined as refer-
ence solver. On the figure 6, the speedup for one iteration
of the inverse power algorithm is plotted. On this figure, we
add one curve concerning only the time spent in the solver
A−1

DD and another one for the rest of the code (including
products byF , C andCt, scalar products, . . . ). The follow-
ing results are obtained :

• on 16 subdomains, the global time is reduced by 6.2
with BiCGStab2 compared to the parallel two-domain
solver (reduced by 6.1 with CG1). However, compared
to the sequential mono-domain solver, the global time
is only reduced by 2.8 with BiCGStab2 (reduced by
5.8 with CG1);

6On the small test case (Figure 3) there is only 4.2% (resp. 1.4%) of
partitions which imply an increase in iterations number superior to 10%
(resp. 50%) compared to the sequential solver)



• on 81 subdomains, the global time is reduced by 39.3
with BiCGStab2 compared to the parallel two-domain
solver (reduced by 28.7 with CG1). In the same way,
compared to the sequential mono-domain solver, the
global time is only reduced by 17.8 with BiCGStab2
(reduced by 27.7 with CG1).

From 64 processors, the subdomains are enough small
and thanks to cache effect (see figure 6), the local solver
is super linear (for72, 91 and100 subdomains). The best
efficiency is obtained for 81 subdomains. But for more than
81 subdomains there is not enough work in each subdomain
and the time taken by the solver does not decrease.

On a test case which is, in term of size, not far from
real industrial cases, these results prove the efficiency of
our domain decomposition method and its implementation
up to 100 processors. As expected, the global communica-
tions can not be neglected with more than121 processors.
However the main bottleneck remains the local solver with
small subdomains. Some investigations need to be done to
improve the efficiency of the sequential solver with small
subdomains.

5 Conclusions

The proposed domain decomposition method in the dif-
ficult context of an approximate resolution of each linear
system at each power iteration reveals very reliable. Be-
sides, it exhibits a good efficiency which allows us to realize
some computations beyond the reach of standard worksta-
tions. Finally, we obtain very good results in using a con-
jugate gradient algorithm instead of a BiCGStab algorithm
for the resolution of the interface problem. We have to val-
idate such behaviors on more complicated test cases (with
more groups and more harmonics) and on more processors.

It is still a long way to obtain a very powerful method
for industrial applications. On the one hand, the efficiency
of using a conjugate gradient algorithm has to be investi-
gated. On the other hand, we have to study the best way to
introduce the process based on Chebyshev polynomials for
the acceleration of the power algorithm. Indeed this pro-
cess (when activated) leads to a significant reduction of the
computational time for the sequential monodomain solver.
Furthermore more experimentations have to be performed
in order to find a way to choose a good partition of the com-
putational mesh. Lastly, it is necessary to identify the best
place in the overall algorithm of the subdomain loop. For
the moment, it is placed between the inverse power and the
energy group loops.

Finally we acknowledge ANRT7 for financial support.

7Association Nationale de la Recherche Technique
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2007.

[6] B. Micheelsen. 3D IAEA Benchmark Problem. Tech-
nical report, IAEA, 1977.
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