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Abstract  Non-linear MHD simulations of ELMs show features in qualitative agreement with 

experimental observations like the formation and speed of filaments, features in the radial 

profiles and the fine structure observed in the power deposition profiles at the divertor target. 

The density perturbation predominantly follows the ballooning mode convection cells leading 

to density filaments. The temperature perturbation, due to the large parallel conduction, 

follows the magnetic field perturbation. Simulations of pellets injected in the H-mode pedestal 

show that the high pressure in the high density plasmoid can become large enough to drive 

ballooning type modes forming a single helical structure located at the pellet (plasmoid) 

position. 

1. Introduction 

Extrapolations of the ELM energy losses from current devices to ITER indicate that the expected ELM 

energy losses in ITER may be well above the acceptable limit to avoid fast material erosion of the first 

wall [1]. Current extrapolations are based on scaling of the ELM size with global parameters. To 

improve the ELM size predictions a more detailed understanding of the ELM physics is required. 

Direct numerical simulation can contribute to improve our physics understanding of ELMs and 

contribute to the interpretation of experimental results. In recent years, a large amount of detailed fast 

measurements of the ELMs have become available. These measurements provide a good basis for the 

validation of the numerical simulation of ELMs.  

In the first part of this paper, natural ELMs are simulated using the non-linear MHD code JOREK 

starting from the assumption that ELMs are ballooning mode instabilities driven by the pressure 

gradient in the H-mode pedestal. The non-linear evolution of density, temperature and current density 

profiles is discussed together with the associated density and energy losses. Also the convected energy 

losses at the divertor are considered.  

In the second part of the paper, the plasma response to the injection of a pellet in an H-mode pedestal 

is studied. Pellets injected in the H-mode pedestal are known to trigger ELMs but the origin of the 

ELM trigger is still largely unknown. Non-linear MHD simulations of the evolution of an initial 

density perturbation in the pedestal can help clarify whether the pellet induced 3D perturbation can 

trigger or cause ELM-like MHD instabilities. 

2. Non-linear MHD code JOREK 

The non-linear MHD code JOREK solves the time evolution of the reduced MHD equations in general 

toroidal geometry. The magnetic field B
�

 and the velocity v
�

 are represented using the poloidal flux 

ψ  and the electric potential u  and the parallel velocity v
�
: 
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Substitution in the usual visco-resistive MHD equations including diffusive particle and heat transport 

yields the equations to be solved for the mass density ρ , temperature T , the perpendicular and 

parallel velocity and the poloidal flux: 
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D⊥ , ⊥Κ and Κ
�

 are the perpendicular particle diffusion and the perpendicular and parallel heat 

conductivity, Sρ  and TS  represent the particle and heat source. ( ) ( )
3/2

0 0T T Tη η=  is the temperature 

dependent resistivity, µ  the viscosity. The equations are partly normalized using only µ0ρ0. This 

means for example that the normalized time as used in this paper is 
0 0 A

t t tµ ρ τ= =� . 

The boundary conditions are those of an ideally conducting wall (all perturbations set to zero) on the 

surfaces parallel to the magnetic field. On the open field lines the Mach one boundary condition for 

the parallel velocity is applied together with a free outflow of density and temperature.  

The JOREK code has been developed with the specific aim to simulate ELMs, i.e. to simulate 

ballooning modes and external kink (or peeling) modes located around the separatrix in X-point 

plasmas on open and closed field lines. To allow for an accurate representation of the variables, cubic 

‘Bezier’ finite elements [2] are used in the poloidal plane. The Bezier elements are a generalization of 

the cubic Hermite elements (as used in the HELENA equilibrium code [3]). The Bezier elements are 

based on so-called Bezier patches which are commonly used in computer aided design (CAD) 

applications. Using this representation both the variables and their derivatives are continuous. The 

(isoparametric) representation of the poloidal plane using the same finite allows an accurate alignment 

of the finite elements to the equilibrium flux surfaces including the separatrix and x-point. The time 

stepping scheme in the JOREK code is fully implicit using the linearised Crank-Nicholson scheme on 

all the equations in one single step. The resulting large sparse matrices are solved using the direct 

parallel sparse matrix solver PastiX [4] and/or an iterative solver (GMRES) using the sub-matrices of 

each toroidal harmonic as an efficient pre-conditioner. 

3. Non-linear MHD simulations of ELMs: Ballooning modes 

There is an increasing amount of evidence [5,6,7,8] that ELMs occur while the pressure gradient in the 

H-mode edge pedestal crosses the (ideal) MHD stability boundary for ballooning and external kink 

(peeling) modes. Linear MHD stability analysis of the H-mode pedestal with type I ELMs indicates 

that the pedestal is in the so-called second stable regime where the high-n modes are stabilized (due to 

the large edge bootstrap current and/or plasma shaping). The most unstable modes are ballooning or 

ballooning-peeling modes with medium-n toroidal mode numbers. 

To investigate questions related to the ELM induced energy losses and the physics of the ELM cycle, 

non-linear MHD simulations [9,10,11,12] can provide physics insight and contribute to the 

interpretation of ELM observations. To determine the size of ELMs and the related ELM frequency, 

the MHD simulations should in principle include several consecutive ELMs. However, the simulation 

of several ELM is extremely challenging due to the different time scales involved, from the fast crash 

time scale to the long recovery phase reheating the edge plasma. Simulations of multiple ELMs are 

slowly becoming feasible but, at present, the current status of non-linear MHD ELM simulations is to 

simulate one single ELM starting from an equilibrium unstable to medium-n ballooning modes. 

Obviously, this approach will not allow to study how a plasma can become significantly unstable. It 

does allow to investigate the dynamics of the ELM itself and (qualitative) comparison of the 

simulation results with the many detailed observations of the fast ELM events that have become 

available in recent years. Well known examples are the fast camera observations of ELMs showing 

filamentary field-aligned structures being expelled from the plasma [13]. The same filaments are also 

seen in the mid-plane profiles of the density using fast Thomson scattering [13, 14]. The fine structure 

or stripes in the ELM induced heat flux observed on the divertor target [15] is also providing detailed 

information on the ELM structure. The measurements can be used as a first step in the validation of 

the non-linear MHD simulation of ELMs. 

 

The initial quasi-stationary equilibria are characterized by a large equilibrium flow just inside the 

separatrix due to the finite dissipation terms in the MHD model [17,9,18,19]. In addition, there is a 

large parallel flow close to the target due to the applied Mach one boundary condition. The stationary 

equilibria are obtained by first solving the static Grad-Shafranov equation on the open and closed field 

lines. This static axisymmetric solution is then evolved over typically 200 Alfven times such that the 

poloidal and parallel flows are well established. The flows and also the density and temperature 

profiles do still evolve on their dissipation timescale which is typically much slower then the timescale 



of interest for the ELM crash. The H-mode edge pedestal is imposed by the shape of the initial profiles 

and by the radial profile of the particle and heat diffusivities which have a local minimum just inside 

the separatrix. 

The simulations discussed below use a flux surface aligned mesh both on the open and closed 

fieldlines. The grid is radially refined at the separatrix and poloidally at the angle of the x-point. The 

number of cubic finite elements in the poloidal plane is about 9x10
3
. In the toroidal direction, 8 

Fourier harmonics are used with a periodicity of 3, i.e. the toroidal mode numbers range form n=0 to 

n=21. The total number of degrees of freedom, i.e. the size of the matrices to be solved at each time 

step is of the order of 5x106. 

 

The case discussed below is an example of a relatively large ELM. The JET-like equilibrium 

parameters are major radius 0R = 3.11m, minor radius a =0.87m, toroidal magnetic field 0B =2.9T, 

current I =3.14 MA, poloidal beta pβ =0.39, normalized beta Nβ =1.14, q on axis 0q = 1.09 and 

99q =2.82. The initial profiles of the density, temperature and toroidal current density are shown figure 

3.4. The pedestal width is ~4 cm in the outboard mid-plane. The amplitude of the edge current density 

is chosen such that the pedestal is in the so-called second stable regime where the high-n ballooning 

modes are stabilized. The initial equilibrium is marginally stable to an n=18 ideal MHD ballooning 

mode. Including the resistivity (0)η = 5x10
-6

, the particle and heat diffusivities D⊥ = 2x10
-5

, 

κ⊥ = 5x10
-6

, κ =
�

10, and the viscosities µ⊥ = 10
-5

, µ =
�

10
-5

, the system is unstable to the modes n = 

(6,9,12,15,18) with linear growth rates of (0.051, 0.069, 0.067, 0.066, 0.070). At the end of the long 

linear phase of exponential growth (200 Aτ t< < 600 Aτ ), the dominant mode (n=9) is determined by 

the initial noise level from which the modes start to grow. Figure 3.1 shows the evolution of the 

magnetic and kinetic energy of the individual toroidal harmonics.  
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Figure 3.1 The magnetic (M) and kinetic energies (K) as a function of time for each toroidal harmonic. 

Figure 3.2 Density, temperature and toroidal current density in the poloidal plane at t=700
Aτ . 

 

The poloidal flow pattern of the linear ballooning mode structure has a radial half-width of about 5cm 

inside the separatrix and 3cm beyond the separatrix on the open field lines. This ballooning mode flow 

convects high density from the closed to open field lines across separatrix. At the same time low 

density is convected into the main plasma. The n=0 poloidal flow, non-linearly induced by the 

ballooning mode [9], cuts the density perturbation of from the main plasma, forming filaments of 

increased density. The low density interchanges with the high density to form the typical density 

profiles with a local maximum at the position of the filament.  

Figure 3.2 shows a snapshot of the density in the poloidal plane at t=700τA at which time the first 

density filaments have been formed. The density filaments are expelled on the low-field side. They 

then expand with the parallel velocity to the high-field side. The temperature is much less influenced 

by the poloidal flow due to the large parallel heat conduction which tends to keep the temperature 

constant on a field line. The magnetic perturbation is large enough to cause a significant change to the 

equilibrium magnetic field structure. The Poincare plot at the time of the maximum magnetic 



perturbation indicates an ergodic region with a width 2-3 times the pedestal width. Figure 3.5 shows a 

plot of the connection length of the field lines in a poloidal plane. There is still a relatively clear 

separation between field lines with a long connection length (inside the confined plasma) and shorther 

connection lengths outside. The separation between the two regions shows a ballooning like 

perturbation. This same perturbation is visible on the temperature contours (see figure 3.2) illustrating 

that the temperature perturbations follow the magnetic field structure. On the low field side, the 

toroidal current density also follows the magnetic structure and similar to the temperature. On the high 

field side the current sheeth in the pedestal is breaking up (fig 3.2, right). 

 

Figure 3.3 shows the profiles of the density, temperature and the toroidal current density in the mid-

plane for 3 time slices, at the start, at the maximum perturbation (as in fig 3.2) and at the end of the 

simulation. The density profile with a local minimum reflects the formation of density filament. The 

temperature profile remains monotonic due to the large parallel heat conduction. These profile shapes 

are in good qualitative agreement with the fast profile measurements in MAST [13] and JET [14]. The 

ELM affected area in the density profile is ranges from R=3.7m to 3.98m i.e. about 30% of the minor 

radius. The temperature losses are very small, the energy losses are predominantly convective. This 

may be due to the currently implemented divertor boundary conditions. These lead to the so-called 

‘simple’ divertor solutions where the temperature along the field lines remains constant towards the 

target. This leads to very small parallel gradients and consequently small parallel conduction losses. 

The influence of the divertor conditions on the size of the temperature losses remains to be studied. 

The non-linear saturation of the maximum ELM amplitude in this case is likely due to the reduction of 

the drive, i.e. the local pressure gradient, of the ballooning instability. The flux surface averaged edge 

pressure gradient is reduced by a factor of 2 at t=685 τA to a value well below the ideal MHD 

ballooning limit. Before the time of the maximum amplitude, the first density filaments have already 

been ejected from the main plasma. The non-linearly induced n=0 flow from the first filaments have 

decayed. This allows the formation a second set of larger filaments causing density losses deeper into 

the plasma. In general, the interaction of the medium-n ballooning mode with the n=0 poloidal flow 

(by the non-linearly induced flow but also the equilibrium flow) is an important characteristic of the 

non-linear dynamics of the ELM simulations. The flux surface averaged current density in the edge 

pedestal remains large and is reduced by only 15%. After the maximum perturbation, there is a slow 

decay (slow compared to the linear growth rates) of the magnetic and kinetic perturbations. During 

this phase there is still an increased level of energy and density losses from the main plasma. In this 

case, the total energy loss from the main plasma is 7% of the total thermal energy, the total density 

loss is 10%, the total current loss is less than 1%. 

     
Figure 3.3 Density and temperature and toroidal current density in the outboard mid-plane at 

t=480 Aτ , t=700 Aτ  and t=1170 Aτ . 

 

4.1 Fine structure on the power deposition profiles 

The current MHD model used in the simulations, including the parallel velocity and the Mach one 

boundary condition at the target, is a first step towards a more complete description of the solution in 

the divertor. The model allows a first look at the energy deposition profiles at the target. Figure 3.4 

shows the convected energy at the outer target at several time slices. During this simulated ELM the 

peak convected energy flux exceeds the pre-ELM flux by a factor of 20. The energy deposition profile 

on the outer target shows a fine structure on top of the usual radially decaying profile. The radial size 

of the structures is about 1 to 2 cm becoming wider going from the separatrix towards the outside. The 
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structures are mostly due to the temperature profile variations but somewhat broader structures are 

also seen on the density profile at the target. In the toroidal direction these structures form spirals with 

the periodicity of the toroidal mode number (n=9) of the dominant ballooning mode instability. Figure 

3.6 shows a poloidal cut of the temperature profile and the plasma temperature at the target illustrating 

the connection between the structures in the poloidal plane and the spirals in the toroidal direction. On 

the inner target, a very faint fine structure in the temperature can be observed but with a much smaller 

amplitude and smaller number of stripes. 

The origin of the structures can be understood from the topology of the magnetic field, perturbed by 

the magnetic perturbation of the ballooning mode. Figure 3.5 shows a poloidal map of the connection 

length of field lines to the nearest target for field lines that originated inside the (unperturbed) 

separatrix. In the mid-plane the magnetic perturbation show the typical ballooning perturbation. The 

field lines escaping from the main plasma (due to the ergodic plasma edge) are connected to the target. 

The poloidally elongated ballooning mode structures in the mid-plane are deformed into radially 

elongated and poloidally localized structure at the target. This deformation is due to the equilibrium 

magnetic field structure in the presence of an x-point. The temperature perturbations reflect these 

magnetic structures due to the high parallel heat conduction. The broadening of the stripes away from 

the separatrix is also a consequence of the magnetic field line structure.  

It should be noted that very similar patterns will be observed in case of a ballooning-like temperature 

perturbation crossing the unperturbed separatrix conducted to the target following the equilibrium 

magnetic field [15, 16]. 

That fewer stripes are observed on the inner target may be related to the fact that the lobes of the ‘lost’ 

field lines below the x-point tend to curve away from the separatrix on the inboard side (see Fig 3.5). 

As a consequence, the spacing between the stripes will become quickly much larger away from the 

separatrix (as compared to the outer target). 

The fine structure in the convected power flux to the target during the ELM simulation is qualitatively 

in good agreement with the experimentally observed substructure (stripes) on the outer target during 

ELMs in AUG [15, 16] and JET [20]. 
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Figure 3.4 The parallel convected energy flux (in a.u.) to the outer target as a function of the major radius at the 

target for several time slices. 

Figure 3.5 The connection length for field lines starting inside the unperturbed separatrix of at t=684
Aτ . 

Figure 3.6 A poloidal and toroidal cut of the plasma temperature at t=684
A

τ  showing the ELM induced 

stripes/spirals on the target. 

 

4.2 Elm size versus linear mode width 

To compare the ELM size and ELM affected area with respect to the width of the linear mode 

structure, the large ELM case described above is compared to a similar case where the most unstable 

mode has a narrower linear mode structure. The parameters for this case are: 0.63pβ = 1.8Nβ =  

(0)η = 10
-6

, D⊥ = 10
-5

, κ⊥ = 5x10
-6

, κ =
�

10, µ⊥ = 10
-5

, µ =
�

10
-4

. The magnetic and kinetic energy 

evolution of the toroidal harmonics for this case is shown in Fig.3.7. In the linear and early non-linear 

phase the n=18 harmonic is the most unstable mode. Afterwards, the mode number of largest mode 

evolves to lower toroidal mode numbers. The maximum amplitude of the magnetic perturbation is 



much smaller compared to the large ELM case. The maximum kinetic energy is of comparable 

amplitude. 

Comparing the width of the linear eigenmode (see fig 3.8) with the perturbed density profiles shows a 

strong correlation between the eigenmode width, the width of the density filament and the ELM 

affected area at this time. This is not too surprising since the width of the eigenmode determines the 

radial width of the convective cells that create the density filaments. However, in the later non-linear 

phase, the ELM affected area increases from about 10 cm to 30 cm for the large ELM case. In the 

medium ELM case, the density losses do not penetrate deeply into the plasma (up to 15cm). The 

different behaviour may be due to the difference in the poloidal rotation, which is much stronger in the 

medium size ELM case. The stronger poloidal flow may prevent the formation of radially more 

elongated convection cells. Since the dominant loss mechanism is by convection, the ELM affected 

area is very similar for the thermal energy losses. 
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Figure 3.7 The time evolution of the magnetic (M) and kinetic energies (K) for each of the toroidal harmonics 

for a medium size ELM. 

Figure 3.8 The density profiles at the start, at the maximum perturbation and at the end of the simulation 

compared to the mode structure of the velocity in the linear phase for the large (middle) and medium (right) size 

ELM.  

4. Plasma response to ‘pellets’ in the H-mode pedestal 

One promising option to control the ELM frequency, and thereby the energy loss per ELM, is by pellet 

injection. In AUG it was shown [21] that the ELM frequency can be controlled using pellet injection. 

It was observed [21,22] that the injection of a pellet in an H-mode plasma can trigger an ELM during 

any phase of the periods in between natural ELMs, even very shortly after the occurrence of a natural 

ELM. The amplitude of the pellet induced ELM is similar to the amplitude of a natural ELM when 

compared at the same ELM frequency. Also the amplitude and the rise time of the magnetic 

perturbation is of the same order but generally larger for the pellet induced ELM [26]. Injection of 

pellet in Ohmic, L-mode and QH-mode plasmas also yields a (smaller) magnetic perturbation but not 

an ELM-like event [23]. In AUG it was shown that the ELM is triggered when the pellet reaches the 

middle of the transport barrier, independent of the velocity and mass of the pellet [25].  

 

The trigger of the ELM by a pellet during any phase of the ELM period might be troublesome for the 

common interpretation of the ELM onset namely the crossing of the ideal MHD stability boundary for 

ballooning (and/or peeling) modes [28, 29]. It could imply that the plasma edge is always non-linearly 

unstable and only requires a trigger to produce an ELM (similar to the trigger of neo-classical tearing 

modes [24]. However this argument ignores the influence of the pellet on the plasma. Alternatively, 

instead of being a trigger, the pellet could be the cause of the ELM by pushing the plasma beyond the 

relevant MHD stability limit. The pellet can create a local field-aligned plasmoid which can have a 

local pressure exceeding the plasma pressure. In this non-axisymmetric configuration with a non-

stationary local pressure perturbation, the ideal MHD stability limits of the original axi-symmetric 

equilibrium may not be very relevant. Early non-linear MHD simulations [27] of the influence of 

pellets (in the framework of pellet induced disruptions) have indicated that the pellet induced pressure 

perturbation can destabilise ballooning modes. In [23] it is proposed that the pellet plasmoid pressure 

is a candidate for the trigger (or better, the cause) of the ELM. 
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In this section, the influence of a pellet injected in an H-mode-like edge pedestal is studied in the 

framework of non-linear MHD using the code JOREK. The pellet is modelled as a large-amplitude, 

localised, (initially) static density perturbation. This density perturbation is added to a plasma in 

equilibrium while keeping the pressure profile unchanged (pellets only provide density not energy). 

This leads to an initial state with a localised minimum in the temperature profile. The initial state is 

still in magnetic equilibrium, satisfying the force balance. This initial state with a density and 

temperature perturbation is subsequently evolved in time using the reduced MHD model as described 

above.  

 

In the non-linear MHD simulations presented here, toroidal harmonics ranging from n=0 to n=10 are 

used. The choice of toroidal mode numbers limits the localisation in the toroidal direction of the initial 

density (and temperature) perturbation. The full-width half maximum of the density perturbation is 

about 16% of the toroidal circumference.  

To simplify the initial studies of the plasma response to the ‘pellet’ perturbations, we start with a 

circular plasma shape. The unperturbed density and temperature profile are characterised by a large 

gradient at the plasma boundary (see Fig.4.2b) mimicking the H-mode edge pedestal. The edge 

pressure gradient is chosen such that the plasma without pellet perturbation is stable to ballooning 

modes (in the range of toroidal mode numbers n=1-10). Other parameters of the simulation are major 

radius R0=3.0 m, minor radius a=1.0m, toroidal magnetic field B0=3T, toroidal current I=1.2MA, 

poloidal beta βp=0.84, toroidal beta β=0.56%, q on axis q0=1.84, q at the boundary q1=3.1, the 

resistivity on axis η(0)=10
-6

, viscosity µ=10
-5

, perpendicular particle diffusivity D⊥=2x10
-5

, perp. heat 

diffusivity κ⊥=2x10
-5

 and parallel heat conductivity κ//=50.  

In the initial state the density perturbation has a maximum amplitude of 25 times the background 

density, the pellet radius in the poloidal plane is chosen at 8% of the minor radius. The total added 

number of particles is 6% of the initial particle content. To be able to resolve the very large local 

gradients due to the local pellet perturbation, a radially and poloidally refined grid of finite elements is 

used with 51 radial and 96 poloidal cubic finite elements. 

 

Figure 4.1 shows four frames from the evolution of the density, plasma flow (contours of the electric 

potential), temperature and current density from the non-linear MHD simulation. The first column 

shows the initial state. The hole in the temperature is very quickly filled up due to the very large 

parallel conduction while the density evolves on a slower time scale with the parallel velocity. This 

results in a local region with a strongly increased pressure. This in turn drives an electric field 

perturbation (the contours in the density plots) which leads to the well-known [Strauss98] v⊥=ExB 

drift of the pellet density radially outwards for pellets injected on the low field side. 

The evolution of the pressure maximum is shown in figure 4.2b. The pressure increases within a few 

Alfven times to a value 6 times the pressure on axis in a region slightly larger than the size of the 

original pellet perturbation. The local pressure in ‘plasmoid’ decays in a few tens of Alfven times due 

to the parallel flow induced by the large parallel pressure gradient. In the initial phase (0<t<10τA) the 

pressure maximum is located at the original pellet position in the outer mid-plane. Afterwards, the 

density perturbation splits into two parts spreading along the field lines with the parallel velocity. The 

pressure maximum moves with the density perturbation. As the density maximum moves around 

poloidally and radially inwards, the pressure inside the plasmoid increases slowly. In this phase (t>10 

τA) the pressure maximum has moved away from the ‘bad’ curvature region. However, the localised 

pressure perturbation has both negative and positive gradients (radially). Thus, even in the good 

curvature region ballooning modes could in principle be destabilised at the radii where the pressure 

gradient is positive. 

 

The evolution of the magnetic and kinetic energy of the individual toroidal harmonics is shown in fig. 

4.2a. There is a very fast initial response corresponding to the fast pressure rise in the plasmoid and the 

loss of the initial equilibrium. In this first phase the growth of the pertubations is dominated by the 

low-n (n=1, 2) harmonics. In a second phase, there is a fast growth of all the harmonics including the 

higher-n harmonics. The mode structure of the toroidal modes shows a typical structure of a 

ballooning mode. All the toroidal harmonics are coupled to form a single helical structure located on 



(and around) the pellet position. The ballooning perturbation is clearly visible in the temperature 

contours bulging outwards (see fig. 4.1). Figure 4.3a shows the 3D helical structure of the temperature 

perturbation on a flux surface (at t=26τA). By this time the density perturbation has split into two parts 

slowly spreading along the magnetic field (see the yellow contours in Fig. 4.3a). The amplitude of the 

magnetic perturbation is large enough to ergodise the fluxsurfaces where the pellet was ‘deposited’. 

This is illustrated in Figure 4.3b showing a Poincare plot of the magnetic field.  

 

 
Figure 4.1 The evolution of the plasma density (top, color), the velocity flow lines (equi-potential lines) (top, 

contours), the current density (bottom, color) and temperature contours (bottom, contours) 

 at t=0, 6, 10 and 26 τA. 

 

The simulation has been repeated with smaller values for the parallel conduction Κ//=10 and Κ//=1. 

The resulting evolution of the pressure maxima are included in the figure 4.2b. It clearly shows the 

importance of the parallel conduction, relative to the parallel velocity, in the formation of the high 

pressure plasmoid. As a consequence of the lower plasmoid pressure, the growthrates of the 

ballooning type modes are reduced and the helical perturbation grows to a much smaller amplitude 

Figure 4.2c shows the toroidal mode number spectrum of the kinetic energy perturbation for the three 

values of the parallel conductivity. The amplitude the magnetic energy perturbation is reduced by 

about a factor of 2 for Κ//=10 as compared to the Κ//=50. For Κ//=1, the amplitude is reduced by a 

further factor of 10.  
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Figure 4.2a The evolution of the magnetic (black) and kinetic (red) energies for each toroidal harmonic as a 

function of time due to a ‘pellet’ perturbation at t=0 for κ//=50. 

Figure 4.2b) The maximum pressure as a function of time for different parallel heat conduction coefficients κ//= 

1, 10, 50.  

Figure 4.2c) The kinetic energy perturbation as a function of the toroidal mode number at the maximum 

perturbation for 3 values of the parallel conductivity κ//= 1, 10, 50.  



   
Figure 4.3a The temperature on a flux surface at t=26τA showing a single helical ballooning type perturbation 

(colour scale from blue, T=6x10
-3

 to red, T=8x10
-3

). Also show (in yellow) is the density contour at twice the 

central density. 

Figure 4.3b Poincare plot (at t=26τA) of the magnetic field showing an ergodic region at the position of the 

pellet perturbation. 

 

For a first investigation on the plasma response in an x-point plasma with an H-mode like edge 

pedestal and to see if an ELM like instability can be created, a pellet density perturbation is added just 

inside the separatrix. The density perturbation has a radius of 8% of the minor radius and an amplitude 

of 25 times the central density. This increases the total particle content by 3%. Before the pellet 

perturbation is added, the equilibrium has been evolved to a quasi stationary state with parallel and 

perpendicular equilibrium flows. The equilibrium is characterised by R0=3.1m, B0=1T, a=0.72m, 

βp=0.84, βN=1.89, q0=1.0, q99=3.7. Other parameters are η(0)=10
-6

, Κ//=10, Κ⊥=2x10
-6

, D⊥=2x10
-6

, 

µ=5x10
-6

. In this case the grid comprises 7750 cubic finite elements refined radially around the 

separatrix and poloidally at the pellet position and the x-point position. 

 

The general behaviour in the x-point plasma is very similar to that described above for the circular 

plasma. A strong pressure develops in the high density plasmoid, in this case the maximum pressure is 

~5 times the pressure on axis. Also in this case, there is a strong initial growth of the low-n modes 

followed by a growth phase of the higher-n modes ballooning-like modes. The evolution of the 

magnetic and kinetic energy for each toroidal harmonics is show in figure 4.4. The coupled toroidal 

harmonics lead to one single helical perturbation centered on the field line of the original pellet 

position. Initially the maximum perturbation grows in the outer mid-plane. Later in the evolution the 

maximum perturbation moves with the density perturbation and the corresponding pressure maximum 

to the top of the plasma. This is illustrated in figure 4.5 showing the helical perturbation to the 

temperature on a flux surface just inside the separatrix at t=330τA. At this time the outer 25% of minor 

radius of the plasma is ergodised.  
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Figure 4.4 The evolution of the magnetic (black) and kinetic (red) energy for each toroidal harmonic (n=0,10) 

Figure 4.5 The temperature on a flux surface just inside the separatrix (8x10
-4

<T<2x10
-3

) at t=330τA. The 

density contour of twice the central density is shown in yellow. The initial density perturbation was injected in 

the pedestal on the left hand side (in the figure). 

 



Conclusion 

The non-linear MHD simulations of ballooning modes in the H-mode edge pedestal show the 

formation of density filaments expulsed across the separatrix. These filaments show up in the mid-

plane density profiles capturing the interchange of low density from outside the separatrix with high 

density from inside following the ballooning mode convective cells. The temperature profile in the 

remains monotonically decreasing but does show the ballooning mode deformation on the low field 

side. The resulting profiles are in qualitative agreement with fast profile measurements during the 

ELMs. Due to the high parallel energy conduction, the temperature follows the perturbed magnetic 

field lines. One observable consequence of this is the formation of a fine structure with a typical size 

of the order of 1 cm of the convected energy flux to the divertor target. Very similar structures have 

been observed experimentally in the heat deposition profiles in JET and AUG and MAST. 

Simulations of pellets injected in the H-mode pedestal show that the high pressure in the high density 

plasmoid can become large enough to drive ballooning type modes forming a single helical structure 

located at the pellet (plasmoid) position. This indicates that the pellet may not just be a trigger to the 

ELM but that the 3D pellet perturbation can drive the plasma unstable to ballooning modes. 
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