
A NUMA Aware Scheduler for a Parallel Sparse Direct Solver✩

Mathieu Favergea, Pierre Rameta

aINRIA Bordeaux - Sud-Ouest & LaBRI, ScAlApplix project,

Université Bordeaux 1

351 cours de la Libération 33405 Talence, France

1. Introduction

Over the past few years, parallel sparse direct solvers have made significant progress [1, 3, 4].
They are now able to solve efficiently real-life three-dimensional problems with several millions of
equations. Since the last decade, most of the supercomputer architectures are based on clusters of
SMP (Symmetric Multi-Processor) nodes. In [5], the authors proposed a hybrid MPI-thread imple-
mentation of a direct solver that is well suited for SMP nodes or modern multi-core architectures.
This technique allows to treat large 3D problems where the memory overhead due to communication
buffers was a bottleneck to the use of direct solvers. New NUMA (Non Uniform Memory Access)
architectures have now an important effect on memory access costs, and introduce new problems
of contentions which do not exist on SMP nodes. Thus, the main data structure of our targeted
application have been modified to be more suitable for NUMA architectures. We also introduce a
simple way to schedule dynamically an application based on a dependency tree while taking into
account NUMA effects. Results obtained with these modifications are illustrated on performances
obtained by our PaStiX solver on different platforms and matrices.

2. NUMA-aware allocation

Modern multi-processing architectures are commonly based on shared memory systems with a
NUMA behavior. These computers are composed of several chip-sets including one or several cores
associated to a memory bank. The chipset are linked together with a cache-coherent interconnection
system. Such an architecture implies hierarchical memory access times from a given core to the
different memory banks. This architecture also possibly incurs different bandwidths following the
respective location of a given core and the location of the data sets that this core is using [2]. It
is thus important on such platforms to take these processor/memory locality effects into account
when allocating resources. Modern operating systems commonly provide some API dedicated to
NUMA architectures which allow programmers to control where threads are executed and memory
is allocated. These interfaces have been used in the following part to exhibit NUMA effects on
different architectures. First, we study the cost of placement combinations of threads and memory
on a set of BLAS functions. Table 1 and 2 shows the NUMA factor on one node of the NUMA8
architecture1. The results confirmed the presence of a shared memory bank for each chip of two
cores. We also observed that the effects are more important for computations which do not reuse
data as BLAS routines of level 1 and where data transfer is the bottleneck. The NUMA factor
increases to 1.58 on this architecture.

✩This work is supported by the ANR grants 06-CIS-010 SOLTICE (http://solstice.gforge.inria.fr/) and
05-CIGC-002 NUMASIS (http://numasis.gforge.inria.fr/)

1NUMA8 is a cluster of ten nodes of four dual-core opteron with 32GB of memory per node.

December 19, 2008

Computational thread location
0 1 2 3 4 5 6 7

D
at

a
lo

ca
ti

on
0 1.00 1.34 1.31 1.57 1.00 1.34 1.31 1.57
1 1.33 1.00 1.57 1.31 1.33 1.00 1.57 1.31
2 1.28 1.57 1.00 1.33 1.29 1.57 1.00 1.32
3 1.56 1.32 1.34 1.00 1.56 1.31 1.33 0.99

4 1.00 1.34 1.31 1.57 1.00 1.34 1.30 1.58
5 1.33 1.00 1.58 1.30 1.33 1.00 1.57 1.30
6 1.29 1.57 1.00 1.33 1.29 1.57 1.00 1.32
7 1.57 1.32 1.33 1.00 1.57 1.32 1.35 1.00

Table 1: Influence of data placement on dAXPY on NUMA8

Computational thread location
0 1 2 3 4 5 6 7

D
at

a
lo

ca
ti

on

0 1.00 1.04 1.04 1.07 1.00 1.04 1.04 1.07
1 1.04 1.00 1.07 1.04 1.04 1.00 1.08 1.04
2 1.04 1.07 1.00 1.04 1.04 1.07 1.00 1.04
3 1.08 1.04 1.04 1.00 1.07 1.04 1.05 1.00

4 1.00 1.04 1.04 1.07 1.00 1.04 1.04 1.07
5 1.05 1.00 1.08 1.04 1.05 1.00 1.08 1.04
6 1.04 1.07 1.00 1.05 1.04 1.07 1.00 1.04
7 1.08 1.04 1.05 1.00 1.08 1.04 1.05 1.00

Table 2: Influence of data placement on dGEMM on NUMA8

In summary, this study highlights the need to take into account possible NUMA effects during
the memory allocation in threaded applications on multi-core architectures. Secondly, we study the
NUMA factor with contention problems on a completely loaded computer which is more realistic.
The experience is based on the computation of BLAS functions on a set of vectors/matrices on our
architecture NUMA162. We compare three different ways of data allocation: On first core (memory
is allocated on the memory bank closed to the first chip-set), Good location (each thread allocates
its own data-sets closed to it) and Worst location (data-sets are allocated away from the thread
which needs them). The curve (No contention) represents the computational time for each core
in the best case without contention. The Figure 2 highlights the important NUMA factor on this
architecture. We observe an average factor of 1.7 on computations of level 1, but can increases to
2.2 in the worst location.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 C
om

pu
ta

tio
na

l T
im

e
(in

 m
s)

Thread Id

No contention
On first core

Good Location
Worst location

(a) dAXPY on NUMA16 architecture

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

A
ve

ra
ge

 C
om

pu
ta

tio
na

l T
im

e
(in

 m
s)

Thread Id

No contention
On first core

Good Location
Worst location

(b) dGEMM on NUMA16 architecture

The problem is that applications usually have a sequential initialization step that allocates and
fills data-sets. Memory is so allocated on the first core of the system and the worst results can be
obtained on threaded applications. The main point here is to delay these operations to the threads
used for computations. Each thread needs to allocate and fills its own memory to benefit from the
default first touch algorithm.

We implement this solution on the hybrid MPI/thread version of the PaStiX solver. In its initial
version, PaStiX does not take into account NUMA effects in memory allocation. The initialization
step allocates all structures needed by computations and especially the part of the matrix computed

2NUMA16 is a node of eight dual-core opteron with 64GB of memory.

2

(a) Localization of new NUMA-aware allocation in the matrix

(b) Initial allocation

(c) New NUMA-aware allocation

Figure 1: NUMA-aware allocation

on the node. The problem is therefore that all data-sets are allocated close to the core where the
initialization step has occurred. Memory allocation is not evenly spread on the node and access
times are thus not optimal (see Figure 1(b)). In the new version of PaStiX, data structures have
been modified to allow each thread to allocate its part of the matrix as shown in Figure 1(a). This
example shows the allocation repartition on each process and on each thread of each process. The
memory is better spread over the nodes as shown in Figure 1(c) and thus allows to obtain the best
memory access as seen previously. Table 3, in next section, highlights the influence of NUMA-aware
allocation on the factorization time on different platforms: NUMA8, NUMA16, and a symmetric
architecture3 called SMP16. A gain of 5% to 35% can be observed on NUMA architectures between
the initial allocation (column V0) end the new NUMA-aware allocation (column V1). And, as
expected, the SMP16 architecture shows no meaningful improvement.

Finally, results on a high performance application confirm the outcome of the benchmarks re-
alized previously about the importance of taking into account the locality of memory on NUMA
architectures. This could indeed significantly improves the execution time of algorithms with po-
tentially huge memory requirements. These effects increase with the size of the platforms used.

3. Dynamic scheduling for NUMA architecture

We now present our works on the conception and on the implementation of a dynamic scheduler
for applications which have a tree shaped dependency graph, such as sparse direct solvers, which are
based on an elimination tree. The main problem here is to find a way to preserve memory affinity
between the threads that look for a task and the location of the associated data during the dynamic
scheduling. The advantage of such an elimination tree is that contributions stay close in the path
to the root. Thus, to preserve memory affinity, we need to assign to each thread a contiguous part
of the tree and lead a work stealing algorithm which could takes into account NUMA effects. We
will now focus on the direct sparse linear solver PaStiX, which is our target application for this
work. In its initial version, PaStiX schedules statically the tasks thanks to communications and
BLAS costs models.

The proposed solution is compound of two pre-processing steps. The first one distributes ef-
ficiently data among all the nodes of the cluster thanks to the costs model used in the static

3SMP16 is a cluster of ten nodes of 16 power5 with 32GB of memory per node

3

Figure 2: Work stealing algorithm

(a) Static scheduling

(b) Dynamic scheduling using a two ways of stealing method

Figure 3: Gantt diagrams for the MATR5 test case on NUMA8
with 4 MPI processes of 4 threads. Idle time is represented by black
blocks and communications by white arrows.

scheduler. The second one builds a tree of tasks queue based on a proportional mapping over the
local elimination tree. Thus, we obtain lists of tasks attached to different set of threads/cores on
the architecture, as described in Figure 2. Tasks in the queues associated with the leaves of the
tree are allocated by the only thread/core that is allowed to compute them. Memory affinity is
then preserved for the main part of the column blocks. However, we also have to allocate data
associated with remaining tasks in nodes which are not leaves. A set of threads are able to compute
them. We choose, in the current implementation, to use a round-robin algorithm on the set of
candidates to allocate those column blocks. Data allocation is then not optimal, but, if the cores
are numbered correctly, this allocation reflects the physical mapping of cores inside a node. During
the factorization, once a thread has no more jobs in its set of ready tasks, it steals jobs in the queues
of its critical path as described by the filled arrows in Figure 2. Thus, we ensure that each thread
works only on a subtree of the elimination tree and on some column blocks of its critical path. This
ensures a good memory affinity. In the case where there is no jobs in this branch, it tries to steal a
task in the sons of the nodes that belong to its critical path as described by the dotted arrows on
the Figure 2.

Matrix N NNZA NNZL

NUMA8 NUMA16 SMP16
V0 V1 V2 V0 V1 V2 V0 V1 V2

MATR5 485 597 24 233 141 1 361 345 320 437 410 389 527 341 321 162 161 150

AUDI 943 695 39 297 771 1 144 414 764 256 217 210 243 185 176 101 100 100

Table 3: Comparaison of numerical factorization time in seconds on three versions of PaStiX solver. V0 is the initial version with
static scheduling and without NUMA-aware allocation. V1 is the version with NUMA-aware allocation and static scheduling.
V2 is the version with NUMA-aware allocation and dynamic scheduling.

The two Gantt diagrams (Figures 3) highlights the idle-time reduction thanks to the dynamic
scheduling on the MATR5 test case with 4 processes of 4 threads. Each color corresponds to a level in
the elimination tree, black blocks highlight idle-times and white arrows are communications. The
first diagram shows results obtain with the original static scheduler, and the second one with the

4

dynamic scheduler. The reduction of idle-times illustrated by the diagrams are confirmed by the
factorization times on the two matrices reported in Table 3 which shows the improvements on the
PaStiX solver inside one multi-cores node. All test cases are run using eight threads for NUMA8
platform and sixteen threads for NUMA16 and SMP16 clusters. Firstly, we observe that results are
improved for the two test cases (but also for all matrices that have been factorized but where results
are not presented in this abstract) and for the three architectures when the dynamic scheduler is
enabled.

4. Conclusion

The NUMA-aware allocation implemented in the PaStiX solver gives very good results and
can be easily adapted to many applications. This points out that it is important to take care of
memory allocation during the initialization steps when using threads on NUMA architectures.

The dynamic scheduler gives encouraging results since we already improved the execution time
for different test cases on platforms having or not a NUMA factor. The work stealing algorithm
is perfectible. Firstly, it is possible to store informations about data locations to lead the steal in
the upper levels of the elimination tree. Secondly, memory can be migrated closer to a thread, but
such migration can be expensive and so needs to be controlled. We now plan to test the Marcel

bubble scheduler [6] to still improve performances in the context of applications based on a tree
shaped dependency graph. Different threads and their datasets will be grouped in a bubble and
bound to a part of the target architecture.

Finally, we are adapting the dynamic scheduler to a recent Out-of-Core version of the PaStiX

solver. New difficulties arise, related to the scheduling and the management of the computational
tasks, since processors may be slowed down by I/O operations. Thus, we will have to design
and study specific algorithms for this particular context by extending our work on scheduling for
heterogeneous platforms.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIMAX, 23(1):15–41, 2001.

[2] J. Antony, P. P. Janes, and A. P. Rendell. Exploring thread and memory placement on NUMA ar-
chitectures: Solaris and Linux, UltraSPARC/FirePlane and Opteron/HyperTransport. In HiPC, pages
338–352, 2006.

[3] A. Gupta. Recent progress in general sparse direct solvers. In LNCS, volume 2073, pages 823–840, 2001.

[4] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse
Symmetric Definite Systems. Parallel Computing, 28(2):301–321, Jan. 2002.

[5] P. Hénon, P. Ramet, and J. Roman. On using an hybrid MPI-Thread programming for the implementa-
tion of a parallel sparse direct solver on a network of SMP nodes. In PPAM’05, volume 3911 of LNCS,
pages 1050–1057, Poznan, Pologne, Sept. 2005.

[6] S. Thibault, R. Namyst, and P.-A. Wacrenier. Building Portable Thread Schedulers for Hierarchical
Multiprocessors: the BubbleSched Framework. In EuroPar’07, volume 4641 of LNCS, pages 42–51,
Rennes, France, Aug. 2007.

5

