

Towards a recursive graph bipartitioning algorithm for well balanced domain decomposition.

Mini-Symposium on "Combinatorial Issues in Sparse Matrix Computation"

Astrid Casadei, Pierre Ramet and Jean Roman

Plan

- → 1. Context: load balancing in hybrid solvers
- → 2. Nested Dissection (ND)
- → 3. Multilevel framework
- → 4. Algorithm to refine a separator: Fiduccia-Mattheyses (FM)
- → Algorithms to build a separator:
 - 5. Greedy graph growing (GG)
 - 6. Double greedy graph growing (DG)
 - 7. Halo-first greedy graph growing (HF)
- → 8. Results
- → 9. Conclusion / future work

The "spectrum" of linear algebra solvers

- Robust/accurate for general problems
- BLAS-3 based implementation
- Memory/CPU prohibitive for large 3D problems
- Limited parallel scalability

- Problem dependent efficiency/controlled accuracy
- Only mat-vec required, fine grain computation
- Less memory consumption, possible trade-off with CPU
- Attractive "build-in" parallel features

Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

- Exploit the efficiency and robustness of the sparse direct solvers
- Develop robust parallel preconditioners for iterative solvers
- Take advantage of scalable implementation of iterative solvers

Domain Decomposition (DD)

- Natural approach for PDE's
- Extend to general sparse matrices
- Partition the problem into subdomains
- Use a direct solver on the subdomains
- Robust preconditioned iterative solver

1. Building a domain decomposition

- 2. Factorizing each domain and computing local Schur complement (= local interface)
- 3. Iterating on Schur complement (= interface)

1. Building a domain decomposition

- 2. Factorizing each domain and computing local Schur complement (= local interface)
- 3. Iterating on Schur complement (= interface)

1. Building a domain decomposition

- 2. Factorizing each domain and computing local Schur complement (= local interface)
- 3. Iterating on Schur complement (= interface)

 \rightarrow Both domain interior and domain interface must be balanced

- factorize subdomains
- build local Schur complement
- apply local part of precond.

- 1. Building a domain decomposition
- 2. Factorizing each domain and computing local Schur complement (= local interface)
- 3. Iterating on Schur complement (= interface)

- 1. Building a domain decomposition
- 2. Factorizing each domain and computing local Schur complement (= local interface)
- 3. Iterating on Schur complement (= interface)

Hybrid method (MaPHYS, HIPS, PDSLIN, SHYLU, ...)

Hybrid method (MaPHYS, HIPS, PDSLIN, SHYLU, ...)

Build an approximate factorization :

Step 1:

$$A \approx \tilde{L}\tilde{U} = \begin{pmatrix} L_B U_B & \\ & \tilde{L_S}\tilde{U_S} \end{pmatrix}$$

Step 2 :

Iterative method to solve Ax = b using $\tilde{L} \& \tilde{U}$ as preconditioner

Hybrid method (Maphys, HIPS, PDSLIN, SHYLU, ...)

2 levels of parallelism :

- parallelism between subdomains
- parallel direct solver to factorize each subdomain

HIPS : hybrid direct-iterative solver

Based on a domain decomposition

$$\left(\begin{array}{cc} A_{B} & F \\ E & A_{C} \end{array}\right)$$

- B : Interior nodes of subdomains (direct factorization).
- C : Interface nodes.

Special decomposition and ordering of the subset C : Goal : Building a global Schur complement preconditioner (ILU) from the local domain matrices only.

HIPS: domain interface based fill-in policy

Special decomposition and ordering of the subset C :

Hierachical interface decomposition into connectors :

Rules :

- No creation of edge (fill-in) outside the local domain matrices.
- Allow edges between connectors adjacent to the same subdomain.
- ⇒ keep the parallelism (communication only between adjacent subdomains).

HIPS: preconditioners

Main features

- Iterative or "hybrid" direct/iterative method are implemented.
- Mix direct supernodal (BLAS-3) and sparse ILUT factorization in a seamless manner.
- Memory/Load balancing : distribute the domains on the processors (domains > processors).

When separating a subgraph, ensure that :

- Parts are balanced
- Separator size is minimized

When separating a subgraph, ensure that :

- Parts are balanced
- Separator size is minimized
- NEW: Halo is balanced

3 The multilevel framework

3 The multilevel framework

Fiduccia-Mattheyses algorithm

4 Fiduccia-Mattheyses algorithm

Original version

Main action of FM: moving of vertex v from S to a part P

Choice based on:

- if $||P_0| |P_1|| > \delta$, part balance
- separator minimization

4 Fiduccia-Mattheyses algorithm

Modified version

Main action of FM:

moving of vertex v from S to a part P_i

Choice based on:

- if $||P_0 \cap V_h| |P_1 \cap V_h|| > \delta_{halo}$, halo balance
- if $||P_0| |P_1|| > \delta$, part balance
- separator minimization

4 Fiduccia-Mattheyses algorithm

Modified version

Main action of FM: moving of vertex v from S to a part P

Choice based on:

- if $||P_0 \cap V_h| |P_1 \cap V_h|| > \delta_{halo}$, halo balance
- if $||P_0| |P_1|| > \delta$, part balance
- separator minimization

To select best separator, choice based on:

- reasonnable part balance
- reasonnable halo balance
- separator minimization
- halo balance
- part balance

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

- Initialization : $w \leftarrow randomVertexSeed(), P_0 \leftarrow V \setminus \{w\}, P_1 \leftarrow \emptyset, S \leftarrow \{w\}$
- At each step : move a vertex v from S to P₁ and update separator (choose v which minimize S)
- **Stop** : whenever $|P_0| \approx |P_1|$

Original version

- P₁ always connex, but not P₀
- Several passes made with different seeds, smallest separator eventually selected

1 passe

Ínría

Original version

ĺn

Modified version

Idea: as P₁ grows, ensure $\frac{|P_0 \cap V_h|}{|P_0|} \simeq \frac{|P_1 \cap V_h|}{|P_1|}$

Changes:

• Choice of vertex v to move from S to P₁:

If
$$\frac{|P_1 \cap V_h|}{|P_1|} < \frac{|P_0 \cap V_h|}{|P_0|}$$
 and $S \cap V_h \neq \emptyset \rightarrow$ choose among $S \cap V_h$

Minimize separator

- Choice of the seed among halo
- Choice of « best pass » based on separator minimization *and* halo balance

Problems:

- Allowing larger separators often results in non-connected $\ensuremath{\mathsf{P}}_{\ensuremath{\scriptscriptstyle 0}}$
- Always possible to enhance halo balance by adding a connected component to $\ensuremath{\mathsf{P}}_{\ensuremath{\scriptscriptstyle 0}}$

Idea: 2 random seeds, both parts are made grown simultaneously until all vertices are taken

Problem: one part may block the progression of the other

Solutions:

- Seeds s_0 and s_1 as far as possible in halo
- If several choices \rightarrow choose suitable vertex the nearest from s_i / farthest from s_{1-i}
- If stucked with a lot of vertices left \rightarrow make a new pass

6 Double Greedy Graph Growing

78

Ínría

Ínría

Ínría

Matrix Ecology1, 1,000,000 unknowns (without multilevel)

GG: Δ 1403, max 1758

DG: Δ 499, max 999

HF: Δ 254, max 1073

Imbalance

Total: δ x nb_levels %

Ínría

Imbalance

Total:

 $< 2\delta$ % In results,

« GG » denotes original Scotch

« GG* » denotes Scotch with this improvement

Interior imbalance:
$$\Delta = \max_{0 \le i < ndom} |Dom_i| - \min_{0 \le i < ndom} |Dom_i|$$
Interface imbalance:
$$\Delta_h = \max_{0 \le i < ndom} |interface(Dom_i)| - \min_{0 \le i < ndom} |interface(Dom_i)|$$

Results on 16 domains with multilevel + Fiduccia-Mattheyses + (DG or HF):

	$\Delta_{h}^{}$ DG	$\Delta_{h} HF$
• Almond (n ≈ 7 x 10 ⁶):	2544	2263
• Nice-7 (n ≈ 8 x 10 ⁶):	5618	4967
• 10millions (n ≈ 10 x 10 ⁶):	4771	4381

Ínría

8 Results 16 domains, DG

	interface imbalance			interior imbalance		
id	GG	$\% GG^{\star}$	% DG	GG	$\% GG^{\star}$	% DG
1	297	7,4	-19,2	1311	-69,1	-23,3
2	1112	1,6	-40,0	4678	-66,5	-78,9
3	522	-11,3	-39,7	1635	-13,9	-13,0
4	244	-9,0	-11,5	1568	-23,7	-31,1
5	475	-17,9	-3,8	4605	-85,6	-62,3
6	869	-21,3	-41,3	4107	-78,5	-49,6
7	905	49,4	26,4	4942	-69,1	-63,7
8	261	0,0	-46,7	420	0,0	79,8
9	365	-3,8	-44,9	8128	-82,8	-65,2
10	1002	14,0	$^{-32,1}$	4852	-73,2	-44,6
11	509	-3,7	-44,4	2831	-84,1	27,5
12	569	-25,0	-59,1	22416	-79,5	-67,5
13	532	-11,8	-58,5	12049	-69,0	-49,5
14	756	-23,1	-46,3	17458	-61,9	-66,6
15	6678	6,6	-29,8	35466	-73,9	-68,4
16	564	-11,9	-62,9	15092	-65,5	-58,0
17	2130	18,6	-50,4	32202	-72,9	-67,7
18	335	17,0	-19,7	28057	-70,1	-64,9
19	2604	-16,4	-42,0	25853	-66,5	-59,5
20	9990	-14,2	-25,8	73635	-80,7	-16,5
21	927	0,6	-40,9	2377	-58,6	-59,5
22	3468	5,0	-78,5	3336	4,3	18,2
23	1869	7,1	-3,2	14424	-73,3	-64,4
24	2460	-9,1	-73,4	8940	-44,1	-60,6
25	6837	-11,6	-69,7	26877	-63,0	-68,9
26	780	-15,9	-53,8	24987	-58,3	-65,2
27	6168	-27,5	-68,4	67721	-68,7	-76,2
28	4344	-15,6	-41,4	240729	-76,9	-77,1
29	11539	8,6	-51,3	244959	-73,9	-77,2
30	9936	-6,9	-52,0	286992	-72,6	-8,5

Inría

8 Results 16 domains, HF

	inte	rface imba	lance	interior imbalance		
id	GG	$\% GG^{\star}$	% HF	GG	$\% GG^{\star}$	% HF
1	297	7,4	-29,3	1311	-69,1	-73,5
2	1112	1,6	-34,9	4678	-66,5	-74,2
3	522	-11,3	-63,4	1635	-13,9	-7,2
4	244	-9,0	103,3	1568	-23,7	-24,5
5	475	-17,9	-26,7	4605	-85,6	-74,3
6	869	-21,3	-48,2	4107	-78,5	-65,6
7	905	49,4	-24,2	4942	-69,1	-72,2
8	261	0,0	-69,0	420	0,0	-11,4
9	365	-3,8	-41,4	8128	-82,8	-69,2
10	1002	14,0	-66,9	4852	-73,2	-47,5
11	509	-3,7	-50,3	2831	-84,1	-19,1
12	569	-25,0	-70,1	22416	-79,5	-72,9
13	532	-11,8	-37,0	12049	-69,0	-52,3
14	756	-23,1	-20,4	17458	-61,9	-67,2
15	6678	6,6	-22,4	35466	-73,9	-68,2
16	564	-11,9	-54,4	15092	-65,5	-59,2
17	2130	$18,\! 6$	-44,8	32202	-72,9	-73,0
18	335	17,0	14,6	28057	-70,1	-68,3
19	2604	-16,4	-15,8	25853	-66,5	-49,7
20	9990	-14,2	-55,4	73635	-80,7	-79,6
21	927	0,6	-49,4	2377	-58,6	-64,5
22	3468	5,0	-75,4	3336	4,3	16,1
23	1869	7,1	-24,2	14424	-73,3	-72,0
24	2460	-9,1	-55,9	8940	-44,1	-51,5
25	6837	-11,6	-65,5	26877	-63,0	-80,3
26	780	-15,9	-33,6	24987	-58,3	-66,0
27	6168	-27,5	-73,6	67721	-68,7	-74,5
28	4344	-15,6	-47,9	240729	-76,9	-73,2
29	11539	8,6	-57,0	244959	-73,9	-70,9
30	9936	-6,9	-55,9	286992	-72,6	-71,4

Inría

Multilevel + FM + DG

Average gain over GG:

- Δ_{h} : 40%
- Δ: 45%

DG beats both GG and GG* on:

- Δ_{h} :28 / 30 cases
- Δ: 9 / 30 cases

Multilevel + FM + HF

Average gain over GG:

- Δ_{h} : 38%
- Δ: 56%

HF beats both GG and GG* on:

- $\Delta_{h:}$ 26 / 30 cases
- Δ: 12 / 30 cases

HF beats DG on:

- 16 / 30 cases
- 21 / 30 cases
- \rightarrow HF slightly better on most cases

8 Results multilevel + DG/HF, 16 to 512 domains

Almond

 $n \approx 7 \times 10^{6}$ nnz $\approx 100 \times 10^{6}$

	interface imbalance Δ_h			interior imbalance Δ				
dom	GG	$\% GG^{\star}$	% DG	% HF	GG	$\% GG^{\star}$	% DG	% HF
16	4344	-15,6	-41,4	-47,9	240729	-76,9	-77,1	-73,2
32	3179	-34,8	-31,5	-0,5	133886	-73,8	-80,1	-76,9
64	2258	-5,8	-47,6	-17,8	83819	-80,5	-79,2	-79,1
128	1822	-29,5	-42,9	-32,6	48087	-78,4	-77,6	-80,9
256	1071	-2,2	-44,4	2,5	27695	-81,6	-77,9	-83,0
512	910	$0,\!8$	-17,1	-22,3	16243	-83,8	-80,0	-84,7

	:-		-
IN	IC	:е-	•7

$n \approx 8 \times 10^{6}$ nnz $\approx 660 \times 10^{6}$

	interface imbalance Δ_h			interior imbalance Δ			Δ	
dom	GG	$\% GG^{\star}$	% DG	% HF	GG	$\% ~GG^{\star}$	% DG	% HF
16	11539	8,6	-51,3	-57,0	244959	-73,9	-77,2	-70,9
32	10991	-26,3	-45,7	-38,5	188834	-80,3	-81,0	-81,6
64	8997	-27,5	40,7	-30,8	101838	-75,9	-6,6	-80,2
128	5694	-14,4	11,7	-26,9	66792	-83,9	-1,9	-84,3
256	4554	-3,2	-33,1	-27,6	34314	-77,4	7,3	-82,4
512	3762	-16,7	-30,8	-33,1	19734	-79,1	-6,3	-84,2

10millions

 $n \approx 10 \times 10^{6}$ nnz $\approx 160 \times 10^{6}$

1	
In	ria

	interface imbalance Δ_h			interior imbalance Δ				
dom	GG	$\% GG^{\star}$	% DG	% HF	GG	$\% GG^{\star}$	% DG	% HF
16	9936	-6,9	-52,0	-55,9	286992	-72,6	-8,5	-71,4
32	6666	-0,5	43,7	-56,6	188900	-69,5	13,0	-77,7
64	7036	-13,3	-47,4	-31,1	125444	-76,9	-18,8	-78,4
128	4564	-11,2	4,0	-48,7	79754	-82,9	-52,9	-78,8
256	3114	-6,2	163,5	-32,5	42931	-79,5	-30,2	-80,8
512	2336	-19,5	22,2	-54,2	25800	-83,5	49,3	-83,4

91

Impact on performances for MaPHYS

Matrix Almond, divided in 8 domains

	Natif	DG	HF
Max-min Schur size	6546	3221	1779
Avg Schur size (n)	10466	10532	11254
Avg Schur size (nnz)	114M	112M	127M
Total interface size	41604	41869	44768
Avg time facto (s)	632	596	593
Avg time precond (s)	163	117	129
Avg time solve (s)	147	85	118

Impact on performances for MaPHYS

Matrix Almond, divided in 16 domains

	Natif	DG	HF
Max-min Schur size	5805	3455	3307
Avg Schur size (n)	7523	7709	7900
Avg Schur size (nnz)	58M	60M	63M
Total interface size	59574	61057	62608
Avg time facto (s)	232	222	223
Avg time precond (s)	139	98	102
Avg time solve (s)	128	91	98

Impact on performances for MaPHYS

Matrix Almond, divided in 32 domains

	Natif	DG	HF
Max-min Schur size	3118	2765	2603
Avg Schur size (n)	5492	5672	5749
Avg Schur size (nnz)	31M	32M	33M
Total interface size	86551	89452	90664
Avg time facto (s)	87	84	84
Avg time precond (s)	58	62	54
Avg time solve (s)	91	59	50

9 Future work

• In a parallel context, chose the best from the 3 variants (GG, DG, HF) (keep same complexity for the global reordering process, but time increases)

- An other important criteria to control : total size of the interface
- Comparison with k-way or other graph partitioning (Metis, ...)
- Release new algorithms in the master branch of Scotch package

Innia

Thanks for listening. Questions ?

Memory optimization to build a Schur complement for hybrid solvers

Domain decomposition

Domain decomposition

Build an approximate factorization :

Step 1:
:
$$A \approx \tilde{L}\tilde{U} = \begin{pmatrix} L_B U_B \\ & \tilde{L_S}\tilde{U_S} \end{pmatrix}$$

Step 2 :

Iterative method to solve Ax = b using $\tilde{L} \& \tilde{U}$ as preconditioner

Domain decomposition

B2 E2

Local matrix for subdomain 2

2 levels of parallelism :

- parallelism between subdomains
- parallel direct solver to factorize each subdomain

Memory optimization

Memory overcosts during the factorization of a subdomain :

- Aggregated blocs (Fan-In)
- Coupling blocs (E/F)

Idea 1 :

Dynamic allocations of column blocs (as late as possible)

Idea 2 : Free the coupling blocs as soon as possible

Memory Optimization

INLINE matrix, factorized using PaStiX with 16 processus and 4 threads per processus, size of the interface about 1500

Memory Optimization

Idea 3 :

Use a « left looking version » to build the non-coupling part of columns blocs

Memory Optimization

domain 1 for AUDI matrix, split in 2 subdomains, factorized with 4 processus and 4 threads per processus

Some results

- left-right-looking version : from 1 to 4 MPI nodes, memory gain from 86 % to 10%
- in the case of hybrid solvers we expect small number of MPI node per subdomain
- Same gains when increasing the number of threads instead of MPI nodes

Innia

Problem : graph induced by halo may be disconnected ; we have to reconnect it before cutting halo

Algorithm :

Let begin with an empty induced graph Let call H = { h_0 , h_1 , ..., h_m } the halo vertices.

Let P be a partition of the halo vertices, initially $P = \{\{h_0\}, \{h_1\}, ..., \{h_m\}\}$

While $p \neq \{H\}$:

- find the shortest path between any two elements of P
- merge them
- add to the induced graph all vertices of the path

- 106

 $(P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);$ $passnum \leftarrow 0;$ repeat $(P_0, S, P_1) \leftarrow (P_0^*, S^*, P_1^*);$ $\Delta \leftarrow |P_0| - |P_1|;$ $tabu \leftarrow \emptyset;$ $movenum \leftarrow 0$ enhanced $\leftarrow false;$ $pref \leftarrow mod(passnum, 2);$ while movenum < movenbr do $(f, v, i) \leftarrow getSep(S \setminus tabu, \max(\Delta_{th}, |\Delta|), pref);$ if $\neg f$ then /* No movable vertex */ | break; /* Move v from separator to part i */; $R \leftarrow \{w | (v, w) \in E \text{ and } w \in P_{\neg i}\};\$ $S \leftarrow S \setminus \{v\} \cup R;$ $P_i \leftarrow P_i \cup \{v\}, P_{\neg i} \leftarrow P_{\neg i} \setminus R;$ $\Delta \leftarrow |P_0| - |P_1|;$ movenum++ $tabu \leftarrow tabu \cup \{v\};$ if (P_0, S, P_1) is better than (P_0^*, S^*, P_1^*) then $(P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);$ $movenum \leftarrow 0$, $enhanced \leftarrow true;$ passnum++;**until** $\neg enhanced$ or (passnum = passnbr); return $(P_0^*, S^*, P_1^*);$

Fiduccia-Mattheyses algorithm

Original version

- main loop: choose a vertex, move it, update best separator
- 1 pass =

make moves until the last <movenbr> moves do not bring improvement


```
(P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);
 passnum \leftarrow 0;
 repeat
      (P_0, S, P_1) \leftarrow (P_0^*, S^*, P_1^*);
      \Delta \leftarrow |P_0| - |P_1|;
      tabu \leftarrow \emptyset;
      movenum \leftarrow 0, enhanced \leftarrow false;
      pref \leftarrow mod(passnum, 2);
      while movenum < movenbr do
           (f, v, i) \leftarrow getSep(S \setminus tabu, \max(\Delta_{th}, |\Delta|), pref);
           if \neg f then /* No movable vertex */
            | break;
           /* Move v from separator to part i */;
           R \leftarrow \{w | (v, w) \in E \text{ and } w \in P_{\neg i}\};
           S \leftarrow S \setminus \{v\} \cup R;
           P_i \leftarrow P_i \cup \{v\}, P_{\neg i} \leftarrow P_{\neg i} \setminus R;
           \Delta \leftarrow |P_0| - |P_1|;
           movenum++;
          tabu \leftarrow tabu \cup \{v\};
           if (P_0, S, P_1) is better than (P_0^*, S^*, P_1^*) then
                (P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);
               movenum \leftarrow 0, enhanced \leftarrow true;
      passnum++;
until \neg enhanced or (passnum = passnbr);
return (P_0^*, S^*, P_1^*);
```

Fiduccia-Mattheyses algorithm

Original version

- 109

- main loop: choose a vertex, move it, update best separator
- 1 pass =

make moves until the last <movenbr> moves do not bring improvement

• tabu search

$$\begin{array}{c} (P_{0}^{*}, S^{*}, P_{1}^{*}) \leftarrow (P_{0}, S, P_{1});\\ \hline passnum \leftarrow 0;\\ \hline repeat\\ \hline (P_{0}, S, P_{1}) \leftarrow (P_{0}^{*}, S^{*}, P_{1}^{*});\\ \hline \Delta \leftarrow |P_{0}| - |P_{1}|;\\ tabu \leftarrow \emptyset;\\ \hline movenum \leftarrow 0, \underline{enhanced} \leftarrow false;\\ pref \leftarrow mod(passnum, 2);\\ \hline while movenum < movenbr do\\ \hline (f, v, i) \leftarrow getSep(S \setminus tabu, \max(\Delta_{th}, |\Delta|), pref);\\ \mathbf{if} \neg f \mathbf{then} / * \text{ No movable vertex } */\\ \hline break;\\ / * Move v \ from \ separator \ to \ part \ i \ */;\\ R \leftarrow \{w|(v,w) \in E \ and \ w \in P_{\neg i}\};\\ S \leftarrow S \setminus \{v\} \cup R;\\ P_{i} \leftarrow P_{i} \cup \{v\}, P_{\neg i} \leftarrow P_{\neg i} \setminus R;\\ \Delta \leftarrow |P_{0}| - |P_{1}|;\\ movenum ++;\\ tabu \leftarrow tabu \cup \{v\};\\ \hline \mathbf{if} \ (P_{0}, S, P_{1}) \ is \ better \ than \ (P_{0}^{*}, S^{*}, P_{1}^{*}) \ \mathbf{then} \\ \hline (P_{0}^{*}, S^{*}, P_{1}^{*}) \leftarrow (P_{0}, S, P_{1});\\ movenum \leftarrow 0, \underline{lenhanced} \leftarrow true;\\ \hline passnum++;\\ \mathbf{until} \neg enhanced \ or \ (passnum = passnbr) \ ;\\ \mathbf{return} \ (P_{0}^{*}, S^{*}, P_{1}^{*});\\ \hline \end{array}$$

```
(P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);
 passnum \leftarrow 0;
repeat
      (P_0, S, P_1) \leftarrow (P_0^*, S^*, P_1^*);
      \Delta \leftarrow |P_0| - |P_1|;
      tabu \leftarrow \emptyset;
      movenum \leftarrow 0, enhanced \leftarrow false;
      pref \leftarrow mod(passnum, 2);
      while movenum < movenbr do
           (f, v, i) \leftarrow getSep(S \setminus tabu, \max(\Delta_{th}, |\Delta|), pref);
           if \neg f then /* No movable vertex */
            | break;
           /* Move v from separator to part i */;
           R \leftarrow \{w | (v, w) \in E \text{ and } w \in P_{\neg i}\};\
           S \leftarrow S \setminus \{v\} \cup R;
           P_i \leftarrow P_i \cup \{v\}, P_{\neg i} \leftarrow P_{\neg i} \setminus R;
           \Delta \leftarrow |P_0| - |P_1|;
           movenum++;
           tabu \leftarrow tabu \cup \{v\};
           if (P_0, S, P_1) is better than (P_0^*, S^*, P_1^*) then
                (P_0^*, S^*, P_1^*) \leftarrow (P_0, S, P_1);
               movenum \leftarrow 0, enhanced \leftarrow true;
      passnum++;
until \neg enhanced or (passnum = passnbr);
return (P_0^*, S^*, P_1^*);
```

Fiduccia-Mattheyses algorithm

Original version

- main loop: choose a vertex, move it, update best separator
- 1 pass =

make moves until the last <movenbr> moves do not bring improvement

- tabu search
- passes keep going on while last pass bring improvement
- each pass begins with best separator ever found
- preferred part switched at each pass

- 111

4 Fiduccia-Mattheyses algorithm

Modified version, choice of « the best separator »

- 113

8 Results 16 domains, DG

	inter	face imba	lance	interior imbalance		
id	GG	$\% GG^{\star}$	% DG	GG	$\% GG^{\star}$	% DG
1	297	7,4	-19,2	1311	-69,1	-23,3
2	1112	1,6	-40,0	4678	-66,5	-78,9
3	522	-11,3	-39,7	1635	-13,9	-13,0
4	244	-9,0	-11,5	1568	-23,7	-31,1
5	475	-17,9	-3,8	4605	-85,6	-62,3
6	869	-21,3	-41,3	4107	-78,5	-49,6
7	905	49,4	26,4	4942	-69,1	-63,7
8	261	0,0	-46,7	420	0,0	79,8
9	365	-3,8	-44,9	8128	-82,8	-65,2
10	1002	14,0	$^{-32,1}$	4852	-73,2	-44,6
11	509	-3,7	-44,4	2831	-84,1	27,5
12	569	-25,0	-59,1	22416	-79,5	-67,5
13	532	-11,8	-58,5	12049	-69,0	-49,5
14	756	-23,1	-46,3	17458	-61,9	-66,6
15	6678	6,6	-29,8	35466	-73,9	-68,4
16	564	-11,9	-62,9	15092	-65,5	-58,0
17	2130	18,6	-50,4	32202	-72,9	-67,7
18	335	17,0	-19,7	28057	-70,1	-64,9
19	2604	-16,4	-42,0	25853	-66,5	-59,5
20	9990	-14,2	-25,8	73635	-80,7	-16,5
21	927	0,6	-40,9	2377	-58,6	-59,5
22	3468	5,0	-78,5	3336	4,3	18,2
23	1869	7,1	$^{-3,2}$	14424	-73,3	-64,4
24	2460	-9,1	-73,4	8940	-44,1	-60,6
25	6837	-11,6	-69,7	26877	-63,0	-68,9
26	780	-15,9	-53,8	24987	-58,3	-65,2
27	6168	-27,5	-68,4	67721	-68,7	-76,2
28	4344	-15,6	-41,4	240729	-76,9	-77,1
29	11539	8,6	-51,3	244959	-73,9	-77,2
30	9936	-6,9	-52,0	286992	-72,6	-8,5

Inría

8 Results 16 domains, HF

	inte	rface imba	lance	interior imbalance		
id	GG	$\% GG^{\star}$	% HF	GG	$\% GG^{\star}$	% HF
1	297	7,4	-29,3	1311	-69,1	-73,5
2	1112	1,6	-34,9	4678	-66,5	-74,2
3	522	-11,3	-63,4	1635	-13,9	-7,2
4	244	-9,0	103,3	1568	-23,7	-24,5
5	475	-17,9	-26,7	4605	-85,6	-74,3
6	869	-21,3	-48,2	4107	-78,5	-65,6
7	905	49,4	-24,2	4942	-69,1	-72,2
8	261	0,0	-69,0	420	0,0	-11,4
9	365	-3,8	-41,4	8128	-82,8	-69,2
10	1002	14,0	-66,9	4852	-73,2	-47,5
11	509	-3,7	-50,3	2831	-84,1	-19,1
12	569	-25,0	-70,1	22416	-79,5	-72,9
13	532	-11,8	-37,0	12049	-69,0	-52,3
14	756	-23,1	-20,4	17458	-61,9	-67,2
15	6678	6,6	-22,4	35466	-73,9	-68,2
16	564	-11,9	-54,4	15092	-65,5	-59,2
17	2130	$18,\! 6$	-44,8	32202	-72,9	-73,0
18	335	17,0	14,6	28057	-70,1	-68,3
19	2604	-16,4	-15,8	25853	-66,5	-49,7
20	9990	-14,2	-55,4	73635	-80,7	-79,6
21	927	0,6	-49,4	2377	-58,6	-64,5
22	3468	5,0	-75,4	3336	4,3	16,1
23	1869	7,1	-24,2	14424	-73,3	-72,0
24	2460	-9,1	-55,9	8940	-44,1	-51,5
25	6837	-11,6	-65,5	26877	-63,0	-80,3
26	780	-15,9	-33,6	24987	-58,3	-66,0
27	6168	-27,5	-73,6	67721	-68,7	-74,5
28	4344	-15,6	-47,9	240729	-76,9	-73,2
29	11539	8,6	-57,0	244959	-73,9	-70,9
30	9936	-6,9	-55,9	286992	-72,6	-71,4

Inría

8 Results multilevel + DG/HF, 16 to 512 domains

Almond

 $n \approx 7 \times 10^{6}$ nnz $\approx 100 \times 10^{6}$

	interface imbalance			interior imbalance			
dom	GG	% DG	% HF	GG	% DG	% HF	
16	4344	-41,4	-47,9	240729	-77,1	-73,2	
32	3179	$-31,\!5$	-0,5	133886	-80,1	-76,9	
64	2258	-47,6	-17,8	83819	-79,2	-79,1	
128	1822	-42,9	-32,6	48087	-77,6	-80,9	
256	1071	-44,4	2,5	27695	-77,9	-83,0	
512	910	-17,1	-22,3	16243	-80,0	-84,7	

Nice-7

 $n \approx 8 \times 10^{6}$ nnz $\approx 660 \times 10^{6}$

	inter	face imba	lance	interior imbalance			
dom	GG	% DG	% HF	GG	% DG	% HF	
16	11539	-51,3	-57,0	244959	-77,2	-70,9	
32	10991	-45,7	-38,5	188834	-81,0	-81,6	
64	8997	40,7	-30,8	101838	-6,6	-80,2	
128	5694	11,7	-26,9	66792	-1,9	-84,3	
256	4554	$-33,\!1$	-27,6	34314	7,3	-82,4	
512	3762	-30,8	-33,1	19734	-6,3	-84,2	

- 116

		interface imbalance			interior imbalance			
	dom	GG	% DG	% HF	GG	% DG	% HF	
	16	9936	-52,0	-55,9	286992	-8,5	-71,4	
0	32	6666	43,7	$-56,\!6$	188900	$13,\!0$	-77,7	
10°	64	7036	-47,4	-31,1	125444	-18,8	-78,4	
	128	4564	$_{4,0}$	-48,7	79754	-52,9	-78,8	
	256	3114	$163,\!5$	-32,5	42931	-30,2	-80,8	
	512	2336	22,2	-54,2	25800	49,3	-83,4	

10millions

$n \approx 10 \times 10^{6}$ nnz $\approx 160 \times 10^{6}$

