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1  Context: load balancing in hybrid solvers

1. Building a domain decomposition
2. Factorizing each domain and computing local Schur complement (= local interface)
3. Iterating on Schur complement (= interface)
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1  Context: load balancing in hybrid solvers

1. Building a domain decomposition
2. Factorizing each domain and computing local Schur complement (= local interface)
3. Iterating on Schur complement (= interface)

→ Both domain interior and 
domain interface must be balanced
- factorize subdomains
- build local Schur complement 
- apply local part of precond.



- 9

1  Context: load balancing in hybrid solvers

1. Building a domain decomposition
2. Factorizing each domain and computing local Schur complement (= local interface)
3. Iterating on Schur complement (= interface)



Hybrid method (MaPHYS, HIPS, PDSLIN, SHYLU, ...)

10

Mesh Matrix

interface
coupling

interior domain



Hybrid method (MaPHYS, HIPS, PDSLIN, SHYLU, ...)
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Initial Matrix Factorize each domain TRSM Add 
contributions

Incomplete 
factorization of S

Step 1 :

Build an approximate factorization : 

Step 2 : 

Iterative method to solve Ax = b using      &      as preconditioner



Hybrid method (MaPHYS, HIPS, PDSLIN, SHYLU, ...)

12

2 levels of parallelism :

•  parallelism between subdomains

•  parallel direct solver to factorize each subdomain

Local matrix for 
subdomain 2
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 2  Nested dissection

When separating a 
subgraph, ensure that :

• Parts are balanced
• Separator size is minimized



- 17

 2  Nested dissection

When separating a 
subgraph, ensure that :

• Parts are balanced
• Separator size is minimized
• NEW: Halo is balanced
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Classical nested dissection ND Keeping track of halo vertices

Do ND on P
0
 u S and P

1
 u S

(Generalized ND, Lipton, Rose, Tarjan)(George)

Y = P
0
 u S u P

1

Do ND on P
0
 and P

1
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Sizes of local 
interfaces: 4, 5, 6, 8

Classical nested dissection ND Keeping track of halo vertices

(Generalized ND, Lipton, Rose, Tarjan)(George)

Y = P
0
 u S u P

1

Do ND on P
0
 and P

1 Do ND on P
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 u S and P

1
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Halo: vertices of old separators adjacent to subgraph

Sizes of local 
interfaces: 4, 5, 6, 8

Classical nested dissection ND Keeping track of halo vertices

(Generalized ND, Lipton, Rose, Tarjan)(George)

Y = P
0
 u S u P

1

Do ND on P
0
 and P

1 Do ND on P
0
 u S and P

1
 u S
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Sizes of local 
interfaces: 4, 5, 6, 8

Classical nested dissection ND Keeping track of halo vertices

(Generalized ND, Lipton, Rose, Tarjan)(George)

Y = P
0
 u S u P

1

Do ND on P
0
 and P

1 Do ND on P
0
 u S and P

1
 u S
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Sizes of local 
interfaces: 4, 5, 6, 8

Sizes of local 
interfaces: 5, 5, 6, 6

Classical nested dissection ND Keeping track of halo vertices

(Generalized ND, Lipton, Rose, Tarjan)(George)

Y = P
0
 u S u P

1

Do ND on P
0
 and P

1 Do ND on P
0
 u S and P

1
 u S
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Matching of vertices
Finding a 
separator

coarsening
(multiple times)

uncoarsening

refinement

3 The multilevel framework
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3 The multilevel framework

Greedy graph growing

Fiduccia-Mattheyses algorithm
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4  Fiduccia-Mattheyses algorithm

Main action of FM: 
moving of vertex v from S to a part P

i
 

Choice based on:

- if                        , part balance
- separator minimization

v

P
1-i

P
i

Original version
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- if                                         , halo balance
- if                        , part balance
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v

P
1-i

P
i

Modified version
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4  Fiduccia-Mattheyses algorithm

Main action of FM: 
moving of vertex v from S to a part P

i
 

Choice based on:
- if                                         , halo balance
- if                        , part balance
- separator minimization

To select best separator, choice based on:
- reasonnable part balance
- reasonnable halo balance
- separator minimization
- halo balance
- part balance

v

P
1-i

P
i

Modified version



- 29

5 Greedy Graph Growing
• Initialization : w ← randomVertexSeed(), P0 ← V \ {w}, P1 ← Ø, S ← {w}

• At each step : move a vertex v from S to P1 and update separator (choose v which minimize S)

• Stop : whenever |P0| ≈ |P1| 
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5 Greedy Graph Growing Original version

• Initialization : w ← randomVertexSeed(), P0 ← V \ {w}, P1 ← Ø, S ← {w}

• At each step : move a vertex v from S to P1 and update separator (choose v which minimize S)

• Stop : whenever |P0| ≈ |P1| 
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5 Greedy Graph Growing
• P1 always connex, but not P0

• Several passes made with different seeds, smallest separator eventually selected

1 passe 10 passes

Original version
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5 Greedy Graph Growing Original version
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5  Greedy Graph Growing

Idea: as P1  grows, ensure 

Changes:
• Choice of vertex v to move from S to P1:

 If                                and                      → choose among

 Minimize separator

• Choice of the seed among halo

• Choice of « best pass » based on separator minimization and halo balance 

Modified version
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5 Greedy Graph Growing

Problems: 
• Allowing larger separators often results in non-connected P0

• Always possible to enhance halo balance by adding a connected component to P0

Modified version
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6 Double Greedy Graph Growing

Idea: 2 random seeds, both parts are made grown simultaneously until all 
vertices are taken

Problem: one part may block the progression of the other

Solutions:

• Seeds s0 and s1 as far as possible in halo

• If several choices → choose suitable vertex the nearest from si / farthest from s1-i

• If stucked with a lot of vertices left → make a new pass
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6 Double Greedy Graph Growing
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7 Halo-first Greedy Graph Growing

H

H

H

H

H

Idea:

• Split halo in H0 and H1 (using 
GG)

• Make grow P0 and P1 using H0 
and H1 as set of seeds
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GG)

• Make grow P0 and P1 using H0 
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7 Halo-first Greedy Graph Growing
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Matrix Ecology1, 1,000,000 unknowns 
(without multilevel)

GG: Δ 1403, max 1758 DG: Δ 499, max 999

HF: Δ 254, max 1073
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8  Remarks
                   Imbalance

Level 0          0

Level 1         + δ %

Level 2         + δ %

Level 3         + δ %

Total:  δ x nb_levels %
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8  Remarks
                   Imbalance

Level 0          0

Level 1         + δ / 4%

Level 2         + δ / 2 %

Level 3         + δ %

Total:              < 2δ % In results,
« GG »  denotes original Scotch
« GG* » denotes Scotch with this improvement 
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8  Results
 Interior imbalance:

 Interface imbalance:

Results on 16 domains with multilevel + Fiduccia-Mattheyses + (DG or HF):

                                                              Δ
h
 DG                         Δ

h
 HF

• Almond  (n ≈ 7 x 106):                 2544                            2263 
• Nice-7 (n ≈ 8 x 106):                    5618                           4967
• 10millions (n ≈ 10 x 106):             4771                           4381   
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8  Results
16 domains, DG
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8  Results
16 domains, HF
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8  Results on 16 domains

Multilevel + FM + DG

 Average gain over GG:
●

 
Δ

h
: - 40%

● Δ: - 45%

DG beats both GG and GG* on: 
● Δ

h :
28 / 30 cases

● Δ:  9 / 30 cases 

Multilevel + FM + HF

 Average gain over GG:
●

 
Δ

h
: - 38%

● Δ: - 56%

HF beats both GG and GG* on: 
● Δ

h :
26 / 30 cases

● Δ:  12 / 30 cases 

HF beats DG on:
● 16 / 30 cases
● 21 / 30 cases
→ HF slightly better on most cases
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8  Results multilevel + DG/HF, 16 to 512 domains

Almond
n ≈ 7 x 106

nnz ≈ 100 x 106

Nice-7
n ≈ 8 x 106

nnz ≈ 660 x 106

10millions
n ≈ 10 x 106

nnz ≈ 160 x 106
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Natif DG HF

Max-min Schur size 6546 3221 1779

Avg Schur size (n) 10466 10532 11254

Avg Schur size (nnz) 114M 112M 127M

Total interface size 41604 41869 44768

Avg time facto (s) 632 596 593

Avg time precond (s) 163 117 129

Avg time solve (s) 147 85 118

Matrix Almond, divided in 8 domains

 Impact on performances for MaPHYS 
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Natif DG HF

Max-min Schur size 5805 3455 3307

Avg Schur size (n) 7523 7709 7900

Avg Schur size (nnz) 58M 60M 63M

Total interface size 59574 61057 62608

Avg time facto (s) 232 222 223

Avg time precond (s) 139 98 102

Avg time solve (s) 128 91 98

Matrix Almond, divided in 16 domains

 Impact on performances for MaPHYS 
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Natif DG HF

Max-min Schur size 3118 2765 2603

Avg Schur size (n) 5492 5672 5749

Avg Schur size (nnz) 31M 32M 33M

Total interface size 86551 89452 90664

Avg time facto (s) 87 84 84

Avg time precond (s) 58 62 54

Avg time solve (s) 91 59 50

Matrix Almond, divided in 32 domains

 Impact on performances for MaPHYS 
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9  Future work

● In a parallel context, chose the best from the 3 variants (GG, DG, HF)
(keep same complexity for the global reordering process, but time increases)

● An other important criteria to control : total size of the interface

● Comparison with k-way or other graph partitioning (Metis, ...)

● Release new algorithms in the master branch of Scotch package
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Thanks for listening.
Questions ?



Memory optimization to 
build a Schur complement 
for hybrid solvers
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Domain decomposition

98

Mesh Matrix

interface
coupling

interior domain



Domain decomposition
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Initial Matrix Factorize each domain TRSM Add 
contributions

Incomplete 
factorization of S

Step 1 :

Build an approximate factorization : 

Step 2 : 

Iterative method to solve Ax = b using      &      as preconditioner



Domain decomposition
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2 levels of parallelism :

•  parallelism between subdomains

•  parallel direct solver to factorize each subdomain

Local matrix for 
subdomain 2



Memory optimization
Memory overcosts during the factorization of a subdomain :

• Aggregated blocs (Fan-In)

• Coupling blocs (E/F)

Idea 1 : 
Dynamic allocations of column blocs (as late as possible)

Idea 2 : 
Free the coupling blocs as soon as possible

101



Memory Optimization
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INLINE matrix, factorized using PaStiX                with 
16 processus and 4 threads per processus,    size of 

the interface about 1500 

Processus 14 Processus 12



Memory Optimization
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Idea 3 : 
Use a « left looking version » to build the non-coupling part of 
columns blocs



Memory Optimization
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domain 1 for AUDI matrix, split in 2 subdomains,

factorized with 4 processus and 4 threads per processus

Processus 1 Processus 3



Some results
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• left-right-looking version : from 1 to 4 MPI nodes, 
memory gain from 86 % to 10%

• in the case of hybrid solvers we expect small number of 
MPI node per subdomain

• Same gains when increasing the number of threads 
instead of MPI nodes
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7 Halo-first Greedy Graph Growing
Problem : graph induced by halo may be disconnected ; we have to 
reconnect it before cutting halo

Algorithm :

Let begin with an empty induced graph
Let call H = {h

0
, h

1
, …, h

m
 } the halo vertices.

Let P be a partition of the halo vertices, initially P = {{h
0
}, {h

1
}, …, {h

m
}}

While p ≠ {H} :
- find the shortest path between any two elements of P
- merge them
- add to the induced graph all vertices of the path
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Choose a vertex v in S 
and a part i

Move v to i

If best partition ever, record it

4  Fiduccia-Mattheyses algorithm
Original version
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4  Fiduccia-Mattheyses algorithm

● main loop: choose a vertex, move 
it, update best separator
● 1 pass = 
make moves until the last 
<movenbr> moves do not bring 
improvement

Original version
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4  Fiduccia-Mattheyses algorithm

● main loop: choose a vertex, move 
it, update best separator
● 1 pass = 
make moves until the last 
<movenbr> moves do not bring 
improvement
● tabu search

Original version
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● main loop: choose a vertex, move 
it, update best separator
● 1 pass = 
make moves until the last 
<movenbr> moves do not bring 
improvement
● tabu search
● passes keep going on while last 
pass bring improvement
● each pass begins with best 
separator ever found

4  Fiduccia-Mattheyses algorithm
Original version
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4  Fiduccia-Mattheyses algorithm

● main loop: choose a vertex, move 
it, update best separator
● 1 pass = 
make moves until the last 
<movenbr> moves do not bring 
improvement
● tabu search
● passes keep going on while last 
pass bring improvement
● each pass begins with best 
separator ever found
● preferred part switched at each 
pass

Original version
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4  Fiduccia-Mattheyses algorithm

GetSep choice based on (as before):
- part balance (if large imbalance)
- separator minimization
- preferred part

GetHalo choice based on:
- halo imbalance

Next slide :-)

Modified version
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Choose a partition satisfying  

and

Among them the one with:
- smallest separator

- smallest       

- smallest       

Partition satisfying

already found?

Choose partition 
with smallest     

Partition satisfying

and

already found?

Choose a partition 

satisfying                    

having smallest 

4  Fiduccia-Mattheyses algorithm

no

no

yes

yes

Modified version, choice of « the best separator »

Attention si je mets ce slide, 
mettre les mêmes notations que 
dans l'autre slide
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8  Results
16 domains, DG
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8  Results
16 domains, HF
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8  Results multilevel + DG/HF, 16 to 512 domains

Almond
n ≈ 7 x 106

nnz ≈ 100 x 106

Nice-7
n ≈ 8 x 106

nnz ≈ 660 x 106

10millions
n ≈ 10 x 106

nnz ≈ 160 x 106


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 96
	Diapo 97
	Memory optimization
	Diapo 106
	Diapo 107
	Diapo 108
	Diapo 109
	Diapo 110
	Diapo 111
	Diapo 112
	Diapo 113
	Diapo 114
	Diapo 115
	Diapo 116

