
Benchmarking of the linear solver
PASTIX for integration in LESCAPE

Lucas Lestandi

Supervisor: Héloïse Beaugendre

March 9, 2015

Contents

1 The test case 2

2 Fast Fourier Transform using le Intel MKL library : benchmarking 5

2.1 Context . 5
2.2 Benchmark . 5

3 Pastix Benchmarking 6

3.1 Presentation of Pastix . 6
3.2 Accuracy comparison between the methods . 6
3.3 Benchmarking . 7

3.3.1 Time e�ciency of Pastix . 7
3.3.2 Multi-solve . 8

3.4 Parallelism setting in�uence . 8
3.4.1 Thread number scaling on one node . 8
3.4.2 MPI instances in�uence . 10
3.4.3 Multiprocesses and threads combination 10

4 Iterative solvers 11

4.1 "Smart" direct solvers . 11
4.2 Pastix implemented direct solvers . 12
4.3 Pastix mixed direct-iterative approach . 12

5 Results and beyond 13

5.1 Comparison of FFT, direct and iterative solvers 13
5.2 3-D problem . 13

5.2.1 Positionning of the problem . 13
5.2.2 Results . 14

1

Introduction

In order to upgrade the LESCAPE code to the third dimension, it is necessary to be able to
implement mixed boundary conditions. This is not available in the current solver (Fast Fourier
Transform -FFT- based on the mkl package). Consequently a new solver shall be implemented.
Pastix has been elected.

Pastix is a direct linear solver developed at Inria Bordeaux. It is based on LU factorization
with substantial preprocessing on the matrix. It is also fully compatible with both MPI and
openMP allowing high e�ciency on modern supercomputers.

Even though �t is unbeatable for few iterations its advantage might melt compared to simple
Up-Down algorithm.

In this report we focus on benchmarking the two solvers and exploring Pastix options to
compute e�ciently on several nodes.

1 The test case

Figure 1: Description of the computing domain

In order to compare both solvers, we have to
implement a simple problem for both of them.
In order to compute the relative accuracy of
each one a stationary problem P which has an
analytic solution.

(P)

∆u = −f(x, y) on Ω
u(x, y) = q on Γl

⋃
Γr

∂yu = 2π sin(2πx) on Γt
⋃

Γb
(P)

Where Ω = [0, 1] × [0, 1] and f(x, y) =
8π2 sin(2πx) sin(2πy). The domain is de-
scribed in �gure 1.

One can easily ensure that this equation
possess a solution which is :

u(x, y) = sin(2πx) sin(2πy) (1)

Then it will be easy to compute the error
committed during the computation.

Figure 2: Five
point stencil

This problem is then discretized on a Cartesian grid containing Nx×Ny
points. The Laplacian operation is discretized by the usual �ve points stencil.

−∆uij =

(
2

δx2
+

2

δy2

)
uij −

ui+1j + ui−1j

δx2
− uij+1 + uij−1

δy2
(2)

In order to discretize the boundary condition of the domain, three methods
have been applied depending on the meshes described in Figure 3,4 and 5. As
expected these matrix are clearly sparse nnz 6 5n where A ∈ Mn. Then a
sparse storage will be used.

2

• In method one, the boundary conditions are implemented implicitly since no value is
computed on the boundary. The following discretisization is used.

Uij = q for_i = 0_for_i = Ny + 1
ui0−ui1
δy

= −2π sin(2πx)
uiNy+1−uiNy

δy
= 2π sin(2πx)

(3)

As one can see in �gure 3 the matrix is symmetric, this property is very interesting since
the storage is cheaper and solver for symmetric are cheaper than the others. For direct
solvers one can use a Crout decomposition or a Conjugate Gradient if an iterative solver
is needed.

Figure 3: Method 1
Mesh without points on the boundary & Shape of the associated matrix

• In method 2, the boundary conditions are implemented explicitly there are points on the
boundary. The following second order discretization is used for the Neumann boundary
condition.

Uij = q for_i = 1_for_i = Ny
ui0−ui2
δy

= −2π sin(2πx)
uiNy+1−uiNy−1

δy
= 2π sin(2πx)

(4)

The matrix thus obtained is the most complicated of the three methods since its graph
is not symmetric for rigorous sparse storage. For the graph to be symetric (which is
required by Pastix as explained later), one need to add some zeros (in red on �gure 4) to
the sparse storage. Nonetheless, the matrix is not symetric and adapted methods shall
be used. Pastix enables the use of LU decomposition for direct solve and GMRES or
BiCGstab for iterative solve. These methods are more expensive than the one presented
before. One might question himself about the relative advantage of both discretisation.

• In method 3, the boundary conditions are implemented explicitly for Neumann and im-
plicitly for Dirichlet. We use the following expression to discretize.

Uij = q for_i = 0_for_i = Ny + 1
ui0−ui2
δy

= −2π sin(2πx)
uiNy+1−uiNy−1

δy
= 2π sin(2πx)

(5)

3

Figure 4: Method 2
Mesh with points on the boundary & Shape of the corresponding matrix

This discretization tries to get the advantages of method 1 and 2. The Dirichlet implicit
implementation removes the irregularity (and may improve the conditioning of the matrix)
induced by solving on Dirichlet B.C. in method 2. Also it preserves the second order
approximation of the Neumann BC. The graph of the matrix is symetric which means
that no zero has to be stored but the matrix is not symmetric.

Figure 5: Method 3
Mesh with mixed boundary interpretation & Shape of the corresponding matrix

4

2 Fast Fourier Transform using le Intel MKL library : bench-

marking

2.1 Context

The Fast Fourier Transform (FFT) is one of the most e�cient way to solve a partial di�erential
equation and it can be applied to discrete problems. It relies on properties of the Fourier
Transform, indeed it can be solved very quickly if the space size N is a power of two (slower for
other prime decomposition). It is also very e�cient in term of computing time (derivative are
solve with simple complex multiplication) with a complexity of O(N log(N)).

The current implementation is based on the Intel Math Kernel Library.

2.2 Benchmark

Since the method is very fast, one iteration takes less than one second on one note of Plafrim,
tests need to last longer to prevent parasite to matter. Then it is chosen to run the tests on a
minimum of 100 iterations.

Figure 6: FFT of the mkl library speed-up, 1
Fourmi node

8 thread 1 threads
Nx 100 it 1 it 100 it 1 it

4096 18.47 0.18 65.9 0.66
4100 21.6 0.22 88 0.88
4129 73.2 0.73 433 4.33
4600 26.6 0.27 112 1.12

Table 1: FFT execution �gures for 100
iteration and the average duration of 1
iteration depending on Nx

The speed-up graph presented in �gure 6 show a relatively good scalebility, however one
can see that increasing further the number of core would not be very e�cient as shows "4600-
mirabelle" in �gure 6.

In table 1, one can see that there is roughly a factor 4 between execution time of 1 and 8
threads. Each iteration is almost instantaneous, then solving the Poisson problem might not be
the slowest part of LESCAPE. As exepected for a �t we observe large di�erences in e�ciency
depending on wether the prime factorization of Nx releases small primes as in 4096 = 212 or
large primes as 4129 is prime. This feature of the �t is not generally a big issue, nonetheless it
must be taken into account.

The best performance for Nx=4600 is reached on one node of mirabelle, with 12 threads
and the same procedure, one iteration takes 0.206s.

As a conclusion, the FFT is a very e�cient method to solve a Poisson problem, its only
limitations are the integration of mixed boundary condition in 3D and in the case of the mkl
implementation that in does not feature MPI library and must be run onto a single node. This
might limit the scalability to bigger problems for memory reasons.

5

3 Pastix Benchmarking

3.1 Presentation of Pastix

Pastix is a direct linear solver based on the symbolic factorization. Further information is
available in the Pastix Manual. Pastix enables natively both openMP and MPI and handle
all the required distribution of data and communications. The user only has to provide the
number of threads he requires in the program and the number of MPI processes when calling
the programm.

Mainly, in order to solve a linear equation Pastix goes through the following steps. Each
one can be done separatly.

1. Ordering using Scotch. The best quality is obtain using a single process. Speed can
be increased (linearly) if several MPI processes are opened. This is generally the longest
step. The ordering can be done once and for all as a preprocessing step and stored as long
as the matrix remains the same. The e�ciency of the whole process (�ll-in, dependencies
between the calculations) is decided in this step.

2. Symbolic factorization, computes the structure of the factorized matrix. This step is
cheap.

3. Distributing and scheduling.

4. Numerical Factorization using LU ,LLT or LDLT algorithms depending on the shape
of the matrix. Is the most time consuming step after the ordering step.

5. Solve Finally solves the matrix with up-down algorithm, then is really fast.

6. Re�nement Due to bad conditioning, bad precision can occur, then a few iteration of an
iterative solveur (BiCGStab,GMRES,CG) can improve the overall accuracy with a small
cost. Moreover these solvers can also be used alone as block iterative solvers.

3.2 Accuracy comparison between the methods

Figure 7: Compared error of the 3 methods

In order to have a good view of the situation,
�rst a method comparison benchmark is per-
formed. The three methods are compared on
the following criteria: time for ordering, time
to perform numerical factorization and time
to solve explicitly the problem. The relative
errors are also compared for di�erent space
discretization number Nx.

First, it is observe that the error behaves
the same way for each method converging to
a very close value. The order of the method
is 2 as shown in �gure 7. This is the order of
discretization of the Laplacian in space, then
the result is satisfying concerning numerical
accuracy.

For the implementation to be the most ef-
�cient, only time e�ciency shall be considered
to compare these methods since no clear advantage emerges from the error analysis.

6

3.3 Benchmarking

3.3.1 Time e�ciency of Pastix

In this subsection, the results where obtained on one node of plafrim with 1 MPI process

and 8 threads. Other parallelism combination will be investigated later.
The time consumption of each part is investigated. For a simple solve of the discrete system

AX = b the numbering step (done by SCOTCH) represents around 90% of the computing time.
Luckily it is possible to do this task in a preconditioning step and save its result. The ordering
remains the same as long as the matrix does not change. The ordering duration is a linear
function of the size of the matrix. A typical time for ordering (and symbolic factorization) is 8
minutes for Nx = Ny = 4600. It is then compulsory only to make one iteration of this step
even if it can be done faster several a parallel version of Scotch. Nonetheless, reading the saved
�le is not free and takes a couple second for large meshes.

Then the scheduling takes place, its execution time also depend on the size of the matrix but
is negligeable (1 or 2% of the execution time) compared to ordering and numerical factorization.

Figure 8: Time consumption of numerical factorisation on the left and correlation to matrix
size on the right

The second most time consuming step is the numerical factorization, representing an aver-
age of 6% of the computational time. Once again, luckily, in this problem as in the Lescape
code the matrix that has to be solved remain the same if there are several iterations. This
must be done at least one time in the run since this data is not stored as default. The time of
factorization is in O(n1.2) with a good correlation coe�cient as shown in �gure 8.

One interesting fact, is that method 1 uses a symmetric matrix and consequently factor-
ization is done with a Cholesky algorithm which is supposed to be more e�cient than a LU
algorithm. This is in fact what is observed in this experiment. The average factorization

time is 44% shorter for LLT decomposition. Thus one should consider use symmetric
matrix as in method 1.

The �nal and most important step is the actual solve step consisting in a up-down algorithm.
It is really fast, less than 0.4% of a single execution. This is the part that must be compared
to the FFT. In fact runtimes are too small to be able to be relied upon for analysis, thereby
the e�ect mention in the previous paragraph is less important for the solve step. This lead to
the next subsection where iterated e�ciency of Pastix is analyzed.

7

3.3.2 Multi-solve

According to Pierre Ramet, the good way to do solve several AX = bi for A a constant matrix
is simply to put a loop around the solve step of pastix and update the rhs at each passing in
the loop (without changing the nrhs value).

According to the results showed in the previous section, it is pointless to investigate the
ordering time and we consider that the ordering and symbolic factorization are know and thus
negligible during the experiment. The numerical factorization only happens in the �rst step,
then the �rst step will only be considered when looking at numerical factorization e�ect in this
section.

Nx t100 tfacto tsolve
1000 35.4 2.5 7.7 · 10−2

32.9 0.6 6.2 · 10−2

2000 87 2.1 2.6 · 10−1

98 4.3 2.6 · 10−1

3000 189 6.68 5.4 · 10−1

215 22.4 6.0 · 10−1

4000 321 15.5 1.06
365 30.6 1.10

4600 424 24.7 1.45
510 83.8 1.44

5000 494 28.9 1.6
555 58.0 1.58

Table 2: Observed time for 100 solve of (P), ordering known,1 node, 12 threads.
Grey lines for method 1 and white lines for method 2, red boxes are for absurd values.

Except from absurd values, is is observed the expected pattern for tsolve, the ratio between
the two methods is 2. However for numerous solves, the in�uence of this step decreases.
Concerning the solve step duration, no clear di�erence appears between the two method as
expected since the same "up-down" algorithm is used. Even for large meshes (25.106 points)
the solve time remains small, roughly one second. Though bigger than the FFT, it is in the
same range knowing that it can be used on several nodes to improve absolute speed.

Also it is not presented in table 2, around 5% of the solve iterations are signi�cantly longer
(up to 3 folds the usual duration) for no apparent reasons.

3.4 Parallelism setting in�uence

It is already known that Pastix is not as e�cient as the FFT on one node but one might wonder
what would happen if there where more or less threads, or what combination between threads
and mpi processes performs the best. This is the topic of this section.

3.4.1 Thread number scaling on one node

First, the in�uence of the number of thread is investigated using several iterations with Nx=2000
(for speed reasons). It is observed that minor variations (0.1s) in the solve step can notably
alter the quality of this evaluation ,up to 50% as shown in �gure 9 for instance for 5 threads.
That is the reason why several iterations are used in this experiment, only to keep the most
relevant information. However it was not always possible to obtain reliable results for each

8

Figure 9: Variability on 1 iteration length, Nx=2000, 1 process

number of threads. Figure 9 displays a Tukey boxplot of the length of iteration in function
of the number of thread. It clearly shows that for 2 to 5 threads, variability is high and the
minimum length is substantially di�erent from the average. This means that often the solve
duration is far from its best value. On the other hand, for 1 thread the duration is always
the same, meaning that variation occurs when several threads are involved. Finally, when the
number of thread is close to the number of cores on the node, the variability seems to diminish.
This is a motivation to use the as much threads as there are cores on a node to ensure the best
e�ciency.

The speed-up and e�ciency graphs presented in �gure 10 show that scaling is mostly sat-
isfying, thus validating the use of 1 thread per core. Results slightly di�er from the minimum
length to the average length but the conclusion remains the same.

Figure 10: Speed up on 1 iteration length, Nx=2000, 1 process

The drop observed in the average speed up is clearly produced by the variability that was
described earlier.

The numerical factorization was not discussed so far, this is due to the poor quality of

9

the results. Nonetheless we observe that the fastest factorization occurred for 8 threads and
is roughly 7 time faster than for one threads. This is a positive results since the numerical
factorization is a major source of calculation.

3.4.2 MPI instances in�uence

The use of several MPI processes is studied in this subsection, the same operating conditions
as in the previous subsection are used.

Figure 11: Speed up on 1 iteration length, Nx=2000, 1 thread per process

This experiment shows di�erent properties than thread number variation, if fact standard
deviation for solve length is near 0 meaning that all the durations are nearly identical for a
given number of MPI processes. In �gure 11 one can see that solve and factorization scalability
is good with an e�ciency of approximately 0.7 for 8 processes. However, the overall speed-up
is signi�cantly poorer, the most convincing explanation is that the program enveloping pastix
call is virtually sequential which shrinks the overall scalability.

3.4.3 Multiprocesses and threads combination

Figure 12: In�uence of -pernode on 1
iteration length for several MPI pro-
cesses, Nx=2000

Even though MPI speed up graph is smoother, the solve
scalability is really close between threads and processes,
espacially in the case of 1 per core. However, the fastest
solve occurs for 8 threads at 0.25s which is better than
0.27s for 8 MPI processes. This section is an attemps
to �nd the best combination between MPI and threads.

It was shown that there is no point to use a num-
ber of thread between 2 and 6 in section 3.4.1 then the
only possibility is to use 8 threads since no e�cient in-
termediate position is available. Using the -pernode

i.e. one MPI process per node, is crucial as �gure 12
displays. However,in this small experiment the num-
ber of processes used does not improve signi�cantly the
solve duration. Further experiment shall be realized
with a whole program made for parrallel execution.

10

4 Iterative solvers

The main problem of iterative function is that the number of iteration can be as high as the size
of the matrix represent at each step a maximum of O(n2) operations. Even if the number of
iteration is a lot smaller than the size of the matrix it becomes mechanically big as n increases
causing the method to loose e�ciency when ther is a time step. On the contrary direct solvers
are really fast once the �rst iteration is done.

This section is a basic attempt to show that this assertion is true for a Poisson problem
solved on a Cartesian grid.

4.1 "Smart" direct solvers

Since there is no clear advantage in term of precision between the tree methods when Nx is
large enough, method one is chosen for its matrix is symmetric and can be solved easily with
a Conjugate Gradient (CG). The test code only involves mpi implementation so far but gives
su�cient information concerning the reliability of these kind of solvers.

The implementation proposed here is based on the Parallel Computing project from Enseirb-
Matmeca with only a few modi�cation to solve the same test problem as in the previous sections.
There is no storage of the matrix, only its coe�cient. This is not an optimised solver. It can
handle any kind of BC as long as the matrix is kept symmetric. The vectors are solved by part
on each processor depending on the load function.

Figure 13: Speed-up and e�ciency curve of an adapted CG solver for (P), on 2 nodes, Nx =
Ny = 1000

The speed-up of this program and the e�ciency curves are very satisfying and one can
assume that the program has a good scalability. Figure 13 shows these curves for 2 nodes
on Plafrim. These test were done on a Cartesian grid of 1000 points in each direction. The
matrix is building is included in the execution time. Nonetheless, the performance of this
method appears to be inferior to Pastix. It can also be seen that the accuracy decreases with
the number of processes used to compute. For the same resources, even a factorization pastix
(0.8s) is faster than this CG-based implementation (12.9s) as one can see in table 3.

As a conclusion, in regards of integration in time depending LESCAPE, CG-based solvers
appears to be irrelevant.

11

Method Nx Nb Processes exec time error (L2)
1 1000 8 12.9 2.7E-5
1 1000 16 5.4 5.4E-5

Table 3: Extract of the pro�ling tests on CG solver

4.2 Pastix implemented direct solvers

The re�nement step of pastix can be used as an iterative solver using the bloc matrices obtained
during the previous step. As in the previous section, the results presented in table 4 are not
satisfying for integration in LESCAPE since again, ordering is not taken into account in the
results displayed here. The iterative solver timing is roughly the whole program timing then it
is the only one discussed.

Method Nx Nb threads algorithm internal iterations execution time
1 1000 8 CG 1455 137 s
2 1000 8 BiCGStab 2423 450 s

Table 4: Results for Pastix integrated iterative solvers for 1 solve, 1 Fourmi node,re�nement
critirion ε = 10−8

This solver is clearly ine�ective in this case, the time required is 100 folds bigger than mkl
or Pastix, mainly because there are too many internal iterations for a single solve due to slow
converge. In fact, the residual (r) reduces extremely slowly until 1427 iterations for method 1
and even goes up sometime. At iteration 1427, r ' 0.1 an then only 20 iteration are required
to converge. As consequence one might think that, if this "threshold" is reached faster then an
iterative method might be worth considering.

4.3 Pastix mixed direct-iterative approach

Pastix also allows to use the direct solver as a preconditioner for iterative methods. Unless it
enables very fast convergences, this method will display the same �aws as basic iterative solvers.
In this section, some experiments are presented to evaluate the potential of this approach.

There are mainly 2 parameters that in�uence the e�ciency of this preconditionning method:
the amalgamation level (α) and the level of �ll (k) authorized during the incomplete factoriza-
tion. In order to quickly obtain a good view of the best tuning, an extensive experiment was
conducted for small meshes (Nx ≤ 500). For k ∈ [0, 7] and α ∈ [5, 40] the quickest solve occurs
at k = and α = with 9.9 seconds to perform re�nement. The number of iteration is contained
to low levels but requires long computation. Unfortunately, even for Nx = 500 the iterative
solver (re�nement step alone) last around 10s which is a 100 time greater than usual pastix
solve time.

As a conclusion, incomplete factorization techniques as preconditioning in Pastix is dis-
missed.

12

5 Results and beyond

5.1 Comparison of FFT, direct and iterative solvers

Table 5 presents a general view of the work presented in this report. It con�rms that the
FFT originally implemented in Lescape is very e�cient and was the best choice in the series
of method that were studied. However since this solver cannot handle the required boundary
condition in 3D, it dismissed for the 3D version of LESCAPE. The three iterative solvers at
the end of table 5 are clearly ine�cient. Then the best option is to use Pastix in its normal
implementation, with a preprocessed ordering and a single numerical factorization for as many
time step (solve in the test case) as required. In this condition, a poisson like problem requires
1.5 s to be solved for a given time step for Nx=Ny=4600. This is roughly 5 times longer than
the FFT but this loss of performance is acceptable.

3D Nx Nb procs Nb threads solver time num fact time solve
0 4600 1 8 FFT mkl 0.27 s
1 4600 1 8 pastix 24.7s 1.45 s
1 4600 8 1 pastix 147s 4.7 s
1 1000 8 1 parallel CG 12.9s
1 1000 8 1 pastix CG 137s
1 1000 8 1 ILU & CG 73.7s

Table 5: Overview of the e�ciency of each solver

5.2 3-D problem

5.2.1 Positionning of the problem

The Three Dimensions problem is a simple extention of the 2D problem used above. Now
Ω = [0, 1]3 and there are 6 faces that can have di�erent BC that are presented in �gure 14 of
Appendix.

Then we introduce the following test case. The problem can be de�ned for both Dirichlet
or Neumann boundary conditions on Γf

⋃
Γb .

−∆u = f(x, y, z) on Ω
u(x, y, z) = q on Γl

⋃
Γr

∂zu = 2π sin(2πx) sin(2πy) on Γu
⋃

Γd
∂yu = 2π sin(2πx) sin(2πz) or u(x, y, z) = q on Γf

⋃
Γb

(P3D)

Where f(x, y, z) = 12π2 sin(2πx) sin(2πy) sin(2πz) and u = sin(2πx) sin(2πy) sin(2πz) is the
exact solution of P3D.

Then we have the following discretization of the gradient in 3D ∀(i, k, k) ∈ [2, Nx − 1] ×
[2, Ny − 1]× [2, Nz − 1]:

−∆uijk =

(
2

δx2
+

2

δy2
+

2

δz2

)
uijk −

ui+1jk + ui−1jk

δx2
− uij+1k + uij−1k

δy2
− uijk+1 + uijk−1

δz2
(7)

The boundary conditions are handled exactly the same way than in 2D. For method 2, the
shape of the matrix is described in �gure (15).

13

Let(x, y, z) ∈ Ω

Γl = [x, 0, z]

Γr = [x, 1, z]

Γu = [x, y, 1]

Γd = [x, y, 0]

Γb = [x, y, 0]

Γl = [x, y, 1]

(6)

Figure 14: Ω for 3D problem and de�nition of faces

5.2.2 Results

Conclusion

14

Figure 15: Shape of the matrix for P3D - 3D problem

15

