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1 Introduction

The exploitation of a PWR based nuclear plant requires to change the fuel each year in the reactor. It is
done while ensuring the safety and the productivity of the plant in service. More precisely, EDF uses the
numerical simulation to achieve this goal. In our context, the neutron transport inside a nuclear reactor
have to be simulated. So, EDF has developed a fast sequential solver [2] based on the simplified transport
equations SPN [4]. We report on Table 1 its performances, obtained while considering the pin by pin IAEA-
3D benchmark [3] with the SP1/SP3 model and the RTO/RT1 finite element approximation [6]:

Type of computation SP1-RTO SP1-RT1 SP3-RT0O SP3-RT1
DOF Number 31948 950 | 254 747 720 | 63 897 900 | 509 495 440
Memory consumption 1.5 Go 13.4 Go 2.5 Go 23 Go
Time 143.55 s X 347.59 s X

Table I. Performance of the sequential solver for different computations with the same convergence param-
eters (see section 3 for a description of the target cluster). x indicates that the computation can’t be run
because of memory consumption.

This sequential code suffers of two limitations. On the one hand, we are not able to run some industrial
cases due to the memory consumption and/or the computational time. On the other hand, it is necessary to
refine a large part of the mesh as soon as a better numerical approximation is needed in a local part of the
core. So, we propose a non overlapping domain decomposition to tackle these problems. In the following,
the domain decomposition method is presented. Then, numerical results on the IAEA-3D benchmark are
provided.

2 Description of the domain decomposition method
2.1 Presentation of the problem

The simplified transport equations SPN for a reactivity calculation lead to the following algebraic problem:
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find the highest k. s such that
1

AX =
keg s

FX (1)

where A and F’ are the transport and fission matrices. To solve problem (1), a Generalized Power Inverse
Iteration Algorithm is used [7] where a linear system

AX =S 2

has to be solved at each iteration. In order to benefit from the pattern of A, we consider the following
iterative strategy to solve (2) :

1. to solve (2), we use an iterative block Gauss-Seidel algorithm ;

2. for each linear system involving the diagonal blocks A, of A, we use an iterative block Gauss-Seidel
algorithm™ ;

3. for each linear system involving the diagonal blocks A, ; of A,, we use an iterative block Gauss-Seidel

algorithm ;

4. we solve exactly each linear system involving the diagonal blocks Ag ; of Ay with a cholesky factor-
ization as A; ; 1s a band matrix (tridiagonal for RTO, pentadiagonal for RT1).

So, the overall algorithm is made of four iterative imbricated loops. For our applications, we obtain the
best performance in terms of CPU time for a given accuracy while fixing the number of iterations of all
Gauss-Seidel loops to one.

2.2 The domain decomposition method

The domain decomposition method we propose is based on the introduction of Lagrange multipliers [8] to
deal with different numerical approximations between two adjacent subdomains. At each inverse power
iteration, for a partition composed of two subdomains, (2) is replaced by:

Ajg=1 0 Chr-a Xi=1 Sda=1
0 Aj—y Chra X2 | = | Si=2 3)
C}t\—d CR—Q 0 A 0

where X contains the unknowns of the subdomain d. A contains the unknowns associated with the La-
grange multipliers for the matching of the unknowns X at the interface. The matrices Cy_.4 come from
the coupling between A and X.

To solve (3) a Krylov based Uzawa algorithm was proposed [1]. In practice, for our context of inner-
outer iteration, this Krylov algorithm is less efficient than the Algorithm 1 based on the Minimal Residual
algorithm [5].

*In SP1 case, this step is skipped.
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Algorithm 1: Interface algorithm

with the following notations :

A = Ao;
r=0CtX ; C:<02:;>;
while / Convergence do
X = AphL(0r) s
M, =C!'X ; Ad= 0
<r M, > ADD:< %1 A ;
p=——->-"---—-—, d=2
< M., M, >
A=A+ pr;
r=r+pMTA; S,
X=X—pX; S=<S;’:;>.
end B

To compute the product by Az)lD, we use in parallel the sequential solver in each subdomain. Compared
with the sequential monodomain algorithm, we finally add one loop to get convergence of the minimal
residual algorithm. For this loop, we consider a fixed number of iterations in the same way as the sequential
monodomain solver.

3 Experimental results
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Figure 1. Behavior of the Minimal Residual algorithm with 3 iterations (MR3)

To validate the proposed method, we consider the two groups homogeneous IAEA-3D benchmark [3]. For
a SP1-RTO pin by pin computation, the computational mesh used is made of 289 x 289 x 38 cells. The
inverse power algorithm has the following convergence criteria:

S0 = Snall g6 g An=Anal

<1076
[|Sn |l |An]

where .S, and )\, are the source of fission and the estimated eigenvalue at the iteration n.

The tests have been performed on a cluster with 208 nodes (each with 2 Intel Xeon processors, 3.40GHz,
2MB Cache and with 4 GB PC3200 DDR2). The MPI Implementation used is MPICH 1.2.7 with an
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Infiniband(openib-2.0.5) network. During batch submissions, one node is assigned to each subdomain to
avoid concurrency for memory access.

We have fixed to three the maximum number of iterations of the interface solver (algorithm MR3). So, the
domain decomposition method brings to four more amount of computations than the sequential monodomain
solver at each power iteration. Consequently, the best efficiency we can expect is 25%. We have performed
the parallel domain decomposition method from 2 to 192 subdomains.

First, we have checked that the domain decomposition method brings to the same solution as the sequential
solver for the requested accuracy. Secondly, we report on Figure 1, for each subdomains partition, the
number of power iterations and the execution time. The execution time of the sequential monodomain
solver is reported also. On the one hand, the introduction of the domain decomposition leads to a small
increase (< 20%) in the number of power iterations. On the other hand, the efficiency of the method is
constant and nearly equal to 21%, wich is rather good compared to the best we can expect. This ensures the
good quality of the parallel implementation. In other words, five nodes are required to get a parallel domain
decomposition solver faster than the sequential monodomain one. But once this price is accepted, we get a
good parallel algorithm : the execution time decreases proportionally with the number of processors (See
Figure 1 on right with log/log scale).

We obtain similar results while using the RT1 finite element approximation. Besides, the method allows
us to make computations we are not able to run with the sequential monodomain solver due to memory
consumption. Finally, we expect to confirm the efficiency of the domain decomposition method for SP1/SP3
homogeneous and heterogeneous computations coming from industrial applications.

4 Conclusions

The proposed domain decomposition method in the difficult context of an approximate resolution of each
linear system at each power iteration reveals very reliable and efficient on SP1 homogeneous pin by pin
computations. In the future, we plan first to reach on the limitations of the method while using a machine
with more nodes like BlueGene P. On the other hand, it is necessary to benefit from all the cores of a node.
So, we propose to use preliminary work made by our team on the improvement of the sequential solver on
a node made of some cores or Graphical Processors Units (GPU). Thus, we hope to reach a speed up of one
hundred on a two groups SP1 homogeneous pin by pin 3D computation.

Secondly, we plan to develop a new domain decomposition method where the loop on the subdomains is
located at the lowest level of the power algorithm (that is to say under the loop on the current directions).
So, we can solve exactly the interface problem as it is made of many decoupled 1D interface problems, and
consequently ensure to do exactly the same computations as the sequential solver at each power iteration.
We hope to improve too the speed up of the domain decomposition method.
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