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1 INRIA - SAlApplix, 2 Institut de Mathématiques - Université Bordeaux 1,
3 LABRI - Université Bordeaux 1, 4 CEA Cadarahe - EuratomWe are interested in the numerial simulation of of magneto-hydro-dynami instabilities in tokamakplasmas 1. In this study, two odes are developed and ompared : JOREK (Euratom and CEA) and FluidBox(INRIA). We also investigate a solver based on adaptive grid and impliit sheme.The main appliation of JOREK [3℄ is a spei� type of MHD instability named Edge Loalised Mode orELM. This instability ours at the edge of the tokamak plasma, spei�ally in a magneti geometry withan x-point. The ELMs are of onern for the ITER experiment due to the large peak heat losses indued bythis instability. These losses may indue damage to the wall of the mahine.The MHD equations solved in the JOREK ode is the redued MHD model in toroidal geometry. Theredution onsists in a potential representation of both the �ow and the magneti �eld.For the simulation of ELMs, the simulation domain must inlude both the losed magneti �eld lines inthe entre of the plasma and the open �eld lines outside. For numerial auray it is important that thevariables are aligned with the initial magneti �ux surfaes. In the JOREK ode �nite elements are usedin the two non-periodi dimensions, Fourier harmonis are used in the periodi, toroidal, diretion. Thepresent version of the JOREK ode uses iso-parametri ubi Hermite �nite elements. Thus both the twospae oordinates and all the variables are represented by the same �nite elements. This allows an aurateadaptation of the grid to the magneti geometry.The �rst appliations are the poloidal �ows indued in the equilibrium with an x-point and the simulationof so-alled ballooning modes, the instability underlying the ELMs.The ode FluidBox is a more general purpose CFD ode but is less advaned for MHD problems. It usesa di�erent numerial method : triangular type meshes and a stabilised residual distribution method [1℄thatis able to handle strong gradients. The div B = 0 ondition is handled thanks to a Lagrange multipliatortehnique. The ode is impliit, fully parallel and uses the parallel solver PaStiX [4℄. An example of simulationis given on Figure 1. This example is taken from [2℄.In addition, in the framework of adaptive grids, the system solved at eah time step ould be deomposedinto two parts : the �rst one orresponds to the oarsest level of re�nement and we ompute an exat inverse ofthis system by a diret fatorization ; the seond one orresponds to the unknwons added by the re�nement ;the solution on this part of the system is obtained using an iterative method on the Shur omplementsystem. To validate this approah, we design a prototype using hierarhial �nite element basis.During the onferene we will desribes the numerial shemes and strategy, present results obtained bythe two odes on the ELM instability.
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Fig. 1 � Magneti pressure for a rotor ase. The initial �eld is suh that ||~u|| = 2 and is lokwise orientedfrom the origin to a radius of 0.1, then anti lokwise to r = 0.115 and then is zero. The magneti �eld isuniform (Bx, By) = (0, 5), the pressure is uniform p = 1 the density is 10 and then dereases linearly after
r = 0.115 to reah ρ = 1.Référenes[1℄ R. Abgrall. Essentially non-osillatory residual distribution shemes for hyperboli problems. J. Comput.Phys., 214(2) :773�808, 2006.[2℄ D. S. Balsara and D. S. Spier. A staggered mesh algorithm using high order godunov �uxes to ensuresolenoidal magneti �elds in magnetohydrodynamis simulations. J. Comput. Phys., 149(2) :270�292,1999.[3℄ G.T.A. Huysmans and O. Czarny. Mhd stability in x-point geometry : simulation of elms. Nul. Fusion,47 :659�666, 2007.[4℄ P. Hénon, P. Ramet, and J. Roman. PaStiX : a high-performane parallel diret solver for sparse sym-metri positive de�nite systems. Parallel Computing, 28(2) :301�321, 2002.
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