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Abstract. The purpose of this work is to provide a method which ex-
ploits the parallel block-wise algorithmic approach used in the framework
of high performance sparse direct solvers in order to develop robust and
efficient preconditioners based on a parallel incomplete factorization.

1 Introduction

Over the past few years, parallel sparse direct solver have made significant
progress. They are now able to solve efficiently real-life three-dimensional prob-
lems having in the order of several millions of equations (see for example [1, 5,
6]).

Nevertheless, the need of a large amount of memory is often a bottleneck in
these methods. On the other hand, the iterative methods using a generic pre-
conditioner like an ILU(k) factorization [19] require less memory, but they are
often unsatisfactory when the simulation needs a solution with a good precision
or when the systems are ill-conditioned. The incomplete factorization technique
usually relies on a scalar implementation and thus does not benefit from the su-
perscalar effects provided by the modern high performance architectures. Futher-
more, these methods are difficult to parallelize efficiently, more particulary for
high values of level-of-fill.

Some improvments to the classical scalar incomplete factorization have been
studied to reduce the gap between the two classes of methods. In the context
of domain decomposition, some algorithms that can be parallelized in an effi-
cient way have been investigated in [12]. In [17], the authors proposed to couple
incomplete factorization with a selective inversion to replace the triangular so-
lutions (that are not as scalable as the factorization) by scalable matrix-vector
multiplications. The multifrontal method has also been adapted for incomplete
factorization with a threshold dropping in [8] or with a fill level dropping that
measures the importance of an entry in terms of its updates [2]. In [3], the authors
proposed a block ILU factorization technique for block tridiagonal matrices.

Our goal is to provide a method which exploits the parallel block-wise al-
gorithmic approach used in the framework of high performance sparse direct
solvers in order to develop robust parallel incomplete factorization based pre-
conditioners [19] for iterative solvers.



2

For direct methods, in order to achieve an efficient parallel factorization,
solvers usually implement the following processing chain:

– the ordering phase, which computes a symmetric permutation of the initial
matrix A such that factorization will exhibit as much concurrency as possible
while incurring low fill-in. In this work, we use a tight coupling of the Nested
Dissection and Approximate Minimum Degree algorithms [15];

– the block symbolic factorization phase, which determines the block data
structure of the factored matrix L associated with the partition resulting
from the ordering phase;

– the block repartitioning and scheduling phase, which refines the partition, by
splitting large supernodes in order to exploit concurrency within dense block
computations, and maps it onto the processors;

– the parallel numerical factorization and the forward/backward elimination
phases, which are driven by the distribution and the scheduling of the pre-
vious step.

In our case, we propose to extend our direct solver PaStiX [6] to compute an
incomplete block factorization that can be used as a preconditioner in a krylov
method. The main work will consist in replacing the block symbolic factorization
step by some algorithms able to build a dense block structure in the incomplete
factors. We keep the ordering computed by the direct factorization to exhibit
parallelism. Reverse Cuthill and McKee techniques are known to be efficient for
small values of level-of-fill (0 or 1), but, to obtain robust preconditioners, we
have to considere higher values of level-of-fill. In addition, the Reverse Cuthill
and McKee leads to an ordering that does permit independent computation in
the factorization and thus it is not adapted for parallelization. The extensions
that are described have also to preserve the dependences in the elimination tree
on which relies all the direct solver algorithms.

2 Methodology

In the direct methods relying on a Cholesky factorization (A = L.Lt), the way
to exhibit a dense block structure in the matrix L is directly linked to the or-
dering techniques based on the nested dissection algorithm (ex: MeTiS [13] or
Scotch [14]). Indeed the columns of L can be grouped in sets such that all
columns of a same set have a similar non zero pattern. Those sets of columns,
called supernodes, are then used to prune the block structure of L. The supern-
odes obtained with such orderings mostly correspond to the separators found in
the nested dissection process of the adjacency graph G(A) of matrix A. Another
essential property of this kind of ordering is that it provides a block elimination
tree that is well suited for parallelism [6].

An important result used in direct factorization is that the partition P of the
unknowns induced by the supernodes can be found without knowning the non
zero pattern of L. The partition P of the unknowns is then used to compute the
block structure of the factorized matrix L during the so-called block symbolic
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factorization. This block symbolic factorization for direct method is a very low
time and memory consuming step since it can be done on the quotient graph
Q(G(A), P) with a complexity that is quasi-linear in respect to the number of
edges in the quotient graph. We exploit the fact that:

Q(G(A), P)∗ = Q(G∗(A), P)

where the exponent ∗ means “elimination graph”. It is important to keep in
mind that this property can be used to prune the block structure of the factor L

because one can find the supernode partition from G(A) [11]. For an incomplete
ILU(k) factorization, those properties are not true anymore in the general case.
The incomplete symbolic ILU(k) factorization has a theorical complexity similar
to the numerical factorization, but an efficient algorithm that leads to a practical
implementation have been proposed [16]. The idea of this algorithm is to use
searches of elimination paths of length k+1 in G(A) in order to compute Gk(A)
which is the adjacency graph of the factor in ILU(k) factorization.

Another remark to reduce the cost of this step is that any set of unknowns in
A that have the same row structure and column structure in the lower triangular
part of A can be compressed as a single node in G(A) in order to compute the
symbolic ILU(k) factorization. Indeed the corresponding set of nodes in G(A)
will have the same set of neighbors and consequently the elimination paths of
length k + 1 will be the same for all the unknowns of such a set. In other words,
if we consider the partition P0 constructed by grouping set of unknowns that
have the same row and column pattern in A then we have:

Q(Gk(A), P0) = Q(G(A), P0)
k.

This optimization is often payfull for matrices that come from finite element dis-
cretization since a node in the mesh graph represents a set of several unknowns
(the degrees of freedoms) that forms a clique. Then the ILU(k) symbolic factor-
ization can be devised with a significant lower complexity than the numerical
factorization algorithm.

Once the elimination graph Gk is computed, the problem is to find a block
structure of the incomplete factors. For direct factorization, the supernode par-
tition usually produces some blocks that have a sufficient size to obtain a good
superscalar effect using the BLAS 3 subroutines. The supenodes that are exhib-
ited from the incomplete factor non zero pattern are usually very small. A remedy
to this problem is to merge supernodes that have nearly the same structure. This
process induces some extra fill-in compared to the exact ILU(k) factors but the
increase of the number of operations is largely compensated by the gain in time
achieved thanks to BLAS subroutines. The principle of our heuristic to compute
the new supernode partition is to iteratively merge supernode for which non zero
patterns are the most similar until we reach a desired extra fill-in tolerance.

To summarize, our incomplete block factorization consists in the following
steps:

– find the partition P0 induced by the supernodes of A;
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– compute the block symbolic incomplete factorization Q(G(A, P0))
k

– given a extra fill-in tolerance α , construct an aproximated supernode parti-
tion Pα to improve the block structure of the factors.

– Apply a block incomplete factorization using the parallelization techniques
implemented in our direct solver PaStiX [6, 7].

The incomplete factorization is then used in a GMRES to solve the system.

3 Amalgamation algorithm

The previous section shows that the symbolic factorization of ILU(k) method,
though more costly than in the case of exact factorizations, is not a limitation in
our approach. What remains critical is to obtain dense blocks with a sufficient
size in the factor in order to take advantage of the superscalar effects provided
by the BLAS subroutines. The exact supernodes that can be exhibited from the
symbolic ILU(k) factor are usually too small to allow a good BLAS efficiency in
the numerical factorization and in the triangular solves. To address this problem
we propose an amalgamation algorithm which aims at grouping some supernodes
that have almost similar non-zero pattern in order to get bigger supernodes. By
construction, the exact supernode partition found in any ILU(k) factor is always
a sub-partition of the direct supernode partition (i.e. corresponding to the direct
factorization). We impose the amalgamation algorithm to merge only ILU(k)
supernodes that belong to the same direct supernode. That is to say that we
want this approximated supernode partition to remain a sub-partition of the di-
rect supernode partition. The rational is that when this rule is respected, the
additional fill entries induced by the approximated supernodes can correspond
to fill-paths in the elimination graph G∗(A) whereas merging supernodes from
different supernodes will result in “useless” extra-fill (zero terms that does not
correspond to any fill-path in G∗(A)). Thus, the extra-fill created when respect-
ing this rule has a better chance to improve the convergence rate. Some futur
works will investigate a generalized algorithm that releases this constraint.

As mentioned before, the amalgamation problem consists to merge as many
supernodes as possible while adding the fewer extra-fill. We propose a heuristic
based on a greedy algorithm: given the set of all supernodes, it consists to itera-
tively merge the couple of succesive supernodes (i, i+1) which creates the lesser
extra-fill in the factor (see figure 1) until a tolerance α is reached. Each time
a couple of supernode is merged into a single one the total amount of extra-fill
is increased: the same operation is repeated until the amount of additional fill
entries reaches the tolerance α (given as a percentage of the number of non-zero
elements found by the ILU(k) symbolic factorization). This algorithm requires
to know at each step which couple of supernodes will add the lesser fill-in in the
factors when they are merged. This is achieved by maintaining a heap that con-
tains all the couple of supernodes sorted by their cost (in terms of new entries)
to merge them. As said before, we only consider couple of ILU(k) supernodes
that belong to the same direct supernode). This means that, each time two su-
pernodes are merged, the cost to merge the new supernode with its father and
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its son (it can only has one inside a direct supernode) has to be updated in the
heap.

Additional fill induced by merging I and J

I+1

I

I

I+1

Fig. 1. Additional fill created when merging two supernodes I and J.

The next section gives some results on the effect of the α parameter and a
comparison to the classic scalar ILU(k) preconditioner.

4 Results

In this section, we considere 3 test cases from the PARASOL collection (see
table 1). NNZA is the number of off-diagonal terms in the triangular part of
matrix A, NNZL is the number of off-diagonal terms in the factorized matrix
L (for direct method) and OPC is the number of operations required for the
factorization (for direct method).

Table 1. Description of our test problems.

Name Columns NNZA NNZL OPC

SHIPSEC5 179860 4966618 5.649801e+07 6.952086e+10
SHIP003 121728 3982153 5.872912e+07 8.008089e+10
AUDI 943695 39297771 1.214519e+09 5.376212e+12

Numerical experiments were performed on an IBM Power5 SMP node (16
processors per node) at M3PEC (Bordeaux, FRANCE). The stopping iteration
criterion used in GMRES is the relative residual norm and is set to 10−7. We
used a GMRES version without ”restart”.
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The table 2 gives the influence of the amalgamation parameter α that is
the percentage of extra entries in the factors allowed during the amalgation
algorithm in comparison to the ones created by the exact ILU(k) factorization.
The table reports the number of supernodes, the number of blocks, the time of
sequential factorization, the time of a triangular solve (forward and backward)
and the number of iterations for the AUDI problem for several levels of fill (k).

We can see in table 2 that our amalgamation algorithm allows to reduce
significantly the number of supernodes and the number of blocks in the dense
block pattern of the matrix.

As a consequence, the superscalar effects are greatly improved as the amal-
gamation parameter grows: this is particulary true for the factorization which
exploits BLAS-3 subroutines (matrix by matrix operations). The superscalar ef-
fects are less important on the triangular solves that require much less floating
point operations and use only BLAS-2 subroutines (matrix by vector operations).
We can also verify that the time to compute the amalgamation is negligible in
comparison to the numerical factorization time. As expected the number of it-
erations decreases with the amalgamation fill parameter: this indicates that the
extra-fill allowed by the amalgamation corresponds to numerical non-zeros in
the factors and are usefull in the preconditioner.

Table 2. Effect of amalgamation ratio α for AUDI problem

k α # Supernodes # Blocks Fill-in Amalg. Num. Fact. Triang. Solve Iterations

1 10% 198541 6332079 3.17 1.92 173 7.18 138
1 20% 163286 4672908 3.46 4.24 77 4.92 133
1 40% 127963 3146162 4.03 4.92 62 4.86 126

3 10% 172026 11110270 7.07 6.24 463 8.99 78
3 20% 136958 6450289 7.70 7.31 287 8.22 74
3 40% 108238 3371645 8.97 8.06 177 7.53 68

5 10% 153979 12568698 9.50 7.72 908 10.70 63
5 20% 125188 6725165 10.35 8.84 483 9.44 59
5 40% 102740 3254063 12.08 9.87 276 8.65 52

The table 3 shows the results on the 3 problems both in sequential and
in parallel for different levels-of-fill and different amalgamation fill parameter
values. The “–” indicates that the GMRES did not converged in less than 200
iterations. As we can see the parallelization is quiet good since the speed-up is
about 10 in most cases. This is particulary good considering the small amount
of floating point operations required in the triangular solves; indeed the parallel
overcost due to the communications is usually all the more difficult to overlap
by computation in this kind of situation.

The performances of a sequential scalar implementation of the column-wise
ILU(k) algorithm are reported in table 4. The “–” corresponds to cases where
the GMRES did not converged in less than 200 iterations. When compared to
tables 3 what can be noticed is that the scalar implementation is often better
for a level-of-fill of 1 but is not competitive for higher level-of-fill values. The
scalar implementation of the triangular solves is always the best compared to
the block wise implementation: we explain that by the fact that the block-wise
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Table 3. Performances on 1 and on 16 processors PWR5 for 3 test cases

AUDI

1 processor 16 processors
k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total

1 10% 138 173 7.18 1163.84 26 0.65 115.70
1 20% 133 77 4.92 731.36 18 0.55 91.15
1 40% 126 62 4.86 674.36 11 0.47 70.22

3 10% 78 463 8.99 1164.22 58 1.25 155.50
3 20% 74 287 8.22 895.28 33 0.97 104.78
3 40% 68 177 7.53 689.04 17 0.70 64.60

5 10% 63 908 10.70 1582.10 89 1.59 189.17
5 20% 59 483 9.44 1039.96 47 1.26 121.34
5 40% 51 276 8.65 725.80 23 0.82 65.64

SHIP003

1 processor 16 processors

k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total

1 10% – 1.41 0.28 – 0.32 0.05 –
1 20% – 1.41 0.28 – 0.28 0.05 –
1 40% – 1.58 0.29 – 0.28 0.04 –

3 10% 76 4.14 0.45 38.14 0.69 0.07 6.01
3 20% 75 4.05 0.45 37.80 0.62 0.05 4.37
3 40% 64 4.43 0.42 31.31 0.60 0.04 3.16

5 10% 49 7.81 0.55 34.76 1.13 0.07 4.56
5 20% 35 6.98 0.55 26.23 0.90 0.06 3.0
5 40% 34 7.24 0.49 23.9 0.98 0.06 3.02

SHIPSEC5

1 processor 16 processors
k α Iter. Num. Fact. Triang. Solve Total Num. Fact. Triang. Solve Total

1 10% 121 1.28 0.32 40.0 0.28 0.03 3.91
1 20% 117 1.26 0.32 38.7 0.25 0.03 3.76
1 40% 111 1.44 0.33 38.07 0.24 0.03 3.57

3 10% 70 2.29 0.44 33.09 0.41 0.04 3.21
3 20% 66 2.29 0.43 30.67 0.38 0.04 3.02
3 40% 62 2.83 0.42 28.87 0.43 0.04 2.91
5 10% 54 3.32 0.51 30.86 0.54 0.05 3.24
5 20% 51 3.40 0.49 28.39 0.50 0.05 3.05
5 40% 47 4.11 0.47 26.2 0.59 0.05 2.94

implementation of the triangular solves suffers of the overcost paid to call the
BLAS subroutines. It seems that this overcost is not compensated by the acceler-
ation provided by BLAS-2 subroutines compared to the scalar implementation.
This is certainly du to the size of the block not sufficient for BLAS-2. In the
contrary, a great difference is observed in the incomplete factorization between
the scalar implementation and the block-wise implementation. In this case, the
BLAS-3 subroutines offer a great improvment over the scalar implementation
especially for the higher level-of-fill values that provide the bigger dense blocks
and number of floating point operations in the factorization.

5 Conclusions

The main aims of this work have been reached. The block-wize algorithms pre-
sented in this work allow to significantly reduce the complete time to solve linear
systems with incomplete factorization technique. High values of level-of-fill are
manageable even in a parallel framework. Some futur works will investigate a
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Table 4. Performances of a scalar implementation of the column-wise ILU(k) algorithm

AUDI

k Fill-in Num. Fact. Triang. Solve Total Iterations

1 2.85 75.0 2.63 482.65 155
3 6.45 466.9 4.95 922.3 92
5 8.72 1010.4 6.21 1488.57 77

SHIP03

k Fill-in Num. Fact. Triang. Solve Total Iterations
1 1.99 3.32 0.16 – –
3 4.15 15.69 0.29 39.47 82
5 5.93 33.74 0.37 58.53 67

SHIPSEC5

k Fill-in Num. Fact. Triang. Solve Total Iterations

1 1.79 3.38 0.22 33.08 135
3 2.76 10.83 0.33 38.55 84
5 3.46 19.56 0.38 46.16 70

generalized algorithm that releases the constraint that we impose the amalgama-
tion algorithm to merge only ILU(k) supernodes that belong to the same direct
supernode.
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