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1
Sparse Direct Solvers



Context

Problem: solve Ax = b

• Cholesky: factorize A = LLT (symmetric pattern (A+AT ) for LU )
• Solve Ly = b

• Solve LTx = y

Sparse Direct Solvers: PaStiX approach
1. Order unknowns to minimize the fill-in

2. Compute a symbolic factorization to build L structure

3. Factorize the matrix in place on L structure

4. Solve the system with forward and backward triangular solves
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Symbolic Factorization

General approach
1. Use the nested dissection process to partition a sparse matrix

2. Use the minimum degree solution when leaves are small enough

3. Order a supernode thanks to the Reverse Cuthill-McKee algorithm
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n = 25
N = 7



Numerical Factorization

Algorithm to eliminate the block column k
1. Factorize the diagonal block

2. Solve off-diagonal blocks in the current column (TRSM)

3. Update the underlying matrix with the column’s contribution (GEMM)

Update

• Compacted matrix-matrix
product

• Update divided into the
number of off-diagonal blocks
receiving contributions
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Motivations

Clustering techniques
• Operations on data blocks are more efficient
• Preprocessing stages on the matrix structure before numerical operations
• Those steps can be used for several systems presenting the same initial

structure, or for several right-hand-sides

Objectives
• Increase BLAS efficiency by reducing the number of off-diagonal blocks
• Reduce RUNTIME overhead, with larger tasks

The number of non-zeros, as well as the number of operations, is kept the same
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2
Supernode Ordering Problem



Nested Dissection (1)

Considering a graph G = (V,E, σp)
V : vertexes, E: edges, σp: unknowns permutation

Algorithm to compute σp
1. Partition V = A ∪B ∪ C
2. Order C with larger numbers

3. Apply the process recursively on A and B

Three-levels of nested dissection on a regular cube
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Nested Dissection (2)

Considering a subgraph appearing the nested dissection process, with |V | = p

A

B

C

h

pσ-separation theorem
• 0 < α < 1, β > 0, 1

2
≤ σ < 1

• A and B do not interact
• |A| ≤ αp, |B| ≤ αp
• |C| ≤ βpσ

Characterisation theorem
Fill-in element in position (i, j) if it
exists a path from i to j that only
goes through vertexes with a lower
number than i and j.
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Related Work: Reverse Cuthill-McKee (RCM) algorithm

Off-diagonal blocks
The number of off-diagonal blocks contributing to a supernode corresponds to
the number of sequences ordered consecutively on the supernode halo

General idea - Breadth-First Search
1. Choose a peripheral vertex x, ordered as first vertex

2. Order vertexes interacting with x (neighbourhood at distance d)

3. Iterate starting with those vertexes (neighbourhood at distance d+ 1)

Drawbacks
• Work on A structure instead of L structure
• Do not consider contributing supernodes, but only intra-node interactions
• Order supernodes during the nested dissection process while it could be

realized after
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Ordering Last Supernode

Example
• n = 5× 5× 5

• N = 1 + 2 + 4 + 8 = 15

• First separator of size 5× 5
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Optimal

Projection of contributing supernodes and ordering of the first separator
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Resulting Symbolic Structures

Symbolic Factorization: RCM

Symbolic Factorization: Optimal
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Practical Ordering with Scotch

Last supernode of a 3D Laplacian (size 40)

Subparts A and B are partitioned differently. Thus, supernodes projection is
less regular than in our previous example
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3
Problem Modelization & Proposed Solution



Formalization of the Problem (1)

Notations
• We consider the `th diagonal block C`
• Contributing supernodes are included in (Ck)k∈[1,`−1]

Supernode contributions to C`

row`ik =

{
1 if vertex i from C` is connected to Ck
0 otherwise

, k ∈ [1, `− 1], i ∈ [1, |C`|]

Set of contributions for line i:
B`i = (row`ik)k∈[1,`−1]
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Formalization of the Problem (2)

Metrics
• Weight of line i

w`i =

`−1∑
k=1

row`ik

• Distance between lines i and j

d`i,j = d(B`i , B
`
j) =

`−1∑
k=1

row`ik ⊕ row`jk

with ⊕ the exclusive or operation.
measure the number of blocks created by line j and ended at line i
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Formalization of the Problem (3)

Number of off-diagonal blocks

odb` =
1

2
(w`1 +

|C`|−1∑
i=1

d`i,i+1 + w`|C`|)

Optimal solution
• Minimize odb`

• Shortest Hamiltonian Path problem: find the shortest path visiting once
each line, with a constraint on first and last line

• Complete symmetric graph
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Proposition

Traveller Salesman Problem
• Find a cycle minimizing

|C`|∑
i=1

d`i,(i+1)[|C`|]

• Add a fictive vertex S0, without any contribution to build a cycle instead of a
path

Algorithm

1. Build the set B`i for each line i of C`

2. Compute the distance matrix

3. Insert lines to minimize the cycle length

4. Split the cycle at fictive vertex to get the path
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Build Sets of Contributing Supernodes

Sparse properties
• We rely on the sparse properties of L
• Store for each line contributing supernodes only: row`ik = 1

• Direct accesses thanks to the symbolic structure
• Linear in the size of the symbolic structure
• Set of contributing supernodes with increasing supernodes number

for each line i in the supernode C` do
for each contributing node Ck∈[1,`−1] do

Append k to the set of contributing supernodes to line i
end for

end for
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Compute the Distance Matrix

Computing a distance
• Compare sets B`i and B`j
• Advance progressively in each set, and exploit the fact that contributing

supernodes are stored in a increasing fashion
• Complexity in Θ(|B`i |+ |B`j |)

for each line i in the supernode C` do
for each line j in the supernode C` do

Compute the distance between lines i and j
end for

end for
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Build the New Lines Permutation (1)

Inserting a line
• Start with fictive vertex S0

• Search for the position which will minimize the cycle
• The optimal solution is a NP-hard problem
• Heuristic: relative position between lines 1 to i− 1 cannot evolve when

inserting line i

Cycle` = {S0, 1}
for i ∈ [2, |C`|] do

Insert row i in Cycle` to minimize the cycle length
end for
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Build the New Lines Permutation (2)

1
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3

p1

p2

p3

d1,2

d2,3

d3,1

d14

d24

d24

d34

d34

d14

Possible positions to insert a fourth row

Inserting line i
• Find the position k to minimize
d`i,k + d`i,k+1 − d`k,k+1

• For identical position, minimize
the cut i.e. min(d`i,k, d

`
i,k+1)

between positions k leading to
the same cycle length
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Resulting Solution - Example

Without reordering With reordering

Reordering on a 8× 8× 8 laplacian

Works whatever is the initial seed
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Complexity (1)

Context
• For graphs respecting a nσ-separation theorem
• Building the sets of contributing supernodes: Θ(n)

• Inserting lines in Cl: Θ(|Cl|2)

• We study the complexity of the distance matrix computation

Considering supernode C`, each contributing line is used (|C`| − 1) times to
compute distance with each other line
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Complexity (2)

C =

N∑
`=1

(

|C`|∑
i=1

(row`ik)k∈[1,`−1] × (|C`| − 1))

Theorem (for meshes with balanced outer/inner contributions)
The number of off-diagonal blocks in the symbolic structure is in Θ(n). The
demonstration considered off-diagonal lines instead of off-diagonal blocks, so
the number of off-diagonal lines is in Θ(n) too.

∀k ∈ [1, N ], |Ck| ≤ α× |CN | = Θ(nσ)

C ≤ Θ(nσ)×
N∑
`=1

(

|C`|∑
i=1

(row`ik)k∈[1,`−1])︸ ︷︷ ︸
Θ(n)

= Θ(nσ+1)

Mathieu Faverge, Grégoire Pichon, Pierre Ramet, Jean Roman – SOLHAR meeting 26/35



Complexity (3)

Results
• Numerical factorization in Θ(n3σ)

• Reordering in Θ(nσ+1)

Type σ Reordering Factorization

2D 1
2

Θ(n
√
n) Θ(n

√
n)

3D 2
3

Θ(n
5
3 ) Θ(n2)

Complexity for regular meshes

Asymptotically faster than the numerical factorization for σ > 1
2

Remind that RCM is well working in 2D case
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Complexity (4)

12
3

13
3

14
3

15
3

16
3

17
3

18
3

19
3

20
3

Laplacian size

0

50

100

150

200

250

300

350

Ti
m

e 
(s

)

A complexity study

Theoretical complexity / α2

#OPC / α1

Practical reordering on all supernodes
Practical reordering on last supernode only
α1 =

flops

reordering
 for lap 1503

α2 =
complexity

reordering
 for lap 1503
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4
Benchmarks



Experimental Conditions

Set of matrices
• Large matrices, around 1 million unknowns (real-life meshes)
• Extracted from different applications
• Different average off-diagonal block size

Machine - Curie TGCC
• Two quadcore INTEL Westmere running at 2.66 GHz
• Two NVIDIA M2090 T20A

• MKL 14.0.3.174

• Cuda 5.5.22

PaStiX
• Use StarPU implementation
• 6 threads + 2 GPUs
• Large minimum block size for GPUs efficiency
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Tests on Large Matrices - Number of Off-Diagonal Blocks
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Tests on Large Matrices - Reordering Cost (sequential)
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Performance on Curie (using 8 CPUs and 2 GPUs)
For the factorization only
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Conclusion

Results
• Number of off-diagonal blocks reduced by a factor between 2 and 3

• Performance gain of the factorization up to 20% in an heterogeneous
context

• Theoretical and practical reordering complexity small with respect to the
numerical factorization for 3D graphs

• Works whatever is the initial seed

Perspectives
• Study such a strategy for a multifrontal solver (MUMPS)
• Implement the algorithm in a parallel context
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Thanks !


