

Blocking Strategy Optimization for Sparse Direct Linear Solvers on Heterogeneous Architectures June 12th, 2015 - SOLHAR Meeting

Mathieu Faverge, Grégoire Pichon, Pierre Ramet, Jean Roman

Outline

- Sparse Direct Solvers
- Supernode Ordering Problem
- Problem Modelization & Proposed Solution
- Benchmarks

nría

Sparse Direct Solvers

Ínría

Context

Problem: solve Ax = b

- Cholesky: factorize $A = LL^T$ (symmetric pattern $(A + A^T)$ for LU)
- Solve Ly = b
- Solve $L^T x = y$

Sparse Direct Solvers: PaStiX approach

- 1. Order unknowns to minimize the fill-in
- 2. Compute a symbolic factorization to build *L* structure
- 3. Factorize the matrix in place on L structure
- 4. Solve the system with forward and backward triangular solves

Symbolic Factorization

General approach

- 1. Use the nested dissection process to partition a sparse matrix
- 2. Use the minimum degree solution when leaves are small enough
- 3. Order a supernode thanks to the Reverse Cuthill-McKee algorithm

Numerical Factorization

Algorithm to eliminate the block column k

- 1. Factorize the diagonal block
- 2. Solve off-diagonal blocks in the current column (TRSM)
- 3. Update the underlying matrix with the column's contribution (GEMM)

Update

- Compacted matrix-matrix product
- Update divided into the number of off-diagonal blocks receiving contributions

Motivations

Clustering techniques

- Operations on data blocks are more efficient
- Preprocessing stages on the matrix structure before numerical operations
- Those steps can be used for several systems presenting the same initial structure, or for several right-hand-sides

Objectives

- · Increase BLAS efficiency by reducing the number of off-diagonal blocks
- Reduce RUNTIME overhead, with larger tasks

The number of non-zeros, as well as the number of operations, is kept the same

Supernode Ordering Problem

Innia

Nested Dissection (1)

Considering a graph $G = (V, E, \sigma_p)$ V: vertexes, E: edges, σ_p : unknowns permutation

Algorithm to compute σ_p

- **1.** Partition $V = A \cup B \cup C$
- 2. Order C with larger numbers
- 3. Apply the process recursively on A and B

Three-levels of nested dissection on a regular cube

Nested Dissection (2)

Considering a subgraph appearing the nested dissection process, with |V| = p

p^{σ} -separation theorem

- $0 < \alpha < 1, \beta > 0, \frac{1}{2} \le \sigma < 1$
- A and B do not interact
- $|A| \le \alpha p, |B| \le \alpha p$
- $|C| \le \beta p^{\sigma}$

Characterisation theorem

Fill-in element in position (i, j) if it exists a path from *i* to *j* that only goes through vertexes with a lower number than *i* and *j*.

Related Work: Reverse Cuthill-McKee (RCM) algorithm

Off-diagonal blocks

The number of off-diagonal blocks contributing to a supernode corresponds to the number of sequences ordered consecutively on the supernode halo

General idea - Breadth-First Search

- 1. Choose a peripheral vertex x, ordered as first vertex
- 2. Order vertexes interacting with x (neighbourhood at distance d)
- 3. Iterate starting with those vertexes (neighbourhood at distance d + 1)

Drawbacks

- Work on A structure instead of L structure
- · Do not consider contributing supernodes, but only intra-node interactions
- Order supernodes during the nested dissection process while it could be realized after

Ordering Last Supernode

Optimal

Projection of contributing supernodes and ordering of the first separator

Mathieu Faverge, Grégoire Pichon, Pierre Ramet, Jean Roman - SOLHAR meeting

RCM

Resulting Symbolic Structures

Symbolic Factorization: RCM

Symbolic Factorization: Optimal

Practical Ordering with Scotch

Last supernode of a 3D Laplacian (size 40)

Subparts *A* and *B* are partitioned differently. Thus, supernodes projection is less regular than in our previous example

Problem Modelization & Proposed Solution

Innia

Formalization of the Problem (1)

Notations

- We consider the ℓ^{th} diagonal block C_{ℓ}
- Contributing supernodes are included in (C_k)_{k∈[1,ℓ-1]}

Supernode contributions to C_{ℓ}

$$row_{ik}^{\ell} = \begin{cases} 1 \text{ if vertex } i \text{ from } C_{\ell} \text{ is connected to } C_k \\ 0 \text{ otherwise} \end{cases}, k \in [1, \ell - 1], i \in [1, |C_{\ell}|] \end{cases}$$

Set of contributions for line *i*: $B_i^{\ell} = (row_{ik}^{\ell})_{k \in [1, \ell-1]}$

Formalization of the Problem (2)

Metrics

• Weight of line i

$$w_i^\ell = \sum_{k=1}^{\ell-1} row_{ik}^\ell$$

Distance between lines i and j

$$d_{i,j}^\ell = d(B_i^\ell, B_j^\ell) = \sum_{k=1}^{\ell-1} row_{ik}^\ell \oplus row_{jk}^\ell$$

with \oplus the exclusive or operation. measure the number of blocks created by line j and ended at line i

Formalization of the Problem (3)

Number of off-diagonal blocks

$$odb^{\ell} = \frac{1}{2} (w_1^{\ell} + \sum_{i=1}^{|C_{\ell}|-1} d_{i,i+1}^{\ell} + w_{|C_{\ell}|}^{\ell})$$

Optimal solution

- Minimize odb^{ℓ}
- Shortest Hamiltonian Path problem: find the shortest path visiting once each line, with a constraint on first and last line
- Complete symmetric graph

Proposition

Traveller Salesman Problem

• Find a cycle minimizing

$$\sum_{i=1}^{|C_{\ell}|} d_{i,(i+1)[|C_{\ell}|]}^{\ell}$$

• Add a fictive vertex S₀, without any contribution to build a cycle instead of a path

Algorithm

- **1.** Build the set B_i^{ℓ} for each line *i* of C^{ℓ}
- 2. Compute the distance matrix
- 3. Insert lines to minimize the cycle length
- 4. Split the cycle at fictive vertex to get the path

Build Sets of Contributing Supernodes

Sparse properties

- We rely on the sparse properties of L
- Store for each line contributing supernodes only: $row_{ik}^{\ell} = 1$
- Direct accesses thanks to the symbolic structure
- Linear in the size of the symbolic structure
- · Set of contributing supernodes with increasing supernodes number

for each line *i* in the supernode C_{ℓ} do for each contributing node $C_{k \in [1, \ell-1]}$ do Append *k* to the set of contributing supernodes to line *i* end for end for

Compute the Distance Matrix

Computing a distance

- Compare sets B_i^ℓ and B_j^ℓ
- Advance progressively in each set, and exploit the fact that contributing supernodes are stored in a increasing fashion
- Complexity in $\Theta(|B_i^{\ell}| + |B_j^{\ell}|)$

for each line i in the supernode C_{ℓ} do for each line j in the supernode C_{ℓ} do Compute the distance between lines i and jend for end for

Build the New Lines Permutation (1)

Inserting a line

- Start with fictive vertex S₀
- · Search for the position which will minimize the cycle
- The optimal solution is a NP-hard problem
- Heuristic: relative position between lines $1 \mbox{ to } i-1 \mbox{ cannot evolve when inserting line } i$

 $Cycle^{\ell} = \{S_0, 1\}$ for $i \in [2, |C_{\ell}|]$ do Insert row i in $Cycle^{\ell}$ to minimize the cycle length end for

Build the New Lines Permutation (2)

Possible positions to insert a fourth row

Inserting line *i*

- Find the position k to minimize $d_{i,k}^\ell + d_{i,k+1}^\ell d_{k,k+1}^\ell$
- For identical position, minimize the cut *i.e.* $min(d_{i,k}^{\ell}, d_{i,k+1}^{\ell})$ between positions k leading to the same cycle length

Resulting Solution - Example

Without reordering

With reordering

Reordering on a $8\times8\times8$ laplacian

Works whatever is the initial seed

Complexity (1)

Context

- For graphs respecting a n^{σ} -separation theorem
- Building the sets of contributing supernodes: $\Theta(n)$
- Inserting lines in C_l : $\Theta(|C_l|^2)$
- · We study the complexity of the distance matrix computation

Considering supernode $C_\ell,$ each contributing line is used $(|C_\ell|-1)$ times to compute distance with each other line

Complexity (2)

$$\mathcal{C} = \sum_{\ell=1}^{N} (\sum_{i=1}^{|C_{\ell}|} (row_{ik}^{\ell})_{k \in [1,\ell-1]} \times (|C_{\ell}| - 1))$$

Theorem (for meshes with balanced outer/inner contributions)

The number of off-diagonal blocks in the symbolic structure is in $\Theta(n)$. The demonstration considered off-diagonal lines instead of off-diagonal blocks, so the number of off-diagonal lines is in $\Theta(n)$ too.

$$\forall k \in [1, N], |C_k| \le \alpha \times |C_N| = \Theta(n^{\sigma})$$

$$\mathcal{C} \leq \Theta(n^{\sigma}) \times \underbrace{\sum_{\ell=1}^{N} (\sum_{i=1}^{|C_{\ell}|} (row_{ik}^{\ell})_{k \in [1, \ell-1]})}_{\Theta(n)} = \Theta(n^{\sigma+1})$$

Complexity (3)

Results

- Numerical factorization in $\Theta(n^{3\sigma})$
- Reordering in $\Theta(n^{\sigma+1})$

Туре	σ	Reordering	Factorization
2D	$\frac{1}{2}$	$\Theta(n\sqrt{n})$	$\Theta(n\sqrt{n})$
ЗD	$\frac{2}{3}$	$\Theta(n^{\frac{5}{3}})$	$\Theta(n^2)$

Complexity for regular meshes

Asymptotically faster than the numerical factorization for $\sigma > \frac{1}{2}$ Remind that RCM is well working in 2D case

Complexity (4)

4

Benchmarks

Ínría

Experimental Conditions

Set of matrices

- · Large matrices, around 1 million unknowns (real-life meshes)
- · Extracted from different applications
- · Different average off-diagonal block size

Machine - Curie TGCC

- Two quadcore INTEL Westmere running at 2.66 GHz
- Two NVIDIA M2090 T20A
- MKL 14.0.3.174
- Cuda 5.5.22

PaStiX

- Use StarPU implementation
- 6 threads + 2 GPUs
- · Large minimum block size for GPUs efficiency

Tests on Large Matrices - Number of Off-Diagonal Blocks

Ínría_

Tests on Large Matrices - Reordering Cost (sequential)

Ínría_

Performance on Curie (using 8 CPUs and 2 GPUs)

For the factorization only

Conclusion

Results

- Number of off-diagonal blocks reduced by a factor between 2 and 3
- Performance gain of the factorization up to 20% in an heterogeneous context
- Theoretical and practical reordering complexity small with respect to the numerical factorization for 3D graphs
- · Works whatever is the initial seed

Perspectives

- Study such a strategy for a multifrontal solver (MUMPS)
- Implement the algorithm in a parallel context

Thanks!