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Computation of unstationnary multi�uid �ows requires numerical strategies that are able
to deal with very di�erent physical regimes. The main di�culty, in this case, is to develop an
e�cient, accurate and robust method for large ratio of compressibility and density (gas/water),
able to handle complex geometries (2D and 3D) with high grid aspect ratio, able to deal with
material interfaces, . . .

In this investigation, the fundamental model is described by a compressible Navier-Stokes
system with a volume average description of the interface motion. This results in a system of
hyperbolic partial di�erential equations which cannot be put in conservation form [2, 8]. This
system writes formaly as

∂W

∂t
+ divF (W ) = B · ∇W (1)

where W is the state variable (mass, momentum, total energy, volume fraction), F is the �ux
and B · ∇W describes the non conservative e�ects. The equations contain entropy, vorticity,
interfaces motion and acoustic modes at very di�erent scales. If an explicit method is used, the
maximum type step is a function of the mesh size h and the di�erent wave speeds : material and
entropy wave and the accoustic waves that are usually faster. The larger the maximum wave
speed, the smaller the time step, thus this strategy is, in general, not e�cient. The situation
can be even worse when viscous e�ects are taken into account. This can be improved if
preconditionning techniques associated with implicit schemes are used. The preconditionning
technique we consider are of two types, either purely algebraic, or in the case of low Mach
number �ow, associated to physical considerations.

Our numerical method relies on a mixed �nite volumes/�nite elements formulation with
an upwind Godunov type solver for the hyperbolic component of the model and a Galerkin
approximation for the dissipative e�ects. Following a remark of [1, 6], the design of this method
prevents numerical oscillations of pressure at contact discontinuities. In order to recover the
correct asymptotic behavior at the low Mach limit, the pressure equation is relaxed with a
time scale of the order of the square of the Mach number [7]. This preconditioning approach is
simple, well adapted to multiphase �ow and recovers the pioneer work of Turkel [9] and some
more recent work [5].

During a time step of the implicit scheme, knowing Wn, the state variable Wn+1 is com-
puted in order to satisfy the following nonlinear system,

MWn+1 −Wn

∆t
+ Φ

(
Wn+1

)
= 0,

where M is the matrix of cells volumes, Φ
(
Wn+1

)
the discrete approximation of the spatial

derivatives divF (W ) − B · ∇W in (1). In practice, this nonlinear system is solved by a the
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resolution of linear systems given by[
1

∆t
M+

∂Φ
∂W

(Wn)
]

δW = −Φ (Wn)

where δW = Wn+1 − Wn. Second order accurate schemes both in time and space can be
performed by the defect correction method. It uses only �rst order Jacobian. In any case, we
need to solve accurately the linear systems to make the result consistant with the original non
linear form. At least the linear systems should be solved at the order O(∆h) for �rst order
accurate schemes and at order O(∆h2) for second order accurate schemes.

Therefore, numerical methods proposed with the assumption of hyperbolicity of the sys-
tem becomes hill conditioned at this limit. As a consequence, the iterative methods used in
the numerical algorithm implemented in the software FluidBox may have a worse convergence
behavior. To solve 3D problems up to several millions of unknowns on a large number of
processors, the parallelization of FluidBox relies on a domain decomposition, and a global
preconditioning is unavoidable for performance e�ciency in the context of parallel computing.
Hence, a collaboration inside the INRIA ScAlApplix project has been setup to use the high
performance solver library PaStiX [3, 4] that provides in particular parallel complete factor-
ization algorithms on clusters of SMP nodes to solve large scale sparse systems. The parallel
assembly algorithm has also been adapted to the data distribution induced by our parallel
solver and allows a good load balancing in this context.

One of the aims of this presentation is to illustrate the advantages to use a solver based
on a direct method for low Mach number compressible multiphase problems in the context of
high performance parallel computations.
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