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Emmanuel Agullo Eric Darve Xavier Lacoste Pierre Ramet The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for The Parallel Sparse matriX package (PaStiX) is a scientific library that provides a high performance The Parallel Fast Multipole Library for Large Scale Simulations (ScalFMM) library aims at simulating
George Bosilca Jack Dongarra Julien Langou Toru Takahashi heterogeneous/hybrid architectures. We present here how MAGMA has been extended using the parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms N-body interactions using the Fast Multipole Method (FMM). This software intends to offer all the
Bérenger Bramas Mathieu Faverge Hatem Ltaief Samuel Thibault StarPU / Quark runtime systems in order to handle multicore nodes enhanced with multiple GPUs. are implemented in single or double precision (real or complex) using LLt, LDLt and LU functionalities needed to perform large parallel simulations while enabling an easy customization of
Cédric Castagnéde Nathalie Furmento Matthias Messner Stanimire Tomov The MORSE extension of MAGMA includes one-sided factorizations (LLt, LU, QR) and relative solvers factorizations with static pivoting. We also provide an adaptive blockwise iLU(k) factorization. the simulation components: kernels, particles and cells. The current MORSE distribution of
Olivier Coulaud Luc Giraud Raymond Namyst Ichitaro Yamazaki as well as main level-3 BLAS operations. Except usage of distributed memory machines, most PaStiX functionalities are available in the ScalFMM proposes FMM based on a Chebyshev interpolation.
MORSE distribution.
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system in order to design software whose performance is portable votential of the accelerators.
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