
PaSTIX ScalFMM
DOWNLOAD THE LIBRARY AT http://icl.utk.edu/magma/ DOWNLOAD THE LIBRARY AT http://pastix.gforge.inria.fr/ DOWNLOAD THE LIBRARY AT http://scalfmm.gforge.inria.fr/

The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for
heterogeneous/hybrid architectures. We present here how MAGMA has been extended using the
StarPU / Quark runtime systems in order to handle multicore nodes enhanced with multiple GPUs.
The MORSE extension of MAGMA includes one-sided factorizations (LLt, LU, QR) and relative solvers
as well as main level-3 BLAS operations.

The Parallel Sparse matriX package (PaStiX) is a scientific library that provides a high performance
parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms
are implemented in single or double precision (real or complex) using LLt, LDLt and LU
factorizations with static pivoting. We also provide an adaptive blockwise iLU(k) factorization.
Except usage of distributed memory machines, most PaStiX functionalities are available in the
MORSE distribution.

The Parallel Fast Multipole Library for Large Scale Simulations (ScalFMM) library aims at simulating
N-body interactions using the Fast Multipole Method (FMM). This software intends to offer all the
functionalities needed to perform large parallel simulations while enabling an easy customization of
the simulation components: kernels, particles and cells. The current MORSE distribution of
ScalFMM proposes FMM based on a Chebyshev interpolation.

TILE ALGORITHMS

Similarly to PLASMA, the matrix is split into
square blocks called tiles. Based on such a
layout, tile algorithms aim at improving data
locality and increasing parallelism. The
operations performed on those tiles are
executed using optimized CPU and GPU
kernels. When the GPUs are turned on, the
tile size is increased to fully benefit from the
potential of the accelerators.

SUPERNODAL METHOD

Sparse direct methods are a variant of
Gaussian elimination for sparse linear
systems. A nonzero variable can be
represented as an edge within the graph (G)
associated with the matrix. In supernodal
methods, this graph is partitioned into sets
of variables (supernodes) that can be
eliminated simultaneously .

The high-level algorithm (here a QR
factorization) can then be represented as
a task graph where the nodes represent
the tasks in which it is decomposed and
the edges represent the dependences
among them. The runtime system (here
StarPU) dynamically schedules the tasks
on the available hardware (CPU or GPU)
and ensures the data coherency.

The supernodal factorization consists of
two types of tasks: factorization of the
current supernode and supernode-
supernode updates. The latter one is a 200
variant of a matrix-matrix multiplication
dealing with indirections. Its GPU
implementation is crucial for the 100
performance of the whole factorization. To
50 efficiently handle indirections, a new
GPU Sparse DGEMM has been designed.

MAGMA-MORSE 1.3

NEXT STEPS

PaSTIX-MORSE 5.3

NEXT STEPS�����

����� ���������� �����

����� ���������� �����

���������� ����� ����������

���������� ��������������� �����

����������

����������

�����

�����

����� �����

�����

�����

PERFORMANCE RESULTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5000 10000 15000 20000 25000 30000 35000

G
flo

p
/s

Matrix order

HEFT-TMDM-PR
HEFT-TMDM
HEFT-TM-PR

HEFT-TM
GREEDY

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
flo

p
/s

Matrix order

4 GPUs + 16 CPUs - Single
4 GPUs + 4 CPUs - Single
3 GPUs + 3 CPUs - Single
2 GPUs + 2 CPUs - Single
1 GPUs + 1 CPUs - Single

4 GPUs + 16 CPUs - Double
4 GPUs + 4 CPUs - Double
3 GPUs + 3 CPUs - Double
2 GPUs + 2 CPUs - Double
1 GPUs + 1 CPUs - Double

CPU
GPU

DENSE QR FACTORIZATION
PERFORMANCE RESULTS

CPU
GPU

CPU CPU
GPU

CPU

SPARSE LU FACTORIZATION (MHD Matrix - 486K unknowns)
PERFORMANCE RESULTS
CHEBYSHEV FMM

SCALABILITY SCHEDULING STRATEGIES

0 5 10 15 20

·103

50

100

150

200

250

Number of rows in A

G
Fl

op
s

DGEMM peak performance
Dense DGEMM
Sparse DGEMM

Sparse DGEMDM

CHEBYSHEV FMM

Our FMM approach is kernel-independent based on
a Chebyshev interpolation. We have designed the
corresponding FMM operators and implemented
them on CPU: P2M (particle-to-moment), M2M
(moment- to-moment), L2L (local-to-local), L2P
(local-to-particle), M2L (moment-to-local) and P2P
(particle-to-particle).

The high-level algorithm can then be represented
as a task graph where the nodes represent these
operators. The P2P and M2L operators dominate
the computational cost of the whole algorithm.
We have also designed optimized versions of
these operators for GPUs. The runtime system
can then dynamically schedule them on a CPU or
GPU to balance the load and maximize the
performance.

ScalFMM-MORSE 1.0

NEXT STEPS

1 2 4 6 12 24 36 48

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

PaStiX
PaStiX with StarPU
PaStiX with DAGuE

1 2 4 8

102

103

Number of Threads

Fa
ct

or
iz

at
io

n
T

im
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Number of CPUs

E
ffi

ci
en

cy

N = 200 · 106, Acc = 7, ng = 1000, h = 8

N = 200 · 106, Acc = 5, ng = 1000, h = 8

N = 200 · 106, Acc = 3, ng = 1000, h = 8

N = 20 · 106, Acc = 7, ng = 1500, h = 7

N = 20 · 106, Acc = 5, ng = 1500, h = 7

N = 20 · 106, Acc = 3, ng = 1500, h = 7

2 3 4 5 6 7
0

50

100

150

200

250

300

3 GPU

2 GPU

1 GPU

12 CPU

Accuracy (Acc)

Pe
rf

or
m

an
ce

(G
F
lo
p /

s)

30 · 106 particles on the unit-sphere, ng = 1000

MAGMAThe MORSE Project

The goal of the Matrices Over Runtime Systems @ Exascale (MORSE)
project is to design dense and sparse linear algebra methods that
achieve the fastest possible time to an accurate solution on
large-scale multicore systems with GPU accelerators, using all the
processing power that future high end systems can make available.
We propose a framework for describing matrix algorithms at a high
level of abstraction and delegating the actual execution to a runtime
system in order to design software whose performance is portable
across architectures. We illustrate our methodology on three classes
of problems: dense linear algebra, sparse direct methods and fast
multipole methods. The resulting codes have been incorporated into
the MAGMA, PaStiX and ScalFMM solvers, respectively.

ALGORITHM

RUNTIME

KERNELS
GPU CPU

FastLA Inria Associate Team
Inria HiePACS team

Lawrence Berkeley National Lab
Stanford University

MORSE Inria Associate Team
Inria HiePACS and RUNTIME teams

KAUST Supercomputing Laboratory
The University of Colorado

The University of Tennessee

The MORSE Software Distribution
DOWNLOAD THE LIBRARY AT http://www.inria.fr/en/teams/morse/

The innovative methodology employed to design solvers over runtime systems increases the number of
dependencies in the software stack, which may be prohibitive for the software diffusion. The
Morse_Distrib tool handles this complexity by ensuring the deployment and the coherency of all the
components.

MORSE 1.0 NEXT STEPS

