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The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for 
heterogeneous/hybrid architectures. We present here how MAGMA has been extended using the 
StarPU / Quark runtime systems in order to handle multicore nodes enhanced with multiple GPUs. 
The MORSE extension of MAGMA includes one-sided factorizations (LLt, LU, QR) and relative solvers 
as well as main level-3 BLAS operations.

The Parallel Sparse matriX package (PaStiX) is a scientific library that provides a high performance 
parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms 
are implemented in single or double precision (real or complex) using LLt, LDLt and LU 
factorizations with static pivoting. We also provide an adaptive blockwise iLU(k) factorization. 
Except usage of distributed memory machines, most PaStiX functionalities are available in the 
MORSE distribution.

The Parallel Fast Multipole Library for Large Scale Simulations (ScalFMM) library aims at simulating 
N-body interactions using the Fast Multipole Method (FMM). This software intends to offer all the 
functionalities needed to perform large parallel simulations while enabling an easy customization of 
the simulation components: kernels, particles and cells. The current MORSE distribution of 
ScalFMM proposes FMM based on a Chebyshev interpolation.

TILE ALGORITHMS

Similarly to PLASMA, the matrix is split into 
square blocks called tiles. Based on such a 
layout, tile algorithms aim at improving data 
locality and increasing parallelism. The 
operations performed on those tiles are 
executed using optimized CPU and GPU 
kernels. When the GPUs are turned on, the 
tile size is increased to fully benefit from the 
potential of the accelerators.

SUPERNODAL METHOD

Sparse direct methods are a variant of 
Gaussian elimination for sparse linear 
systems. A nonzero variable can be 
represented as an edge within the graph (G) 
associated with the matrix. In supernodal 
methods, this graph is partitioned into sets 
of variables (supernodes) that can be 
eliminated simultaneously .

The high-level algorithm (here a QR 
factorization) can then be represented as 
a task graph where the nodes represent 
the tasks in which it is decomposed and 
the edges represent the dependences 
among them. The runtime system (here 
StarPU) dynamically schedules the tasks 
on the available hardware (CPU or GPU) 
and ensures the data coherency.

The supernodal factorization consists of 
two types of tasks: factorization of the 
current supernode and supernode- 
supernode updates. The latter one is a 200 
variant of a matrix-matrix multiplication 
dealing with indirections. Its GPU 
implementation is crucial for the 100 
performance of the whole factorization. To 
50 efficiently handle indirections, a new 
GPU Sparse DGEMM has been designed.
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CHEBYSHEV FMM

Our FMM approach is kernel-independent based on 
a Chebyshev interpolation. We have designed the 
corresponding FMM operators and implemented 
them on CPU: P2M (particle-to-moment), M2M 
(moment- to-moment), L2L (local-to-local), L2P 
(local-to-particle), M2L (moment-to-local) and P2P 
(particle-to-particle).

The high-level algorithm can then be represented 
as a task graph where the nodes represent these 
operators. The P2P and M2L operators dominate 
the computational cost of the whole algorithm. 
We have also designed optimized versions of 
these operators for GPUs. The runtime system 
can then dynamically schedule them on a CPU or 
GPU to balance the load and maximize the 
performance.
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MAGMAThe MORSE Project

The goal of the Matrices Over Runtime Systems @ Exascale (MORSE) 
project is to design dense and sparse linear algebra methods that 
achieve the fastest possible time to an accurate solution on 
large-scale multicore systems with GPU accelerators, using all the 
processing power that future high end systems can make available. 
We propose a framework for describing matrix algorithms at a high 
level of abstraction and delegating the actual execution to a runtime 
system in order to design software whose performance is portable 
across architectures. We illustrate our methodology on three classes 
of problems: dense linear algebra, sparse direct methods and fast 
multipole methods. The resulting codes have been incorporated into 
the MAGMA, PaStiX and ScalFMM solvers, respectively.
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The innovative methodology employed to design solvers over runtime systems increases the number of 
dependencies in the software stack, which may be prohibitive for the software diffusion. The 
Morse_Distrib tool handles this complexity by ensuring the deployment and the coherency of all the 
components.
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