PARALLEL SPARSE MATRIX PACKAGE

PasTiX

PARALLEL FAST MULTIPOLE LIBRARY ror LARGE SCALE SIMULATIONS

ScalFMm

DOWNLOAD THE LIBRARY AT http://scalfmm.gforge.inria.fr/

The MORSE Project

MATRICES OVER RUNTIME SYSTEMS (@ EXASCALE

DOWNLOAD THE LIBRARY AT http://icl.utk.edu/magma/ DOWNLOAD THE LIBRARY AT http://pastix.gforge.inria.fr/

Emmanuel Agullo Eric Darve Xavier Lacoste Pierre Ramet The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for The Parallel Sparse matriX package (PaStiX) is a scientific library that provides a high performance The Parallel Fast Multipole Library for Large Scale Simulations (ScalFMM) library aims at simulating
George Bosilca Jack Dongarra Julien Langou Toru Takahashi heterogeneous/hybrid architectures. We present here how MAGMA has been extended using the parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms N-body interactions using the Fast Multipole Method (FMM). This software intends to offer all the
Bérenger Bramas Mathieu Faverge Hatem Ltaief Samuel Thibault StarPU / Quark runtime systems in order to handle multicore nodes enhanced with multiple GPUs. are implemented in single or double precision (real or complex) using LLt, LDLt and LU functionalities needed to perform large parallel simulations while enabling an easy customization of
Cédric Castagnéde Nathalie Furmento Matthias Messner Stanimire Tomov The MORSE extension of MAGMA includes one-sided factorizations (LLt, LU, QR) and relative solvers factorizations with static pivoting. We also provide an adaptive blockwise iLU(k) factorization. the simulation components: kernels, particles and cells. The current MORSE distribution of
Olivier Coulaud Luc Giraud Raymond Namyst Ichitaro Yamazaki as well as main level-3 BLAS operations. Except usage of distributed memory machines, most PaStiX functionalities are available in the ScalFMM proposes FMM based on a Chebyshev interpolation.
MORSE distribution.
The goal of the Matrices Over Runtime Systems @ Exascale (MORSE) TILE ALGORITHMS MAGMA-MORSE 1.3 SUPERNODAL METHOD PaSTIX-MORSE 5.3 CHEBYSHEV FVIM ScalFMIM-MORSE 1.0
project is to design dense and sparse linear algebra methods that Similarly to PLASMA, the matrix is split into e - - * Multicore + multi-GPU (CUDA) Sparse direct methods are a variant of * Multicore + multi-GPU (CUDA) Our FMM approach is kernel-independent based on e Multicore + multi-GPU (CUDA)
achieve the fastest possible time to an accurate solution on square blocks called tiles. Based on sucha | _ N . e Multiple Precision Support Gaussian elimination for sparse linear el * Multiple Precision Support a Chebyshev interpolation. We have designed the l/ \ e Multiple Precision Support
: : : layout, tile algorithms aim at improving data e Level-3 BLAS systems. A nonzero variable can be 1@5 i—(@ e | Lt, LDLt, LU factorizations corresponding FMM operators and implemented J/\ e Chebyschev FMM
large-scale multicore systems with GPU accelerators, using all the ticu D oo ore _ _ _ g @g:iﬁ 6 T | _ J l el o
_ _ _ locality and increasing parallelism. The . H N H — H e Solution of Linear Equations represented as an edge within the graph (G) 2@; j@ e Static Pivoting them on CPU: P2M (particle-to-moment), M2M e P2P and M2L Optimized GPU
processing power that future high end systems can make available. operations performed on those tiles are e Linear Least Squares (CPU only) associated with the matrix. In supernodal S e Multiple RHS (moment- to-moment), L2L (local-to-local), L2P \ kernels
We propose a framework for describing matrix algorithms at a high executed using optimized CPU and GPU T n ! o LAPACK and Native Interfaces methods, this graph is partitioned into sets e External orderings (PT-Scotch / (local-to-particle), M2L (moment-to-local) and P2P / P e Kernel Independent
level of abstraction and delegating the actual execution to a runtime 'Sfr”‘?'s-_W_he“ the SPUfS ﬂrebt“m]?_df"”r thﬁ I A h * LAPACK-Derived Testing Suite Or_vér'ab'gs _(SUF;emodeSI) that can be METIS) Iparticle-to-particle). j * ScalFMM-MORSE Users' Guide
_ _ _ tile size is increased to fully benefit from the . eliminated simultaneously . e PaStiX-MORSE Users' Guid
e MAGMA-MORSE Users' Guide aoll Sers uide

system in order to design software whose performance is portable votential of the accelerators.
across architectures. We illustrate our methodology on three classes The high-level algorithm (here a QR NEXT STEPS P e Dt The supernodal factorization consists of NEXT STEPS The high-level algorithm can then be represented NEXT STEPS
of problems: dense linear algebra, sparse direct methods and fast factorization) can then be represented as e Linear Least Squares (GPUs) e DGEMDM \ two types of tasks: factorization of the e Schur Complement as a task graph where the nodes represent these e Spherical and Cartesian

multipole methods. The resulting codes have been incorporated into a task graph where the nodes represent « Singular Value Decomposition - current supernode and supernode- Computation operators. The P2P and M2L operators dominate Expansions
i i the tasks in which 1t is decomposed and . . i supernode updates. The latter one i1s a 200 : : the computational cost of the whole algorithm. : : :
the MAGMA, PaStiX and ScalFMM solvers, respectively. P e Symmetric and Non Symmetric P paat | R * Krylov Iterative Refinement P . . J * Isotropic and Anisotropic
the edges represent the dependences o ue Prob| 200| f variant of a matrix-matrix multiplication e Granularity Ootimizati We have also designed optimized versions of Kernels for Molecular
them. The runtime system (here JENVATHE TTORIETS - dealing with indirections. Its GPU ranularity Bptimization these operators for GPUs. The runtime system ' '
amon . L L = ol |
J . Y e Communication Avoiding s . J .. . e Dynamic Splitting of the Tasks P . 4 Dislocation
StarPU) dynamically schedules the tasks implementation is crucial for the 100 . _ can then dynamically schedule them on a CPU or e Oscillatory Kernels
. e OpenCL, Intel MIC Accelerators 100 L. e Static Hints for Scheduling .
on the available hardware (CPU or GPU) VP! Itart performance of the whole factorization. To OoenCl. Intel MIC Accel GPU to balance the load and maximize the e OpenCL, Intel MIC Accelerators
® - o ’
and ensures the data coherency. nterface i 50 efficiently handle indirections, a new pentL, Inte ccelerators performance. s :
ALGORITHM Number of rowsin A 10 GPU Sparse DGEMM has been designed. Y
RUNTIME PERFORMANCE RESULTS PERFORMANCE RESULTS PERFORMANCE RESULTS
DENSE QR FACTORIZATION SPARSE LU FACTORIZATION (MHD Matrix - 486K unknowns) CHEBYSHEV FMM
CPU Quad-socket quad-core AMD Opteron SE 8358 (16 CPU) CPU Quad-socket dodeca-core AMD Opteron SE 6180 (48 CPU) CPU Dual-socket hexa-core Intel X5650 (12 CPU) CPU Twenty octa-core Intel Xeon E7-8837 (160 CPUs) CPU Dual-socket hexa-core Intel X5650 (12 CPU)
KERNELS GPU NVidia S1070 Tesla accelerators (4 GPU) GPU NVIDIA M2090 Fermi accelerators (0 to 2 GPU) GPU NVIDIA M2090 Fermi accelerators (0 to 2 GPU)
GPU CPU SCALABILITY o SCHEDULING STRATEGIES 30 - 10° particles on the unit-sphere, n, = 1000
1000 1 "4 GPUS + 385323352812 —-— . s | 1000 ; ‘ ‘ ‘ ‘ S—— il PASTIX - 00 0 CUDA device v \ \
38582128582 : 2:28:2 i J0PASTIX with STARPU 103 | U001 CUDA devices
4 égﬁsuf T61CCPITJ%S-_D%38:2 — 900 103 | 0 PASTIX with DAGUE g i 102 CUDA devices 250 |- i
ol 3GPUsiaCPUs Dowdle - < _a—a _ -
2 GPUs + 2 CPUs - Double ---x--- 5 A = 5 »n ©]
1 GPUs + 1 CPUs - Double 3—-—+——- | — | | : : Q 200]
T — L g ; ER f S
FastLA Inria Associate Team 5 5 500 E _ 5 : — 0 0 o= g 001 = ‘\/F I =
Inria HiePACS team 400 o f g e : 400 E VA E 1 0 I * ;q% I R | — | —— - "
Lawrence Berkeley National Lab 300 102 |) n - | . | N = Ace =3 n0 = - I B I {?PU
Stanford University 200 ‘ ‘ ‘ ‘ ‘ ‘ 200 EETTMBMPR - : Il 0.2 |- . 50| R | T :
wl & e T | e @ i
. : : , : , , ; , , , _ GREEDY - | | | | | | | | | | | | |
MORSE Inria Associate Team ° 0 5000 10000 15000 20000 25000 30000 35000 40000 ° 0 5000 10000 15000 20000 25000 30000 35000 1 2 4 6 1224 36 48 1 2 4 8 K 20 40 60 80 100 120 140 160 O : ; § ° 6 !
Matrix order Matrix order Number of Threads Number of Threads Number of CPUs Accuracy (Acc)

Inria HIiePACS and BUNTIME teams
KAUST Supercomputing Laboratory

The University of Colorado

The University of Tennessee

The MORSE Software Distribution MORSE 1.0 o Provsion Sumport NEXT STEPS | St comporaton

" p i * Level-3 BLAS e Multifrontal Sparse Direct Methods
rrfﬁh‘ "" &zu’a/— ~ DOWNLOAD THE LIBRARY AT http://www.inria.fr/en/teams/morse/ e One-sided Dense Solvers e H-Matrix Solvers
BERKELEY LAB oy i A UKAtyUfST ® Supernodal Sparse Direct Method * Sparse Hybrid Direct / lterative Solvers
” _ _ _ _ _ e Chebyshev Fast Multipole Method e OpenCL, Intel MIC Accelerators
The innovative methodology employed to design solvers over runtime systems increases the number of e Unified Runtime System (StarPU) « Distributed Memory Machines
ICL C dependencies in the software stack, which may be prohibitive for the software diffusion. The e Support of hardware locality (hwloc) e Advanced Scheduling Algorithms
INNOVATIVE Morse_Distrib tool handles this complexity by ensuring the deployment and the coherency of all the * Partial Support of Quark and DAGUE Runtime Systems
COMPUTING LABORATORY components. e Unified Software Distribution

e MORSE Users' Guide

