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Context and goals

Context

I EDF R&D is looking for a Fast Reference Solver
I PhD Student: Salli Moustafa

I Industrial solvers:
I diffusion approximation (≈ SP1);
I COCAGNE (SPN).

I Solution on more than 1011 degrees of freedom (DoFs)
involved

I probabilistic solvers (very long computation time);
I deterministic solvers.

DOMINO (SN) is designed for this validation purpose.
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Context and goals

DOMINO: Discrete Ordinates Method In NeutrOnics

I Deterministic, Cartesian, and 3D solver;
I 3 levels of discretization:

I energy (G): multigroup formalism;
I angle (~Ω): Level Symmetric Quadrature, N(N + 2) directions
I space (x , y , z): Diamond Differencing scheme (order 0);

I 3 nested levels of iterations:
I power iterations + Chebychev acceleration;
I multigroup iterations: Gauss–Seidel algorithm;
I scattering iterations + DSA acceleration (using the SPN

solver):
→ spatial sweep, which consumes most of the computation
time.
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Context and goals

The Sweep Algorithm

forall the o ∈ Octants do
forall the c ∈ Cells do

B c = (i, j, k)
forall the d ∈ Directions[o] do

B d = (ν, µ, ξ)

εx = 2ν
∆x ; εy = 2η

∆y ; εz = 2ξ
∆z ;

ψ[o][c][d] =
εxψL+εyψB +εzψF +S

εx +εy +εz +Σt
;

ψR [o][c][d] = 2ψ[o][c][d]− ψL[o][c][d];
ψT [o][c][d] = 2ψ[o][c][d]− ψB [o][c][d];
ψBF [o][c][d] = 2ψ[o][c][d]− ψF [o][c][d];
φ[k][j][i] = φ[k][j][i] + ψ[o][c][d] ∗ ω[d];

end
end

end

I 9 add or sub;
I 11 mul;
I 1 div (5 flops)
→ 25 flops per cell, per
direction, per energy
group.
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (1/2)

3D regular mesh with per cell, per angle, per energy group:
I 1 moment to update
I 3 incoming fluxes
I 3 outgoing fluxes
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)
2D example of the spatial mesh for one octant

At the beginning, data are known only on the incoming faces

ready cell

M. Faverge - 9th Scheduling Workshop August 19, 2014- 8



Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)
2D example of the spatial mesh for one octant

ready cell

processed cell
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)
2D example of the spatial mesh for one octant

... after a few steps

ready cell

processed cell
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Parallelization Strategies

Many opportunities for parallelism

I Each level of discretization is a potentially independent
computation:

I energy group
I angles
I space

I All energy groups are computed together
I All angles are considered independent
→ This is not true when problems have boundary conditions

I All cell updates on a front are independent
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Parallelization Strategies

Angular Parallelization Level (Very Low Level)

Several directions belong to the same octant:
I Vectorization of the computation
I Use of SIMD units at processor/core level
→ improve kernel performance
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Parallelization Strategies

Spatial Parallelization
First level: granularity

ready cell

processed cell

Grouping cells in MacroCells:
I Reduces thread scheduling overhead
I Similar to exploiting BLAS 3
I Reduces overall parallelism
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Parallelization Strategies

Octant Parallelization
Case of Vacuum Boundary Conditions

When using vacuum boundary conditions, all octants are indepen-
dent from each other
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Parallelization Strategies

Octant Parallelization
Case of Vacuum Boundary Conditions

Concurrent access to a cell (or MacroCell) are protected by mutexes.
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Sweep Theoritical Model

Basic formulas

We define the efficiency of the sweep algorithm as follow:

ε =
TtaskNtasks

(Ntasks + Nidle) ∗ (Ttask + Tcomm)

=
1

(1 + Nidle/Ntasks) ∗ (1 + Tcomm/Ttask)

Objective: Minimize Nidle
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Sweep Theoritical Model

For 3D block distribution

The minimal number of idle steps are those required to reach the
cube center:

Nmin
idle = Px + δx − 2 + Py + δy − 2 + Pz + δz − 2

where δu = 0, if Pu is even, 1 otherwise.

Objective: Minimize the sum P + Q + R, where P × Q × R is
the process grid.
→ Hybrid MPI-Thread implementation allows this
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Sweep Theoritical Model

Hybrid Model
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DOMINO on top of PaRSEC

DOMINO on top of PaRSEC
Implementation

I Only one kind of task:
I Associated to one MacroCell
I All energy group
I All directions included in one octant
→ 8 tasks per MacroCell

I No dependencies from one octant to another
→ protected by mutexes

I Simple algorithm to write in JDF
I Require a data distribution:

I Independent from the algorithm: 2D, 3D, cyclic or not, . . .
I For now: Block-3D (Non cyclic) with a P × Q × R grid

I Fluxes on faces are dynamically allocated/freed by the runtime
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DOMINO on top of PaRSEC

DOMINO JDF Representation (2D)

1 Ce l lUpda te ( a , b )
2
3 /∗ Execu t i o n Space ∗/
4 a = 0 . . ncx−1
5 b = 0 . . ncy−1
6
7 /∗ Task L o c a l i t y ( Owner Compute ) ∗/
8 : mcg( a , b )
9

10 /∗ Data d e p e n d e n c i e s ∗/
11 RW X <− ( a != aBeg ) ? X Ce l lUpda te ( a−a Inc , b ) : X READ X( b )
12 −> ( a != aEnd ) ? X Ce l lUpda te ( a+aInc , b )
13 RW Y <− ( b != bBeg ) ? Y Ce l lUpda te ( a , b−b Inc ) : Y READ Y( a )
14 −> ( b != bEnd ) ? Y Ce l lUpda te ( a , b+b Inc )
15 RW MCG <− mcg( a , b )
16 −> mcg( a , b )
17 BODY
18 {
19 s o l v e ( MCG, X, Y, . . . ) ;
20 }
21 END

I aBeg , aEnd , aInc, bBeg , bEnd and bInc are octant dependent
variables.
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Results

Scalability of the existing implementation with Intel TBB
32-core Nehalem node with two 4-way SIMD units running at 2.26 Ghz

I 2 energy groups calculation;
I S8 Level Symmetric quadrature (80 angular directions);
I spatial mesh: 120× 120× 120 and 480× 480× 480.
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Results

DOMINO on top of PaRSEC
Shared Memory Results: Comparison with Intel TBB
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I 1 energy group;
I mesh size:

480× 480× 480;

I Level Symmetric S2;
I 7.9 Gflops (4.6%)
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I 1 energy group;
I mesh size:

480× 480× 480;

I Level Symmetric S8;
I 57.2 Gflops (33.5%)
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Results

DOMINO on top of PaRSEC
Shared Memory Results: Comparison with Intel TBB
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I 1 energy group;
I mesh size:

480× 480× 480;

I Level Symmetric S16;
I 92.6 Gflops (54.2%)
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Results

DOMINO on top of PaRSEC
Shared Memory Results: Comparison with Intel TBB

Test on manumanu NUMA node: 160 cores.
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Results

DOMINO on top of PaRSEC
Distributed Memory Results (Ivanoe)

I 1 energy group; mesh size: 480× 480× 480; Level Symmetric
S16;
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Results

DOMINO on top of PaRSEC
Distributed Memory Results (Athos)

I 1 energy group; mesh size: 480× 480× 480; Level Symmetric
S16;
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Results

DOMINO on top of PaRSEC
Distributed Memory Results (Athos)

I 1 energy group; mesh size: 120× 120× 120; Level Symmetric
S16;
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Results

DOMINO on top of PaRSEC
Distributed Memory Results

Execution trace for a run on 8 nodes (2, 2, 2) (Bad scheduling).

M. Faverge - 9th Scheduling Workshop August 19, 2014- 28



Results

DOMINO on top of PaRSEC
Distributed Memory Results

Execution trace for a run on 8 nodes (2, 2, 2) (Good scheduling).
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Results

DOMINO on top of PaRSEC
Scheduling by front

Disco NoPrio Prio
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Conclusion and future works

Conclusion and Future Work

Conclusion
I Efficient implementation on top of PaRSEC

I Less than 2 weeks to be implemented
I Comparable to Intel TBB in shared memory

I multi-level implementation:
I Code vectorization (angular direction)
I Block algorithm (MacroCells)
I Hybrid MPI-Thread implementation

Future work
I Finish the hybrid model to get better evaluation of the

performance
I Experiments on Intel Xeon Phi
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