

Blocking Strategy Optimization for Sparse Direct Linear Solvers on Heterogeneous Architectures

June 29th, 2015 - Sparse Days

Mathieu Faverge, Grégoire Pichon, Pierre Ramet, Jean Roman

Outline

- Sparse Direct Solvers
- Supernode Ordering Problem
- Problem Modeling & Proposed Solution
- Experiments

Sparse Direct Solvers

Context

Problem: solve Ax = b

- Cholesky: factorize $A = LL^T$ (symmetric pattern $(A + A^T)$ for LU)
- Solve Ly = b
- Solve $L^T x = y$

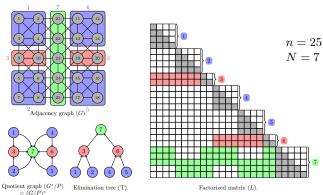
Sparse Direct Solvers: PaStiX approach

- 1. Order unknowns to minimize the fill-in
- **2.** Compute a symbolic factorization to build L structure
- 3. Factorize the matrix in place on L structure
- 4. Solve the system with forward and backward triangular solves

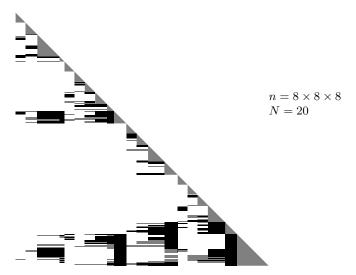
Symbolic Factorization (1)

General approach

- 1. Use the nested dissection process to partition a sparse matrix
- 2. Use the minimum degree solution when leaves are small enough
- 3. Order a supernode thanks to the Reverse Cuthill-McKee algorithm



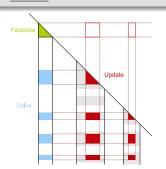
Symbolic Factorization (2)



Numerical Factorization

Algorithm to eliminate the block column k

- 1. Factorize the diagonal block
- 2. Solve off-diagonal blocks in the current column (TRSM)
- 3. Update the underlying matrix with the column's contribution (GEMM)



Update

- Compacted matrix-matrix product
- Update divided into the number of off-diagonal blocks receiving contributions

Motivations

Clustering techniques

- Operations on data blocks are more efficient
- Preprocessing stages on the matrix structure before numerical operations
- Those steps can be used for several systems presenting the same initial structure, or for several right-hand-sides

Objectives

- Increase BLAS efficiency by reducing the number of off-diagonal blocks
- Reduce RUNTIME overhead, with larger tasks

The number of non-zeros, as well as the number of operations, is kept the same

2

Supernode Ordering Problem

Nested Dissection (1)

Considering a graph $G=(V,E,\sigma_p)$ V: vertexes, E: edges, σ_p : unknowns permutation

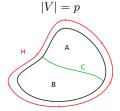
Algorithm to compute σ_p

- **1.** Partition $V = A \cup B \cup C$
- **2.** Order C with larger numbers: $V_A < V_B < V_C$
- **3.** Apply the process recursively on A and B

Three-levels of nested dissection on a regular cube

Nested Dissection (2)

Considering a subgraph appearing during the nested dissection process, with



 p^{σ} -separation theorem [Lipton, Tarjan - 1979]

- $0 < \alpha < 1, \beta > 0, \frac{1}{2} \le \sigma < 1$
- $|A| \le \alpha p, |B| \le \alpha p$
- $|C| \le \beta p^{\sigma}$

Characterisation theorem

Fill-in element in position (i,j) if it exists a path from i to j that only goes through vertexes with a lower number than i and j.

Any permutation of C does not change the fill-in in the matrix

Related Work: Reverse Cuthill-McKee (RCM) algorithm

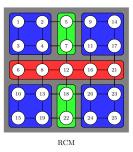
General idea - Breadth-First Search

- **1.** Choose a peripheral vertex x, ordered as first vertex
- **2.** Order vertexes interacting with x (neighbourhood at distance d)
- **3.** Iterate starting with those vertexes (neighbourhood at distance d+1)

Drawbacks

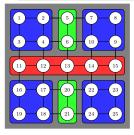
- Work on A structure instead of L structure
- · Do not consider contributing supernodes, but only intra-node interactions
- Order supernodes during the nested dissection process while it could be realized after

Ordering Last Supernode



Example

- $n = 5 \times 5 \times 5$
- N = 1 + 2 + 4 + 8 = 15
- First separator of size 5×5



Optimal

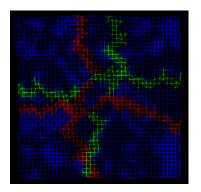
Projection of contributing supernodes and ordering of the first separator

Resulting Symbolic Structures

Symbolic Factorization: RCM

Symbolic Factorization: Optimal

Practical Ordering with Scotch



Last supernode of a 3D Laplacian (size 40)

Subparts A and B are partitioned differently. Thus, supernodes projection is less regular than in our previous example

3

Problem Modeling & Proposed Solution

Modeling of the Problem (1)

Notations

- We consider the ℓ^{th} diagonal block C_{ℓ}
- Contributing supernodes are included in $(C_k)_{k \in [1,\ell-1]}$

Supernode contributions to C_ℓ

$$row_{ik}^{\ell} = \left\{ \begin{array}{l} 1 \text{ if vertex } i \text{ from } C_{\ell} \text{ is connected to } C_k \\ 0 \text{ otherwise} \end{array} \right., k \in [1,\ell-1], i \in [1,|C_{\ell}|]$$

Set of contributions for line i:

$$B_i^{\ell} = (row_{ik}^{\ell})_{k \in [1, \ell-1]}$$

Modeling of the Problem (2)

Metrics

· Weight of line i

$$w_i^{\ell} = \sum_{k=1}^{\ell-1} row_{ik}^{\ell}$$

• Distance between lines *i* and *j*

$$d_{i,j}^\ell = d(B_i^\ell, B_j^\ell) = \sum_{k=1}^{\ell-1} row_{ik}^\ell \oplus row_{jk}^\ell$$

with \oplus the exclusive or operation.

measure the number of blocks created by line j and ended at line i

Modeling of the Problem (3)

Quality: Number of off-diagonal blocks

$$odb^{\ell} = \frac{1}{2} (w_1^{\ell} + \sum_{i=1}^{|C_{\ell}|-1} d_{i,i+1}^{\ell} + w_{|C_{\ell}|}^{\ell})$$

Optimal solution to minimize odb^{ℓ}

- Shortest Hamiltonian Path problem: find the shortest path visiting once each line, with a constraint on first and last line
- Complete symmetric graph: $d_{ij}^\ell = d_{ji}^\ell$ and $d_{ij}^\ell \leq d_{ik}^\ell + d_{kj}^\ell$

Proposition

Traveller Salesman Problem

Find a cycle minimizing

$$\sum_{i=1}^{|C_{\ell}|} d_{i,(i+1)[|C_{\ell}|}^{\ell}$$

• Add a fictive vertex S_0 , without any contribution to build a cycle instead of a path

Algorithm

- **1.** Build the set B_i^{ℓ} for each line i of C^{ℓ}
- 2. Compute the distance matrix
- 3. Insert lines to minimize the cycle length
- 4. Split the cycle at fictive vertex to get the path

Build Sets of Contributing Supernodes

Sparse properties

- We rely on the sparse properties of L
- Store for each line contributing supernodes only: $row_{ik}^{\ell} = 1$
- · Direct accesses thanks to the symbolic structure
- · Linear in the size of the symbolic structure
- · Set of contributing supernodes with increasing supernodes number

Compute the Distance Matrix

Computing a distance

- Compare sets B_i^{ℓ} and B_i^{ℓ}
- Advance progressively in each set, and exploit the fact that contributing supernodes are stored in a increasing fashion
- Complexity in $\Theta(|B_i^{\ell}| + |B_j^{\ell}|)$

```
\begin{array}{l} \text{for each line } i \text{ in the supernode } C_{\ell} \text{ do} \\ \text{for each line } j \text{ in the supernode } C_{\ell} \text{ do} \\ \text{Compute the distance between lines } i \text{ and } j \\ \text{end for} \\ \end{array}
```


Build the New Lines Permutations

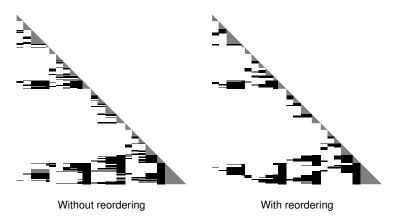
TSP on a complete symmetric graph

- NP-hard problem
- Good heuristics

Algorithm	Complexity	Quality (wrt optimal)
Nearest neighbour	$\Theta(n^2)$	$\frac{1}{2}(1 + \log(n))$
Nearest insertion	$\Theta(n^2)$	2
Christofides	$\Theta(n^3)$	1.5

We compared our results with the TSP solver CONCORDE on small matrices, and observed a quality slightly closer to the optimal solution

Resulting Solution - Example



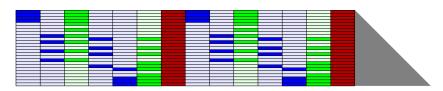
Reordering on a $8 \times 8 \times 8$ laplacian

Works whatever is the initial seed

Complexity (1)

Context

- For graphs respecting a n^{σ} -separation theorem
- Building the sets of contributing supernodes: $\Theta(n)$
- Inserting lines in C_{ℓ} : $\Theta(|C_{\ell}|^2)$
- We study the complexity of the distance matrix computation



Considering supernode C_ℓ , each contributing line is used $(|C_\ell|-1)$ times to compute distance with each other line

Complexity (2)

$$C = \sum_{\ell=1}^{N} (\sum_{i=1}^{|C_{\ell}|} (row_{ik}^{\ell})_{k \in [1, \ell-1]} \times (|C_{\ell}| - 1))$$
$$\forall k \in [1, N], |C_{k}| < \alpha \times |C_{N}| = \Theta(n^{\sigma})$$

Theorem (for meshes with balanced outer/inner contributions)

The number of off-diagonal blocks in the symbolic structure is in $\Theta(n)$. The demonstration considered off-diagonal lines instead of off-diagonal blocks, so the number of off-diagonal lines is in $\Theta(n)$ too.

$$\mathcal{C} \leq \Theta(n^{\sigma}) \times \underbrace{\sum_{\ell=1}^{N} (\sum_{i=1}^{|C_{\ell}|} (row_{ik}^{\ell})_{k \in [1, \ell-1]})}_{\Theta(n)} = \Theta(n^{\sigma+1})$$

Complexity (3)

Results

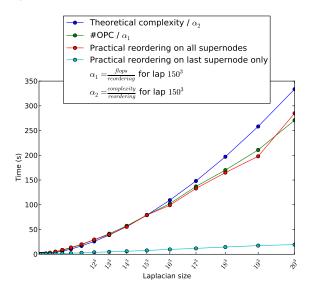
- Numerical factorization in $\Theta(n^{3\sigma})$
- Reordering bounded by $\Theta(n^{\sigma+1})$

Туре	σ	Reordering	Factorization
2D	$\frac{1}{2}$	$\Theta(n\sqrt{n})$	$\Theta(n\sqrt{n})$
3D	$\frac{2}{3}$	$\Theta(n^{\frac{5}{3}})$	$\Theta(n^2)$

Complexity for regular meshes

Asymptotically faster than the numerical factorization for $\sigma>\frac{1}{2}$ Remind that RCM is well working in 2D case

Complexity (4)



4

Experiments

Experimental Conditions

Set of matrices

- Large matrices, around 1 million unknowns (real-life meshes)
- Extracted from different applications
- · Different average off-diagonal block size

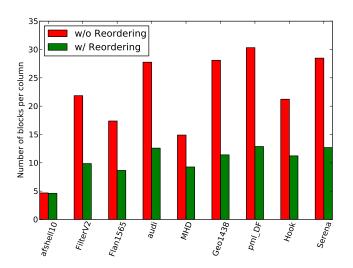
Machine - Curie TGCC

- Two quadcore INTEL Westmere running at 2.66 GHz
- Two Nvidia M2090 T20A
- MKI 14.0.3.174
- Cuda 5.5.22

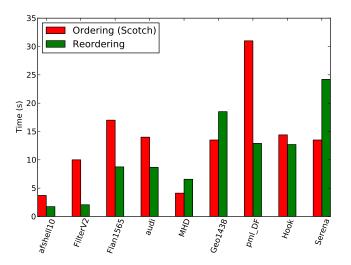
PaStiX

- Use implementation over StarPU (Xavier Lacoste thesis)
- 6 CPUs + 2 GPUs or 8 CPUs
- · Large minimum block size for GPUs efficiency

Number of Off-Diagonal Blocks

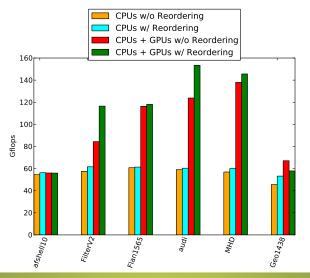


Reordering Cost (sequential)



Performance on Curie with 1 node (8 CPUs and 2 GPUs)

For the factorization only



Conclusion

Results

- Number of off-diagonal blocks reduced by a factor between 2 and 3
- Performance gain of the factorization up to 30% in an heterogeneous context
- Theoretical and practical reordering complexity small with respect to the numerical factorization for 3D graphs
- Reduce the reordering cost with a multilevel distance computation

Perspectives

- Study such a strategy for a multifrontal solver (MUMPS)
- · Implement the algorithm in a parallel context

Thanks!

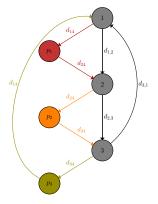
Build the New Lines Permutation (1)

Inserting a line

- Start with fictive vertex S₀
- · Search for the position which will minimize the cycle
- The optimal solution is a NP-hard problem
- Heuristic: relative position between lines 1 to i-1 cannot evolve when inserting line i

```
Cycle^{\ell} = \{S_0, 1\} for i \in [2, |C_{\ell}|] do Insert row i in Cycle^{\ell} to minimize the cycle length end for
```

Build the New Lines Permutation (2)



Inserting line i

- Find the position k to minimize $d_{i,k}^\ell + d_{i,k+1}^\ell d_{k,k+1}^\ell$
- For identical position, minimize the cut *i.e.* $min(d_{i,k}^\ell, d_{i,k+1}^\ell)$ between positions k leading to the same cycle length

Possible positions to insert a fourth row

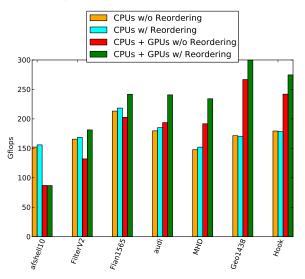
At worse, twice the optimal number of off-diagonal blocks, but slightly better in practice. Quadratic algorithm, but cheap with respect to the distance matrix computation

Study Case on a 10M Unknowns Matrix

Strategy	Number of blocks	Ordering Time (s)
Scotch	9760700	360
Reordering	3891825	64.8
Split-level	3892522	47.7
Split-level + STOP 10	4095986	31.1
Split-level + STOP 20	3897179	38.5
Split-level + STOP 30	3891262	43.3
Split-level + STOP 40	3891962	46.3
STOP 10	4100616	33.2
STOP 20	3896248	42.6
STOP 30	3891210	50.7
STOP 40	3891803	58.1

Performance on Curie with 4 nodes (8 CPUs and 2 GPUs)

For the factorization only



Off-Diagonal Blocks average Size

Matrix	w/o reordering	w/ reordering
afshell10	45.072117	45.671155
FilterV2	8.759254	19.395490
Flan1565	27.773377	55.786989
audi	16.882257	37.218162
MHD	16.277483	26.169013
Geo1438	17.640077	43.460251
pml_DF	6.072776	14.295660
Hook	14.617559	27.632099
Serena	16.059653	36.025858