N° d’ordre : XXXX

THESE

PRESENTEE A

L’UNIVERSITE DE BORDEAUX
ECOLE DOCTORALE DE MATHEMATIQUES ET D’INFORMATIQUE
Par Xavier LACOSTE
POUR OBTENIR LE GRADE DE

DOCTEUR
SPECIALITE : INFORMATIQUE

Scheduling and memory optimizations for sparse
direct solver on multi-core/multi-gpu cluster
systems

Soutenue le : 18 Février 2015
Apres avis des rapporteurs :
Timothy A. Davis .. Professor, Texas A&M University
Xiaoye Sherry L1 Senior Scientist, Lawrence Berkeley
.................... National Laboratory

Devant la commission d’examen composée de :

Alfredo BUTTARI ... Researcher, CNRS IRIT, Toulouse Membre du Jury
Fredéric DESPREZ ... Senior researcher, INRIA, Grenoble Membre du Jury
lain S. DUFF Professor, Rutherford Appleton Membre du Jury
..................... Laboratory, Oxfordshire
Guillaume LATU Research scientist, CEA Cadarache Membre du Jury
Boniface NKoNGA .. Professor, Université de Nice, Membre du Jury
Frangois PELLEGRINI ~ Professor, Université de Bordeaux Directeur de These
Pierre RAMET Assistant professor, Université de Bordeaux Directeur de These

- 2015 -

Acknowledgements

iii

iv

Ordonnancement et optimisations mémoire pour un solveur
creux par méthodes directes sur des machines hétérogenes

Résumé : L’évolution courante des machines montre une croissance importante dans
le nombre et I’hétérogénéité des unités de calcul. Les développeurs doivent alors trou-
ver des alternatives aux modeles de programmation habituels permettant de produire
des codes de calcul a la fois performants et portables. PASTIX est un solveur par-
allele de systéme linéaire creux par méthodes directe. Il utilise un ordonnanceur de
tache dynamique pour étre efficaces sur les machines modernes multi-cceurs a mémoires
hiérarchiques. Dans cette these, nous étudions les bénéfices et les limites que peut
nous apporter le remplacement de ’ordonnanceur interne, trés spécialisé, du solveur
PASTIX par deux systémes d’exécution génériques : PARSEC et STARPU. Pour cela
I’algorithme doit étre décrit sous la forme d’un graphe de taches qui est fournit aux
systemes d’exécution qui peuvent alors calculer une exécution optimisée de celui-ci pour
maximiser 'efficacité de 1’algorithme sur la machine de calcul visée. Une étude compara-
tive des performances de PASTIX utilisant ordonnanceur interne, PARSEC, et STARPU
a été menée sur différentes machines et est présentée ici. L’analyse met en évidence les
performances comparables des versions utilisant les systémes d’exécution par rapport
a 'ordonnanceur embarqué optimisé pour PASTIX. De plus ces implémentations per-
mettent d’obtenir une accélération notable sur les machines hétérogenes en utilisant les
accélérateurs tout en masquant la complexité de leur utilisation au développeur. Dans
cette theése nous étudions également la possibilité d’obtenir un solveur distribué de sys-
teme linéaire creux par méthodes directes efficace sur les machines paralleles hétérogenes
en utilisant les systemes d’exécution a base de tache. Afin de pouvoir utiliser ces travaux
de maniere efficace dans des codes paralleles de simulations, nous présentons également
une interface distribuée, orientée éléments finis, permettant d’obtenir un assemblage op-
timisé de la matrice distribuée tout en masquant la complexité liée a la distribution des
données a 'utilisateur.

Mots clés : Résolution de systémes linéaires creux, ordonnanceur a base de téches,
MPI, multi-coeur, GPU.

Discipline : Informatique

LABRI (UMR CNRS 5800) Equipe Projet INRIAHiePACﬂ
Université de Bordeaux, INRIA Bordeaux — Sud-Ouest,
351, cours de la libération 200, avenue de la vieille tour,
33405 Talence Cedex, FRANCE 33405 Talence Cedex, FRANCE

'HiePACS: High-End Parallel Algorithms for Challenging Numerical Simulations, https://tean.
inria.fr/hiepacs/.

https://team.inria.fr/hiepacs/
https://team.inria.fr/hiepacs/

Scheduling and memory optimizations for sparse direct
solver on multi-core/multi-gpu cluster systems

Abstract: The ongoing hardware evolution exhibits an escalation in the number, as
well as in the heterogeneity, of computing resources. The pressure to maintain rea-
sonable levels of performance and portability forces application developers to leave the
traditional programming paradigms and explore alternative solutions. PASTIX is a par-
allel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore
architectures. In this thesis, we study the benefits and the limits of replacing the highly
specialized internal scheduler of the PASTIX solver by two generic runtime systems:
PARSEC and STARPU. Thus, we have to describe the factorization algorithm as a
tasks graph that we provide to the runtime system. Then it can decide how to process
and optimize the graph traversal in order to maximize the algorithm efficiency for the
targeted hardware platform. A comparative study of the performance of the PASTIX
solver on top of its original internal scheduler, PARSEC, and STARPU frameworks
is performed. The analysis highlights that these generic task-based runtimes achieve
comparable results to the application-optimized embedded scheduler on homogeneous
platforms. Furthermore, they are able to significantly speed up the solver on heteroge-
neous environments by taking advantage of the accelerators while hiding the complexity
of their efficient manipulation from the programmer. In this thesis, we also study the
possibilities to build a distributed sparse linear solver on top of task-based runtime sys-
tems to target heterogeneous clusters. To permit an efficient and easy usage of these
developments in parallel simulations, we also present an optimized distributed interface
aiming at hiding the complexity of the construction of a distributed matrix to the user.

Keywords: Sparse direct solver, Tasks based runtime systems, MPI, multi-core,
GPU.

Discipline : Computer science

LABRI (UMR CNRS 5800) Equipe Projet INRIA HiePACﬂ
Université Bordeaux 1, INRIA Bordeaux — Sud-Ouest,
351, cours de la libération 200, avenue de la vieille tour,
33405 Talence Cedex, FRANCE 33405 Talence Cedex, FRANCE

2HiePACS: High-End Parallel Algorithms for Challenging Numerical Simulations, https://team.
inria.fr/hiepacs/.

https://team.inria.fr/hiepacs/
https://team.inria.fr/hiepacs/

vi

Introduction

Contents

1 Linear algebra on modern architectures

[1.2 Addressing parallel machines| 0.

[1.2.1 Parallel programming|
[1.2.2 Addressing accelerators|
[1.2.3 Task-based runtime systems|.
[1.3 Sparse linear algebra methods|. 0.
[1.3.1 Prerequisite: Basic Linear Algebra Subroutines
[1.3.2 Solving a sparse linear system|.
[1.3.3 Description of the direct methods|.
[1.3.4 Linear algebra on homogeneous clusters|
[1.3.5 Linear algebra on heterogeneous clusters|.
(1.4 Discussionl

P11

PASTIX original algorithm description|

pI2

Elected runtime systems|

P2

Implementation on top of generic runtime systems|

2.2.1 PARSEC implementation|
2.2.2 STARPU implementation|
[2.2.3 Multi-core Architecture experimentation|.

vii

viii Contents
[2.3 Heterogeneous systems| oL 57
[2.3.1 Implementation of a specific GEMM kernel[. 60

[2.3.2 Data mapping over multiple GPUs|. 66

[2.3.3 Heterogeneous experiments| 69

2.3.4 Memory study| 69

2.4 Optimizations|. L 71
[2.4.1 Task granularity adapted to the runtime|f. 71

[2.4.2 Block splitting algorithm| 73

2.5 Discussionlo 79

3 Sparse factorization on distributed heterogeneous systems 83
I3.1 Solving distributed sparse linear system| 84
[3.1.1 Fan-out implementation| oo Lo 84

[3.1.2 Fan-in implementation|. 86

3.1.3 Data mapping| 89

[3.2 Experiments|. 92
[3.2.1 Distributed implementation on homogeneous nodes|. 92

[3.2.2 Distributed implementation on heterogeneous nodes| 97

3.3 Discussion]o 99

Integration in a controlled plasma fusion simulation code: JOREK| 103

4.1 Description of the framework| L. 104
4.1.1 Set of equations| 105
4.1.2 Spatial discretization|. oL 105
4.1.3 Time integration scheme|.o 106
4.1.4 Equilibrium|o 106
|4.1.5 Sparse solver and preconditioningl. 107

4.2 Assembly step in JOREK|. 108

4.3 Optimized distributed matrix assembly|. 112
4.3.1 Generic distributed finite element assembly oriented API| 113
4.3.2 Comparison with PETSc o000, 115

4.4 Integration into JOREK| 118
4.4.1 Tmplementation|. L 118

4.4.2 Timing and memory scaling study| 119

ix

4.5 Discussionl 121
Conclusion and perspectives 123
Appendixs 127
A Publications 127
B Integration in Algo’Tech software 129

IB.1 Algo’lech software simulation tool| 129

IB.2 Optimizations|. 130

[B.2.1 PASTIX integration| 130
B.2.2 Parallelizationl 130
B.2.3 Cloud computing|, 130
IB.2.4 Numerical optimization| 131

B3 Conclusionl 131

C Murge and Jorek code samples 133

D Sparse matrix storage formats 139

Contents

List of Figures

L1 A four CPUs SMP machine) 7
(.2 A four CPUs NUMA machinef 7
[1.3 Architecture of the NVIDIA Kepler GK110.| 9
[1.4 Architecture of the Intel Xeon Phil 11
[1.5 A Mirage node described using Hardware Locality (hwloc) tool.|. 12
1.6 Reordering of the unknowns.| 22
7 ADLd [7ol . I o] ofmmai | . 93
1.8 Description of the notations used for the factorization algorithm. 24
[1.9 Multifrontal algorithm.. 00000 25
[2.1 Notations used in algorithms| 42
[2.2 Comparison of dense and sparse task decomposition.| 51
2.3 CPU scaling study on 12 cores.| 58
2.4 CPU scaling study on 48 cores.| 59
[2.5 Description of the panel update task.|. 61
[2.6 Description of the GPU sparse GEMM update operation.|. 62
[2.7 Performance study on the DGEMM kernel (sparse vs dense).| 63
[2.8 Performance study on the DGEMM kernel (sparse vs multiple CUDA calls)| 65
2.9 Effects of commutable tasks on the graph. 66
[2.10 Sort criteria study.|o 68
[2.11 GPU scaling study.|. 70
[2.12 Memory consumption comparison.| 72
[2.13 Comparison of panel splitting.|. 74
[2.14 Flop/s during factorization depending on authorized variation in column |

block splits.| 77
[2.15 Block’s size study.| o 78
[3.1 Distributed example.| oo 85
[3.2 Distributed algorithm’s task graph.|. 88
3.3 Fan-In distributed example.|o 0oL oo 90
[3.4 Proportional mapping.|o Lo 91
[3.5 Simulated static scheduling.| 0000000 92
[3.6 Comparison of distributed implementations of PASTIX original scheduler.| 94

Xi

xii

List of Figures

13.7 Comparison of distributed implementations: original scheduler vs STARPU.| 95
3.8 Comparison of distributed implementations: dynamic scheduling vs |

[STARPULL . . o o o 96
13.9 Comparison of distributed implementations on the 10 Millions test case.| . 98
[3.10 Distributed heterogeneous scaling study on 4 nodes.| 100
[3.11 Distributed heterogeneous scaling study on 16 nodes.|. 101
41 A tokamakl] o 104
[4.2 Bezier 2D representation of a tokamak’s plan.|. 106
4.3 JOREK main steps diagram.| 109
4.4 Part of JOREK’s elementary matrix.| 110
4o JORIEK'S assembled matrix.) 0000000 111
[4.6 Different assembly methods.|. o o000 115
4.7 Timing scaling study comparing PETSc and MURGE assembly.| 117
4.8 Time and memory comparison on model 302 (2 harmonics).| 121
4.9 Time and memory comparison on model 303 (2 harmonics).| 122
4.10 Time and memory comparison on model 303 (4 harmonics).| 122
ID.1 An example of CSC matrix|. 139

ID.2 An example of CSCD matrix.| 140

List of Tables

|2.1 Descriptions of the matrices.|,
[2.2 Comparison of the different splitting methods.|.

[3.1 Comparison of the fan-tn memory overhead.|.

List of Algorithms

12 Right looking blocked sequential factorization: A=LU.|
13 Left looking blocked sequential tactorization: A=LU.
|4 Parallel column-block tactorization on thread ¢ of processp.|
15 STARPU tasks insertion algorithm.
|6 Adapted splitting algorithm.|. oo oo
{7 Choice of the split: largest first.|.
18 Choice of the split: average first.|
19 Fan-out Cholesky implementation with STARPU.
{10 Fan-in Cholesky implementation with STARPU.|
I11 Frequencies loop using a classical direct solver.|
12 Frequencies loop with direct preconditionned iterative solver.|
[13 Assembly algorithm using original PASTIX interface|.
14 Assembly algorithm using MURGE API (1/2)).
15 Assembly algorithm using MURGE API (2/2)).

xiii

76

90

26
27
27
43
54
79
80

136

xiv List of Algorithms

Introduction

Scientists have always wanted to acquire more accurate knowledge of their surroundings.
They realized experiments to explain and predict the universe. With the computers
emergence, a new discipline that greatly accelerated this process appeared: computa-
tional science. Indeed, computers are capable of simulating experiments that can validate
new concepts or designs with an accuracy never seen before. Indeed, using numerical sim-
ulations one can avoid setting up expensive, complicated, time-consuming, or dangerous
experiments. Moreover, simulations can be used in various fields such as: aerodynamic
field, oil prospecting, meteorology, biology, finance, etc. This list is not exhaustive but
shows how simulations can affect many fields on a day to day basis environment. Thus,
numerical simulation is a very active research field: simulations must be both accurate
and fast. Particularly, nuclear fusion reactors are a promising research field for our fu-
ture as a new source of energy, and require very accurate simulations. A good example is
the nuclear fusion reactor prototype ITER (International Thermonuclear Experimental
Reactor) built in Cadarache, France and for which a simulation code, JOREK, has been
developed to design and calibrate its pieces.

Generally, the studied problem cannot be solved continuously on the whole domain,
but it has to be studied in many points. The separation of the domain into many pieces
is called the discretization. The discrete equations are a restriction of the mathemat-
ical continuous equations on the domain discretization. These discrete equations form
a system of equations that can also be viewed as a matrix where the entries are the
coefficients of the system. This system can be either dense, if we consider each point
of the discretization has an influence to all other points. Then, a corresponding matrix
that stores those influences contains nearly no nil values and is called dense. In some
cases, some of the interactions can be neglected, which translates to nil entries in the
matrix. When the number non zeros entries is of the same order of magnitude as its
number of equations, the matrix is said to be sparse. As the accuracy of the expected
solution and the size of the problem increase, the number of unknowns in the system gets
larger, reaching several tens of millions unknowns in many simulations. For example, to
capture all the phenomena in the atmosphere, a meteorologic simulation must be very
sharp, with the smallest distance between discretization points as possible. However,
one would want to obtain the solution as fast as possible (e.g. a weather forecast should
be computed before it happened), but the time required to solve the system increases
(linear to cubic increase depending on the method) with the number of unknowns. Ei-

2 Introduction

ther we reduce the accuracy of the solution by spreading the discretization points, or
we accelerate the numerical simulation to obtain the solution in a bounded time. Thus,
scientists developed parallel techniques to benefit from multiple computers within one
simulation. Furthermore, different methods have been developed to solve the linear sys-
tems induced by those simulations, varying in term of complexity and accuracy. Thanks
to these techniques and increasingly more efficient chips, scientists can increase the do-
main size and use a more accurate representation to solve problems with a larger number
of unknowns in the same computational time.

Nowadays, machine manufacturers have reached a limit in the performance of a single
computational core. Indeed, the clock frequency of chips has not improved significantly
since 2004 because of the heat dissipation increase [sutter_ free_ 2005 |. In the last
decade, machines computational power has been increased using multi-core chips able to
compute a larger number of operations per cycle. High performance computing clusters
are now based of about nodes with 16 to 64 cores interconnected with high performance
networks. These machines feature a hierarchical access to the memory and are called
NUMAH nodes. The current trend in high performance computing is to assist the tra-
ditional cores with accelerators to speed-up certain categories of operation. This idea of
using an accelerator is not new in high performance computing, but the new usage of
Graphic Processing Units for computations brought to manufacturers affordable accel-
erators. These accelerators are massively parallel and require very regular computations
on a vector of data (they are SPMDE] computational units). Intel has also produced
a many-core accelerator, the Intel Xeon Phi, which also requires the programmer to
extract a lot of parallelism from its algorithms. All these different chips require specific
programming optimizations to be used efficiently. To address these complex heteroge-
neous machines, new parallel programming models have been designed. Among them,
the task-based runtime systems propose to isolate the algorithm from the architecture
management. Task-based runtime systems are middle-wares that have been designed to
estimate concurrency between tasks and execute them in parallel using all the compu-
tational devices of a machine. These runtime systems are also capable of moving data
between the devices to relieve the application developer from taking care of data co-
herency. Using these systems, the developer can obtain more adaptability of the code,
and the performance portability is more easily reachable thanks to the separation of the
algorithm from the hardware management.

The dense linear algebra community has led multiple studies on heterogeneous
computing, often using task-based runtime systems [planas_ hierarchical_ 2009;
bosilca__dense__2014 |. Dense linear algebra problems are well suited to the usage
of accelerators thanks to their regular pattern and the granularity of their data that
can be easily adapted to the needs of a runtime system. On the contrary, sparse linear
systems are very irregular, with small data of various sizes imposed by the considered
problem. Thus, the benefit one can expect from the GPU on sparse linear system is
not obvious and the overhead of the runtime system may be too large compared to the

3Non-Uniform memory access
4Single Process Multiple Data

fine granularity of the tasks. The main objective of this thesis is to study the effect of
these generic runtime systems in sparse linear algebra compared to hand-tuned dedicated
schedulers. Using these task-based runtime systems, we can decouple the algorithm from
the architecture, and exploit accelerators in sparse direct solvers. Direct linear solvers
produce a direct acyclic graph of tasks; thus, it is natural to use a task-based runtime to
schedule these tasks on parallel heterogeneous clusters. Among the existing task-based
runtime systems, we elected two different candidates to perform this study: STARPU
and PARSEC. The proposed solutions have been validated in the sparse linear direct
solver library PASTIX developed at INRIA Bordeaux - Sud-Ouest. This thesis takes place
in the context of the ANRE| ANEMOS project that aims at producing simulation tools
for controlled plasma fusion in nuclear reactors. Among these tools, JOREK simulation
code uses finite elements to discretize the domain. These elements produce elementary
matrices that are used to build the global system of equation. Another objective of this
thesis is to propose an efficient and easy way to assemble a distributed matrix for a sparse
solver in finite element simulation codes. This thesis proposes an API that follows the
original mesh parallel decomposition and is in charge of all required communications at
the border of each parallel sub-domain. The API is generic and could be used above
any linear solver, in any simulation code.

In the first chapter of this thesis, we describe the global framework of high per-
formance computing. We detail the different architectures that have been developed
to perform efficient computation. Then, we explain the different methods available to
exploit the new heterogeneous parallel machines. Those methods that have been devel-
oped to address sparse linear systems are described, and we particularly focus on sparse
direct algebra parallel solvers, which are the target of this thesis. Then, this chapter de-
scribes emerging heterogeneous architectures and how linear algebra libraries have been
modified to fit these machines.

The second chapter presents how PASTIX direct solver has been modified to handle
shared memory heterogeneous nodes. It introduces the PASTIX direct solver library in
detail and the two task-based runtime systems used in this study: STARPU developed at
INRIA Bordeaux - Sud-Ouest and PARSEC from ICIH at the University of Tennessee,
Knoxville. Then, we detail the changes we have performed in PASTIX to use task-
based runtime systems and compare the performance of the new implementation with
the highly tuned original static scheduler on multi-core NUMA nodes. On shared-
memory homogeneous nodes, we show performance results with the implementation of
the sparse linear decomposition on top of generic runtime systems comparable to the
original scheduler. Then, we provide a new kernel to the runtime system to offload
the most compute intensive tasks (i.e. matrix-matrix products) on the GPUs. The
heterogeneous experiments show up to 2.8 time speed up when adding three GPUs to
the twelve basic cores.

In the third chapter, we tackle the problem of using the task-based runtime imple-

5 Agence National pour la Recherche, a French agency that provides funding for project-based research
5The Innovative Computing Laboratory

4 Introduction

mentation of PASTIX on distributed platforms of heterogeneous nodes. We present the
new difficulties that arise on a distributed cluster, and we study the implementation of
two different parallel algorithms on top of task-based runtime systems. We evaluate the
performance of their implementations. Experiments present encouraging results on a
cluster of heterogeneous node.

The fourth chapter deals with the integration of our work in JOREK, a production
controlled plasma fusion simulation code from CEA Cadarache. We describe here a
generic finite element oriented distributed matrix assembly and solver management API.
The goal of this API is to optimize and simplify the construction of a distributed matrix
which, given as an input to PASTIX, can improve the memory scaling of the application.
Experiments exhibit that using this API we could reduce the memory consumption by
moving to a distributed matrix input and improve the performance of the factorized
matrix assembly by reducing the volume of communication.

Finally, we summarize the results obtained in the context of this thesis and propose
new directions opened by these works.

Chapter 1

Linear algebra on modern
architectures

Contents

[I.1 Parallel architectures 6
[L1.1 Multi-core machines 6
[L.1.2 Acceleratorsl. 8
I1.1.2.1 Graphical Processing Units| 8

1122 TIntel Xeon Phil 10

|1.2 Addressing parallel machines| 10
[1.2.1 Parallel programming| 11
[1.2.2 Addressing accelerators| 0. 14
[1.2.3 Task-based runtime systems|. 14
11.2.3.1 (eneric runtime systems| 15

11.2.3.2 Runtime systems specifically designed for linear algebral 16

1.3 Sparse linear algebra methods|. 16
[1.3.1 Prerequisite: Basic Linear Algebra Subroutines| 17
[1.3.2 Solving a sparse linear system|. 18
[1.3.3 Description of the direct methods|. 20
I1.3.3.1 Reordering of the unknowns| 20

11.3.3.2 Symbolic factorization|. 22

[L.3.3.3 Factorization methods 23

11.3.3.4 Triangular system solvel 28

[1.3.4 Linear algebra on homogeneous clusters| 29
[1.3.5 Linear algebra on heterogeneous clusters|. 31
11.3.5.1 Dense linear algebra evolution| 31

11.3.5.2 Sparse linear solver on heterogeneous machines|. . . . 32

M4 Discussionl. oo v it i e e 35

6 Chapter 1. Linear algebra on modern architectures

Numerical simulations require more and more computational power to reach higher
accuracy in a shorter time and desktop computers quickly expose their limits. To by-
pass this limit, parallel machines have been developed and keep evolving. To efficiently
exploit these machines, high performance algorithms have to follow the evolution of the
machines architectures. In particular, the linear system solve is one of the most intensive
computational tasks of many numerical simulations and algorithms’ developers have to
follow closely the transformation of parallel architectures.

In this chapter, we first present the current evolution of parallel machine architec-
tures. We describe the now common multi-core machines and the different many-core
architectures proposed by the manufacturers. Then, we introduce the different tech-
niques and languages available to address these machines efficiently. And finally, we
describe how sparse linear algebra developers have recently updated their software to
target those powerful and complex machines.

Once the high performance context has been set up, we look into the main subject
of this thesis: “sparse linear algebra solvers.” First, we describe the multiple solutions
available to solve sparse linear systems, exposing the advantages and the drawbacks of
each solution. After that, we specifically focus on direct factorization methods, describe
the different steps they are based on, and exhibit the characteristics of each existing
algorithm. Several sparse linear solvers implement these algorithms, we present them
and specify the differences and advantages of each implemented methods. These solvers
already handle clusters of multi-core nodes, they are now tackling the heterogeneous ar-
chitectures. This chapter finally describes the techniques used to target parallel clusters
and how sparse linear solvers are evolving to take into account emerging heterogeneous
clusters.

1.1 Parallel architectures

Machines kept getting more complex to get more efficiency while using and dissipating
less energy. In this section, we describe the different architectures that emerged to
increase the effectiveness of our computers, specifically in the field of high performance
computing. Two solutions are available to increase computational power. The simplest
one is the multiplication of classical cores that will execute tasks in parallel. Then,
more specialized computing units, called accelerators, were proposed besides the classical
cores. This section details these heterogeneous computing environment.

1.1.1 Multi-core machines

During last decade, multi-core machines have been widely generalized. Indeed, increasing
transistor’s frequency has not been possible anymore due to limits of thermal dissipation.
Frequency has even been decreasing on some architectures to cut down the energy con-
sumption and avoid the dissipation issues. Nowadays, the mean frequency of a processor

1.1. Parallel architectures 7

Shared memory

Figure 1.1 — A four CPUs SMP machine.

Socket 1 Socket 2

Local memory Local memory

Intersocket
connection

Figure 1.2 — A four CPUs NUMA machine.

is about 2.8GHz whereas it reached more than 3.5 GHz ten years ago. In order to keep
increasing the computational power and follow Moore’s law [moorel965cramming |
which predict that the number of transistors in our machines double every 18 months,
machines manufacturers have multiplied the computing units in our computers. This
trend spread to all the market, even our phones have multi-core processors nowadays.
Indeed, as the engraving sharpness keeps improving, it is possible to produce chips with
more and more computational cores. We can distinguish two classes of multi-core ma-
chines.

SMP (Symmetric Multi-Processor, see Figure machines offer a symmetric ac-
cess to the memory, each core is connected equally to the memory. These machines
appeared first but are almost nonexistent today. The high number of interconnection
buses required limited the number of cores on a chip caused the extinction of SMP archi-
tectures. On the contrary, with their simpler design, Hierarchical NUMA (Non-Uniform
Memory Access, see Figure architectures are more scalable and flood the market.
Their memory is distributed among the different processors, connected in a tree-shape
structure. Adding cores in this tree is easier than in an SMP machine. With NUMA
machines, the complexity is delayed to the developers.

Simultaneously to this evolution of shared memory machines, the cores’ complexity

8 Chapter 1. Linear algebra on modern architectures

increased to accelerate computations. Today, CPU cores are integrating multiple cores
and many transistors. They are capable of computing complex operations. Out-of-order
execution also improved the efficiency of the computation at runtime. Modern CPUs
integrate vectorial computation units, they are capable of executing the same operation
simultaneously on a data vector. This vectorized operations are call SIMD instructions
(Single Instruction Multiple Data). These CPUs also integrate several levels of cache
memory for an optimal data management.

To get more and more computational power, machines are also connected together
and work can be distributed among the different nodes. Such a group of connected
computers form a cluster. Usually, a high-speed and low-latency network connects the
different nodes and reduces the communication time between two nodes. The different
computers in a cluster are also usually identical to avoid an additional complexity in
their exploitation.

1.1.2 Accelerators

Using accelerators is not a new concept in the field of scientific computing and
application-specific accelerating boards have been used for decades. Yet, these dedicated
boards, specially developed for specific applications, had prohibitive cost, and their dis-
tribution kept being limited. First accelerators, called ASIC (Application Specific Inte-
grated Circuits) appear around 1980. They were specifically designed to execute a unique
task with power-efficiency. In 1985 Xilinx proposed the FPGAs (Field-Programmable
Gate Arrays), a flexible alternative to ASICs. They are composed of programmable
logic blocks wired together using a circuit description language. Thus, FPGAs are more
flexible than ASICs that are not reconfigurable, but they are also less specific and, con-
sequently, less efficient. We can also cite ClearSpead boards which implement widely
used operators and were integrating in 2006 in Tsubame Grid Cluster which reached the
ninth rank of top500 [meuer__top__2014] ranking list. On this machine, these boards
gave a 24% performance increase against a 1% additional power requirement. In any
case, this kind of card did not generalize because of their high production cost. Today,
the energy required to exploit a large parallel machine using classical cores became pro-
hibitive. Large supercomputers consume much energy (e.g. 17 mega watts for the first
machine of June 2014 top500) and having high Flop/s (Floating Point Operations per
second) per watt processing units is a requirement. Supercomputers assemblers need
both energy efficient and cheap accelerators. [krieder__overview_ 2012 | gives a quick
overview of the existing accelerators available, and next paragraphs present the two of
them currently available in clusters.

1.1.2.1 Graphical Processing Units

The widely spread GPU cards revealed itself as a good candidate to accelerate compu-
tation. Indeed, the large video game community allows for the massive graphic boards
production. Graphic cards vendors can sell billions of GPUs and economy of scale is
possible. Moreover, these cards are very efficient SIMD vectorial processing units with a

1.1. Parallel architectures 9

PCI Express 3.0 Host Interface

J9jjo1u0) Kioway
J13jj013u0) Aloway

J18j03u0) Alowapy

=
]
=
o
<
o
o
3
£
OF
@
g

J9jjonu0n Kioway
13jj013u09 Alowap

Figure 1.3 — Architecture of the NVIDIA Kepler GK110.

large memory bandwidth. They can compute vectorized operations at a very high rate.
Finally, these cards have a low computational power over energy consumption ratio.
Noticing these advantages, few highly skilled developers diverted these graphical cards
to accelerate vectorized operations. Considering this new possibility, manufacturers
developed specialized chipsets and APIs to target high performance computing; GPG-
PUs (General Purpose Graphical Processing Unit) emerged. In [owens__gpu_ 2008 |,
Owens et al. describe the characteristics and possibilities of a GPU. Still, GPUs are
not suitable to all types of computations and programmers started to select which part
of the computation they offload to the GPU.

We call "GPU kernel" a portion of code that is going to be executed on these devices.
Each instance of a kernel is run by a thread. Usually, but it can depend on the device,
32 of these threads form a block, also called a warp. An internal scheduler executes each
thread within a block simultaneously, and a thread cannot communicate with threads
outside the block. Each thread can have a fast access to the shared memory as long
as each thread accesses a different bank (of size 16 or 32 depending on the device). A
larger global memory is also available to all the blocks but with a higher latency. Thus,
developers have to be very careful to manage correctly their memory accesses when
writing a GPU kernel.

Figure represents the NVIDIA Kepler GK110 with its 15 SMX (next-generation
Streaming Processor) units and 1536KB shared L2 cache. Each SMX contains 192
single precision units, 64 double precision units, 32 SFU (Special Function Units) and

10 Chapter 1. Linear algebra on modern architectures

32 load/store units. Therefore, a single precision code will run three times faster than
the double version. Each SMX is also equipped with 64KB memory divided into shared
memory and L1 cache (48KB/16KB or 16KB/48KB).

AMD also provides GPU dedicated to high performance computing. Today, their
performance is comparable to the NVIDIA GPUs, but they have had a hard time
gaining market share.

1.1.2.2 Intel Xeon Phi

More recently, Intel designed new accelerators to counter GPGPUs. The Intel Xeon
Phi [jeffers__intel 2013 | also aims at reducing the energy cost of a Flop. This ac-
celerator is less specific than a GPU. Indeed, the Xeon Phi comprises many (61 on last
release) simplified classical processors. The cores are based on the well-tried P54C design
(Original Pentium design). This design has been simplified to the maximum to reduce
their energy cost. Figure presents this device architecture. A very high bandwidth
bidirectional ring of interconnection is linking these cores together. Each core comes
with its private cache memory that is kept coherent using the global-distributed tag
directory (TD). The PCle Client Logic is managing the PCI bus (i.e. the link to the
host machine) while the GDDR MC is in charge of controlling accesses to the GDDR5
(Graphic Double Data Rate, specialized memory originally used on graphic cards) mem-
ory available on the coprocessor. Each core is capable of executing four threads and has
a vector processing unit executing 512 bits SIMD instructions. Developers can either
off-load part of the computation to the Intel Xeon Phi, as it is done with a GPU, or
execute the whole code on the coprocessor (as if it was a remote server). The later
option requires the ability to compile the whole application with a dedicated compiler.
To get performance from the Intel Xeon Phi, algorithms must be highly parallel and use
efficiently both the 244 threads and the SIMD units.

Fastest machines in the top500 ranking are clusters of distributed NUMA machines
equipped with many-core devices (i.e. either GPUs or Intel Xeon Phi coprocessors). The
top machine from June 2014 ranking is Tianhe-2 a Chinese cluster. Each of the 16000
nodes is equipped with two classical Intel Xeon cores, and three Intel Xeon Phi copro-
cessors. Figure presents a smaller configuration, one Mirage node from PLAFRIM
experimental platform in Bordeaux, which has been used in the experiment presented
in chapter 2l It contains two hexa-core processors: one connected to a GPU, and the
other to a pair of GPUs. Several nodes of this kind are then interconnected using a high
performance network, adding an additional level to the hierarchical layout. The current
challenge for developers is to use efficiently all the computational power offered by these
complex architectures.

1.2 Addressing parallel machines

As we have seen before, to reach higher and higher computational power, machines had
to integrate more and more complex hardware. It became quite hard to reach the peak

1.2. Addressing parallel machines 11

GDDR MC GDDR MC

GDDR MC GDDR MC

PCle
Client
Logic

Figure 1.4 — Architecture of the Intel Xeon Phi.

performance of such a machine. To illustrate this one can have a look at the top500
ranking. Indeed, on this list we can notice the difference between the theoretical peak
performance and the greatest performance obtained running the LINPACK test suite.
Depending on the architecture, approaching the peak performance is harder. A solution
to ease the development on such architectures is thus required. In this section, we present
the different frameworks that we can use to exploit efficiently the complex architecture
provided by machine manufacturers. First, we introduce the techniques available to get
an efficient parallel code on a classical multi-processor machine. Then, we specifically
detail solutions to implement high performance algorithms for modern accelerators.

1.2.1 Parallel programming

Inside a node, several solutions were developed to implement shared memory algo-
rithms. The solutions are identical for SMP and NUMA nodes. While high level
shared memory solutions can handle NUMA effects through an intelligent runtime sys-
tem [broquedis__dynamic_ 2009 |, in the general case, the developers have to adapt
its algorithm. To target shared memory architectures, operating systems first proposed
inter-processes memory sharing solutions. Today, they integrate lightweight processes
(threads) which can be created from a master process, and share access to its memory.
For example, POSIX operating systems provide P-Threads (POSIX Threads) that de-
velopers can use to handle threads accurately. With this solution, the developer has to
explicitly start threads from the main process with a given task to execute. Other solu-
tions provide simpler and higher level ways to express parallelism, hiding the underlying
thread library to the developer. The most common is OPENMP [chandra2001parallel
], a language extension, available for both Fortran and C, that handles shared mem-

12 Chapter 1. Linear algebra on modern architectures

Machine (36GB)

I NUMANode P#0 (18GB) l

Socket P#0 [t {1 PCI 8086:10c9
Lo |
‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I

PCI 8086:10c9
‘ L1d (32KB) I ‘ L1d (32KB) I ‘ L1d (32KB) I ‘ L1d (382KB) I ‘ L1d (382KB) I ‘ L1d (32KB) I
‘ L1i (32KB) I ‘ L1i (32KB) I ‘ L1i (32KB) I ‘ L1i (32KB) I ‘ L1i (32KB) I ‘ L1i (32KB) I

——L{+—— Pcl 15b3:6746

Core P#0 Core P#8 Core P#2 Core P#10 Core P#1 Core P#9

| PU P#0 | | PU P#2 | | PU P#4 | | PU Pi#6 | | PU P#8 | | PU P#10 |

I
B3
s

8.0
———— PCI 10de:06d2

nvml0

(] PCI 1002:515¢

1 PCI8086:3a20

PCI 8086:3a26

I NUMANode P#1 (18GB)

8.0
Socket P#1 PCl 10de:06d2
L3 (12MB) nvmi2
L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) I ‘ L2 (256KB) 8.0
PCl 10de:06d2

| |
| |
| |
| |

L1d (32KB) I ‘ L1d (32KB) I ‘ L1d (32KB) I ‘ L1d (382KB) I ‘ L1d (32KB) I ‘ L1d (32KB)

nvmli
L1i (32KB) | ‘ L1i (32KB) | ‘ L1i (32KB) | ‘ L1i (32KB) | ‘ L1i (32KB) | ‘ L1i (32KB)
Core P#0 Core P#8 Core P#2 Core P#10 Core P#1 Core P#9
| PU P#1 | | PU P#3 | | PU P#5 | | PU P#7 | | PU P#9 | | PU P#11 |

Host: mirage005
Indexes: physical
Date: Mon 10 Mar 2014 02:05:32 PM CET

Figure 1.5 — A Mirage node described using Hardware Locality (hwloc) tool.

1.2. Addressing parallel machines 13

ory parallelism using threads. OPENMP proposes to annotate the code with pragma
keywords. The simplest way to use OPENMP is to specify which “for” loops can be ex-
ecuted in parallel so that the runtime can execute iterations simultaneously. OPENMP
also proposes the possibility to split a program into independent tasks for a more ad-
vanced usage. Intel also proposes the Intel TBB (Thread Building Blocks) library [tbb
|, in C++, that provides similar tools such as parallel_for, parallel_while, and
parallel_reduce functions, or a task-based programming API. Cilk [cilk | proposes
to extend C language to extract “fork-join” parallelism from the algorithm. The user
specifies which routines are Cilk functions and can be executed in parallel. These se-
lected functions can then be spawned and executed by parallel threads. To ensure the
ending of the spawned functions, user has to call a Cilk synchronization routine. All
these solutions can reach high performance if the developer describes accurately enough
the parallelism of its algorithm.

To address distributed machines, the message passing paradigm is mainly used. This
paradigm proposes to exchange data between different instances of one program us-
ing messages that are explicitly sent by an instance and received by another. The
developer has to describe precisely the data distribution, and the way data are ex-
changed. One specific standard, MPI [gropp1999using | (Message Passing Inter-
face), emerged as the elected one to handle parallel clusters. Many implementations
of this standard were developed. Only MPICH [gropp__mpich2:_ 2002 | and OPEN-
MPI [gabriel _open__2004 | survived and are used by manufacturers to develop their
own libraries such as Intel MPI, Bull MPI, etc. Languages extensions such as Co-Array
Fortran [numrich__co-array_ 1998 |, HPF [richardson__high 1996 | (High Perfor-
mance Fortran), UPC [upc | (Unified Parallel C), and more were also developed to
address distributed machines. Each language extension provides a higher abstraction of
the algorithm, but MPI, which let the programmer decide exactly how its application
will behave, is the most used parallel library. All these solutions can also be applied to
shared memory systems (which is simpler as all processes can reach all data). Although
such a solution can use optimizations to exploit the direct memory access possibilities,
the message passing paradigm implies data duplication that could be avoided in a shared
memory context. Indeed, threads would share the same data. However, using memory
sharing and threads requires protection locks that can slow down the computation. The
developer has to minimize the size of lock protected area and find a tradeoff between
memory sharing and distributed implementation corresponding to its application.

In a distributed code, communications can consume a lot of time. In order to get
more efficiency, the developer has to overlap the communications with computations. In
a more general case, one should avoid synchronization to get performance. Indeed, when
the number of computational unit increases, synchronizing the whole machine can be
prohibitive. Thus, the commonly used fork-join parallelization scheme where sequential
section and parallel section are interleaved, implying synchronization in-between, and
must be avoided.

14 Chapter 1. Linear algebra on modern architectures

1.2.2 Addressing accelerators

To off-load part of a computation to an accelerator, one would have to write a specialized
kernel for the targeted architecture. The developer can either write a whole code that will
be executed on the accelerator, or offload only part of the computation to the device. The
second option appeared to be more efficient in many cases as the accelerators, particularly
the GPUs, but also the Intel Xeon Phi, are not suited for all kinds of operations. Thus,
the developer has to send the data to the accelerator, execute the kernel and retrieve
the data from the device. The memory transfer cost can be very expensive and, as in a
distributed code, the developer has to overlap those communications with computations.

To help in the design of applications adapted to these complex architectures, frame-
works have been developed. NVIDIA proposes CUDA [nvidia__inc_ nvidia_ 2011
| and several organizations (Apple, AMD, Intel, and NVIDIA) promote
OPENCL [stone_opencl:__2010 | to develop the kernels, handle the mem-
ory transfers, and execute the kernels on the device. Intel encourages using
OPENMP [cramer__openmp_ 2012 | to produce parallel code to target its In-
tel Xeon Phi. While CUDA is specific to NVIDIA GPUs, OPENCL aims at providing
a portable solution to accelerators and multi-core management. In reality, if OPENCL
provides portable code, most of the time the performance is not portable, and the
kernels have to be redesigned to target a new architecture. The main challenges
raised by these heterogeneous platforms are mostly related to task granularity and
data management: although regular cores require fine granularity of data as well as
computations, accelerators such as GPUs need coarse-grain tasks. This unavoidably
introduces the need for identifying the parts of the algorithm that are more suitable to
be processed by each kind of architecture. Using one of the presented frameworks, one
can execute part of its code on an accelerator and keep the other part on the classical
CPU(s). The drawback of this approach is that, except if a very complex code is
written to handle it, the CPUs are idle while the GPU computes, and vice versa. A
need for more flexibility is required to use the maximum power from heterogeneous nodes.

This, coupled to the solutions for shared and distributed architectures, is a large
burden to the developers who want to benefit from all the capabilities of the clusters.
An additional layer, which would insulate the algorithms and their developers from the
rapid hardware changes, is required. This portability layer recently reappeared as under
the denomination of task-based runtime. Those runtime systems are presented in next
subsection.

1.2.3 Task-based runtime systems

Many initiatives have emerged in previous years to develop efficient runtime systems
for modern heterogeneous platforms. Task-based runtime systems propose to describe
the algorithms as tasks with data dependencies in-between. The underlying runtime
systems manage the tasks dynamically and schedules them on all available resources.
The algorithm can then be represented as a DAG (Directed Acyclic Graph) where

1.2. Addressing parallel machines 15

vertices are representing the tasks and edges their dependencies. These runtime systems
can be generic, as STARPU [Augonnet_ 2010__ccpe; augonnet__scheduling_ 2011
] and PARSEC [dague:12 |, or more specialized as QUARK [icl:759]. Without going
into details, the main differences among these different runtime systems reside in their
representation of the graph of tasks, their management of data movements between
computational resources, the extent they focus on task scheduling, and their capabilities
to handle distributed heterogeneous platforms.

1.2.3.1 Generic runtime systems

Many different task-based runtime systems were recently developed to help developers
produce efficient algorithm on heterogeneous architectures. Among them, Qilin [Qilin
| provides an interface to submit kernels that operate on arrays that are automatically
dispatched among the different processing units of a heterogeneous machine. More-
over, Qilin dynamically compiles parallel code for both CPUs (by relying on the In-
tel TBB technology), and for GPUs using CUDA. Another relevant framework is
Charm++ [Kale:1993:CPC:167962.165874 | which is a C+-+-based parallel program-
ming system that provides sophisticated load balancing and a large number of commu-
nication optimization mechanisms. Charm++ has been extended to provide support
for accelerators such as the Cell processors as well as GPUs [charmaccel |. Runtime
systems like KAAPI/XKAAPI [kaapi | or APC+ [apc] also offer support for hybrid
platforms mixing CPUs and GPUs. Their data management is based on a DSM-like
mechanism: each datum block is associated with a bitmap that permits the determina-
tion of whether there is already a local copy available to a specific processing unit or
not. The STARSS project is actually an umbrella term that describes both the STARSS
language extensions, and a collection of runtime systems [planas__hierarchical__2009
] targeting different types of platforms [gpuss; smpss; cellss |. STARSS provides an
annotation-based language that extends C or Fortran applications to offload pieces of
computation on the architecture targeted by the underlying runtime system. With
STARPU [Augonnet__2010__ccpe |, the user uses a generic sequential task-based pro-
gramming model to insert tasks which will be executed in parallel by the different workers
(i.e. computing units). The scheduler that will execute these tasks can be either cho-
sen among the STARPU predefined ones or provided by the user as a plugin. Finally,
the PARSEC [dague:12 | (formerly DAGUE) runtime system dynamically schedules
tasks within a node using a rather simple strategy based on work-stealing and following
an initial data distribution. It was first introduced for dense linear algebra, but was
later extended to more generic applications (e.g. in the high order finite element library
Aerosol [mbengoue__comparison__2013]). It takes advantage of the specific shape
of the task graphs (in the sense that there are few types of tasks) to represent the task
dependency graph in an algebraic fashion as expressed in [cosnard1999compact |. Fol-
lowing this idea, the OPENMP consortium, supported by Intel, is developing OPENMP
4 which integrates the concept of interdependent tasks extending the task concept in-
troduced in OPENMP 3.

16 Chapter 1. Linear algebra on modern architectures

1.2.3.2 Runtime systems specifically designed for linear algebra

Some other runtime systems are specifically designed for dense linear algebra. For ex-
ample, the TBLAS runtime system [tblas | follows a linear algebra specific approach.
It automates data transfers and provides a simple interface to create dense linear alge-
bra applications. TBLAS assumes that programmers provide a static mapping of the
data on the different processing units, but it supports heterogeneous data block sizes
(i.e., different granularity of computations). The QUARK runtime system [quark |
was specifically designed for scheduling linear algebra kernels on multi-core architec-
tures and is used in the PLASMA project [agullo_ numerical 2009]. It is charac-
terized by a scheduling algorithm based on work-stealing and by its higher scalability
in comparison with other dedicated runtime systems. Finally, the SuperMatrix run-
time system [supermatrix |, used by FLAME [igual_flame_ 2012 | library, follows
nearly the same idea as it represents the matrix hierarchically: the matrix is viewed as
blocks that serve as units of data where operations over those blocks are treated as units
of computation. The implementation transparently enqueues the required operations,
internally tracks dependencies, and then executes the operations using out-of-order ex-
ecution techniques.

1.3 Sparse linear algebra methods

The scientific community has developed multiple methods to efficiently solve sparse linear
systems of the form Ax = b, where A is a sparse matrix of size n. A is said to be a
sparse matrix if it contains only few non zero terms. This low fill-in is owed to either
nonexistent or neglected interactions in the mathematical model used by the simulation.
Indeed, coefficients of the matrix usually represent the interactions between two points
resulting from the discretization of the studied problem. Frequently, interactions between
two remote points can be neglected and zero terms appear in the matrix. x and b are
two n sized vectors. z is the unknown of the system to be solved and b is called the
right-hand-side. = can then be obtained with the formula b = A~ 'z.

To illustrate this, we can consider the air flow around a plane. One can consider
that the characteristics of the air flow at the end of the left-wing would have only little
influence on the flow on the right-wing. The corresponding term in the matrix would
then be null. If we keep following the air flow simulation example, x would be the air
flow speed at time ¢t + 1, computed from b, the air flow speed at time t.

However, the computation of the matrix A~! is generally avoided. Indeed, we have
no a priori knowledge of the structure of A~!, and it might require being stored in
an expensive dense matrix. This computation would require too much memory and
computational time. The scientific community developed many other methods to obtain
the solution x. These methods are adapted to the characteristics and the constraints
of the simulation code. Indeed, the need for accuracy, the structural and numerical
stability of the matrix at each time step, and its numerical complexity depend on the
studied problem and the method used for the simulation.

1.3. Sparse linear algebra methods 17

Two main classes can be distinguished to solve sparse linear systems: direct methods
and iterative methods. These sparse linear algebra methods rely on the BLAS (Basic
Linear Algebra Subroutine) libraries that we will present in next section. Then, we
will exhibit the advantages and drawbacks of the existing methods. After that, we
will focus on direct methods that are the main topics of this thesis. We will explain
the different steps involved in a direct sparse linear solver. Finally, we will compare the
multiple implementations available and show how they started addressing heterogeneous
machines.

1.3.1 Prerequisite: Basic Linear Algebra Subroutines

Independently of the method, if the computational intensity is not too low, operations
have to be gathered into dense blocks to be efficient. For example, in MATLAB (a
widely used numerical computing environment), a BLAS-based method is used to solve
Az = b when the ratio between the number of operations and the number of entries in
the matrix is smaller than 40. Otherwise, a scalar method is used. Indeed, dense matrix-
matrix operations can be computed very efficiently on computing unit whereas memory
accesses are limiting the efficiency of sparse operations. These operations have to be
adapted to the structure of the computing unit to use its different level of cache memory
efficiently. The BLAS [blas | API became the standard to handle these operations.
The API defines three classes of operation:

e BLASI: for scalar, vector and vector-by-vector operations (O(n) operations for
O(n) data);

e BLAS2: for matrix-by-vector operations (O(n?) operations for O(n?) data);
e BLAS3: for matrix-by-matrix operations (O(n?) operations for O(n?) data).

As they involve more computations, the BLAS3 operations are the ones that benefit
most from a precise tuning of the algorithm. Among the multiple implementation of the
BLAS API, we can cite several implementations.

refblas [blasl; blas2 | is the reference implementation from netlib. This implementa-
tion must be avoided to obtain performance.

ATLAS [atlas; atlasl | (Automatically Tuned Linear Algebra Software) is an
open source implementation that relies on automatic tuning, and thus available for
all CPU architectures.

MKL [mkl | (Math Kernel Library) is the Intel implementation mainly dedicated
to Intel processors.

ACML [acml | (AMD Core Math Library) is the AMD implementation of the
BLAS APL

ESSL [kagstrom__gemm-based_ 1998 | (Engineering and Scientific Software Library)
is IBM’s implementation.

18 Chapter 1. Linear algebra on modern architectures

OpenBLAS [goto | (Formerly GotoBLAS) originally developed by Kazushige
Goto relies on TLB (Translation Lookaside Buffer) misses optimization instead
of cache misses.

These implementations are finely tuned to fit perfectly the characteristics of the
machine they are executed on and get the maximum performance from the
chipset [eddelbuettel _benchmarking_ 2010 |. To address SMP and NUMA ma-
chines, multi-threaded versions of these libraries were developed such as for ACML,
MKL or OPENBLAS [goto2 |. Distributed versions of these libraries are also available.
For example PBLAS [choi1996proposal | provides a distributed implementation of the
BLAS2 and BLAS3 routines. LAPACK [anderson_ lapack 1999 |, and SCALA-
PACK [scalapack |, on distributed memory clusters, use the classical BLAS routines
and provide higher level routines such as dense linear decomposition, eigenvalues prob-
lems, etc.

1.3.2 Solving a sparse linear system

Direct methods [davis__direct__2006 | consist in the decomposition of the matrix A in
a product, LU, of two triangular matrices. The first one, L, is lower triangular where
the other one, U, is upper triangular. Once it has been transformed into LUx = b, the
system can then be simply decomposed in two triangular systems easy to solve. If the
matrix has specific properties, the problem can then be further simplified, often in term
of computational cost. For example, in the symmetric positive definite (SPD) case, the
Cholesky factorization gives A = LLT. If A is only symmetric, it is still possible to
achieve a Cholesky-Crout decomposition: A = LDLT, where D is a diagonal matrix.
These last two decomposition methods reduce by half the computational and memory
costs. Using direct methods, one can get a very accurate solution of the Az = b system.
Moreover, once the decomposition is computed, it can be used to solve several systems
where only the right-hand-side would differ. The drawback of these methods is that they
require a huge amount of memory, which can be a bottleneck preventing the increase of
the solved system size. Indeed, during the decomposition, new non-zero terms, called fill-
in, appear in the matrix, increasing the memory requirement. This phenomenon is more
detailed in subsection A second bottleneck is the complexity of the decomposition
algorithm, which is very large: O(n3) operations for a dense factorization, O(n2) for a
2D sparse decomposition and O(n?) for a 3D sparse factorization.

Iterative methods are a cheaper alternative to the direct methods, both in terms of
memory and complexity. They solve the equation Ax = b from an initial guess xg that is
iteratively improved at each iteration until the inquired precision is reached. In [saad96
], Youssef Saad presents a large diversity of iterative methods (e.g. GMRES, Conjugate
Gradient, etc.). These methods are cheap both in term of memory and computational
time. They are generally based on the matrix-vector product that can be computed in
O(nnz), where nnz is the number of non-zero terms in the matrix. To reach the precision
of a direct method, a large number of iterations (or a very accurate initial guess) would
be required. However, in many simulations a fine accuracy is not required, and iterative

1.3. Sparse linear algebra methods 19

methods can be a good candidate. Depending on the complexity of the studied problem,
an iterative method can be unable to converge to the solution. Indeed, the behavior of
iterative methods is specific to the problem they are trying to solve. The convergence
of these algorithms also relies on a good choice of the initial guess xg.

For solving 3D problems, where the matrix A is quite dense, iterative methods are
generally more interesting because of their low computational cost. On the contrary,
2D problems lead to rather sparse matrices that will not fill-in too much during the
decomposition. Direct methods are then well suited for these problems.

Transitional solutions were proposed to exploit the best of the two methods. The
first possibility is to approximate the decomposition of the matrix A. For instance, it
is possible to suppress some values considered negligible or to ignore the fill-in terms
that appears during the decomposition. Those methods are called incomplete LU de-
compositions. The selection of the terms to remove is either based in value threshold
(ILU(t) methods [saad__ilut:__1994]), or on their level of interconnection (ILU(k)
methods [manteuffel _incomplete__1980]). This level is defined as follows: level
zero comprises initial terms and level k (k > 1) terms are fill-in terms generated by the
updates involving level k — 1 terms. With these methods, we get an approximation of
A’s decomposition that is used as a preconditioner P for an iterative method. Then, for
a left preconditioning, one solves P~' Az = P~'b which leads to a better convergence.
One can also use a partial factorization as a preconditioner. This is the method used by
the JOREK application studied in this thesis and presented in chapter

To reach larger problems while keeping a high accuracy, one can use domain de-
composition methods. These algorithms split the problem into sub-domains, solve inde-
pendently the problem with a direct method on the interior of each sub-domain while
reporting the contribution to the Schur complement (i.e. the local interface), and, finally,
solves iteratively a global system on the interfaces. HIPS [gaidamour__parallel 2008
], MAPHYS [giraud__parallel_ 2009 |, PDSLIN [yamazaki_ pdslin_ 2012 |, and
SHYLU [rajamanickam_ shylu:_ 2012 | implement these domain decomposition
methods in different ways. PDSLIN and SHYLU use a twofold approach to compute
the preconditioner. First, an approximation to the global Schur complement is com-
puted. Then, this approximation is factorized to form the preconditioner for the Schur
complement system that does not need to be formed explicitly. HIPS builds its pre-
conditioner using an Incomplete LU factorization while MAPHYS computes an additive
Schwartz preconditioner. All these methods try to benefit both from the speed and
good scalability of the iterative methods, and from the accuracy and robustness of di-
rect method.

Finally, multi-grid methods [hackbusch__multi-grid__1985 | speed-up the perfor-
mance of an iterative method by correcting, from time to time, the solution. The solution
is projected onto a coarse mesh, a direct method solves the coarse problem, and then
the correction is reported to the finer original mesh. The multi-grid methods can be
separated into two sub-classes: geometric [hulsemann__parallel 2006 |, where the
multilevel hierarchy is tightly linked to the mesh geometry and the partial differential
equations; and algebraic [brandt__algebraic__1986 |, where the solver uses only the

20 Chapter 1. Linear algebra on modern architectures

matrix and can be used as a black box.

Thus, various methods have been developed to solve Az = b equation. The choice
of the method depends on the characteristics and the needs of the simulation. Direct
methods are the most robust, can be unavoidable in certain cases, and is an essential
component to many other solutions. In our case, we will focus on high accuracy of
direct methods which is a requirement for many simulation codes such as JOREK. We
will now describe more precisely these methods and the techniques that improve their
efficiency.

1.3.3 Description of the direct methods

Direct methods are the central subject of this thesis. These methods are the most
expensive both in term of memory and computational power. However, as we have
explained, they are widely used because they can reach a very high accuracy. They
can also be used as a preconditioner for hybrid methods, mixing direct and iterative
methods to obtain a tradeoff among speed, accuracy, and memory consumption. The
possibility to save and reuse the decomposition can also reduce the computational cost
by computing the factorization only once to solve multiple linear systems sharing the
same matrix A. We will see later how we can control the memory consumption of direct
solvers. We will also describe the algorithms, and the parallelization techniques used to
obtain efficient computation. Four main steps compose the direct methods:

1. The reordering of the unknowns can reduce the fill-in that appears during the
decomposition.

2. The symbolic factorization that predicts the structure of the factorized matrix.
Analysis of this symbolic factorization predicts the amount of memory, and the
number of operations required to perform the decomposition.

3. The numerical factorization that computes the decomposition of A into L x U. It
is the most expensive step.

4. The forward/backward substitutions that compute the solution z of the system
using the factorized matrix and the right hand side b.

1.3.3.1 Reordering of the unknowns

For the sake of simplicity, we consider here the LLT decomposition, when the matrix is
SPD. The algorithms are easily adaptable to obtain an LDLT decomposition by modi-
fying the computation on the diagonal. In a general case, to obtain an LU factorization,
one can consider A’, the matrix obtained by completing A with zeros such that the
non-zero pattern of A’ is symmetric (i.e. pattern(A’) = pattern(A + AT)). Once this
matrix is constructed, the LU factorization can be obtained by performing the symmetric
operations on the upper part of the matrix.

During the decomposition of the matrix A into LL”, fill-in [r17] terms will appear.
Indeed, after a Cholesky decomposition, the matrix L hold more terms than the matrix

1.3. Sparse linear algebra methods 21

A. A crucial tool to study this fill-in is the graph model [r17 | associated to the Gaussian
elimination. This fill-in is directly linked to the ordering of the unknowns. Therefore,
we are looking for an ordering of the unknowns, that is to say an ordering of the initial
matriz associated graph vertices [amdadu96; r17; pero97a; peroam99a | that mini-
mizes the fill-in, and simultaneously, the number of operations required to perform the
decomposition. Figure illustrates the fill-in related problems. In the case presented
here, fill-in terms, in red, can be suppressed using a good reordering (Figure [1.6(b)).
This minimization (or eventually, suppression in the given example) of the fill-in reduces
both the storage size of the L matrix, and the number of operations to perform. Indeed,
only non-zeros values of LL”T are stored and require computations.

The undirected graph G associated with a symmetric (or structurally symmetric)
n by n matrix A is a graph with n vertices where there is an edge (i,7) between the
vertices 7 and j if, and only if, a;; is not null.

H(i,j)EGﬁazj#O

The elimination graph is the graph G* associated to the lower triangular matrix L
resulting from the factorization. Naturally, G* has the same number of vertices as G
but (many) more edges. Indeed, it contains the fill-in edges (in red on Figure [L.6(a)).
The fill-in of the matrix can be computed using the following theorem:

Theorem 1 (Characterization Theorem [rosel976algorithmic])

(4,7) € G
(1,7) e G* & ¢ or
3 a path (j, k1, ..., ki, 1) such that Vp € [1,1], ky, < min(i, j)

The Elimination tree T' [r87 | associated to the factorized matrix is a tree (in the
classical meaning of the graph theory, in the case of reducible matrix it is a forest) with
n vertices. There is an edge between the vertices ¢ and j if, and only if, the row of the
first non null off-diagonal term in column j in the factorized matrix is i.

The elimination tree is crucial for sparse direct solver parallelization because it
describes the dependencies among the computations: if two vertices are on different
branches of the elimination tree, then the corresponding unknowns can be eliminated
independently in parallel.

In a parallel context, the reordering of the vertices of G should then both minimize
the fill-in, and mazimize the independence of the computations during the factorization,
that is to say leading to large and low height elimination trees. Following these criteria,
the efficient reordering are based on minimum degree [amdadu96; tiwa67 | and nested
dissection [r17]. One can notice that the classical Cuthill-McKee [CutKee | reordering
must be discarded because it creates more fill-in, and produces very high elimination
trees with little independence among the computations. Figure shows that a good
reordering can both decrease fill-in and exhibit more parallelism.

22 Chapter 1. Linear algebra on modern architectures

5
12345 12345 |
1 3 1 [3 4
2 | 2 (/1) !
3 2—1—4 —— 3 2+ 1—4 |
4 | 4 =72
5 5 5 5 |
1
A q L les T
(a) Without reordering.
12345 12345
1 3 1 3
2 | 2 | 5
3 2—5—4 ————— 3 2—5—4 /N
4 | 4 | 4/3 2\1
5 1 5 1
A a L G T

(b) With reordering.

Figure 1.6 — Advantage of reordering the unknowns for sparse matrix decomposition.
Blank squares represent zeros, greys are initial non-zeros and red squares and edges the
fill-in.

1.3.3.2 Symbolic factorization

The following step is the blocked symbolic factorization [chro89]. It computes the
blocked sparse structure of the matrix L from A’s one. The goal of the blocked structure
is to optimize the numerical factorization step by creating large blocks on which level
3 BLAS operations can be performed. This block structure forms a partition P of
the unknowns where each part, called supernode, can be considered separately. In the
following, supernodes will also be called column-blocks or panel. As we can see in figure
terms are created only to obtain this efficient block structure (e.g. Lg ; is only present
because of the blocking, there is no edge in G between 1 and 9) and might induce more
fill-in. A compromise has to be found between memory used and BLAS efficiency. The
prediction of the structure will free us from the effective fill-in terms management during
computation. Indeed, structural changes during factorization would heavily reduce the
efficiency of the numerical factorization step that uses a memory bound algorithm.

The complexity [chro89 | in time and in space of this algorithm increases with the
total number of off-diagonal blocks in the structure built for L (see figure [1.7). The
number of off-diagonal blocks, and consequently the complexity in time, depends on the
reordering quality regarding A’s sparsity conservation, and on the P partition. This
complexity is always far below numerical factorization’s one, which justifies its usage.
The elimination tree is then a blocked elimination tree (tree T in figure and its
structure describes the dependencies among the solver’s blocked computations.

The blocked elimination tree is a covering tree of the graph of the exchanges between

1.3. Sparse linear algebra methods 23

2 :
Adjacency graph (G) 2 }
5

%2 L
¢ e dses |

Quotient graph (G*/P). Elimination tree (T). Factorized matrix (L).

Figure 1.7 — An example of column-blocked structured factorized matrix L, with the
graph G associated to the matrix A, the quotient graph G*/P and the blocked elimi-
nation tree associated T'. Each of the seven column-blocks comprises a dense diagonal
block (in blue) and several dense off-diagonal blocks (in red and green).

column-blocks (see figure during blocked factorization algorithm (see section [2.1.1]
page . This graph is the quotient graph G*/P symbolically computed in the form
(G/P)*.

In a parallel context, this step is necessary to compute the distribution of the data
onto the nodes during preprocessing.

1.3.3.3 Factorization methods

With the block structure of A, obtained during previous step using the elimination tree,
we can generalize the sequential scalar algorithm in a more efficient algorithm working
directly on the blocks. Using blocks (or column-blocks) of the matrix we can benefit
from the heavily optimized dense linear algebra routines.

For the sake of memory consumption reduction, the matrix A is actually stored in
the structure that will store the decomposition during the algorithm execution. The
decomposition is then performed in place.

Figure presents the notations used in the algorithms presented in this thesis. For
each column-block k, 1 <k < N,

o A is the dense diagonal block,

24 Chapter 1. Linear algebra on modern architectures

=

I

(1-b)
0 VA

-—
B
L,

N\
DN
=~

=

>
=

S —

A(lfbk>,k< Ap i

—

1

1

1

1

1 1

1 |

n -
=

=/

Figure 1.8 — Description of the notations used for the factorization algorithm.

e by is the number of off-diagonal blocks in column-block k,

o Agjy is the § off-diagonal dense block with 1 < j < by, (4) being a multi-index
describing the row interval (on the Figure j = 1);

o A(1_p,), represent all the off-diagonal dense blocks of column block k, from block
1 to by.

Furthermore, A;) ;) is the rectangular dense block corresponding to the rows of the
multi-index (i) and to the columns of the multi-index (j). A;) ;) corresponds to the
same notion, but for a sub-block of the diagonal block A;; facing the off-diagonal block
A

Two methods have been developed and can both be parallelized to perform the
numerical factorization. The first one is called the multifrontal method, while the other
is called the supernodal method. These two techniques differ only in the way they apply
contributions from one block to another. Those differences are also found in the parallel
versions of these algorithms.

Multifrontal methods: With a multifrontal [adlk:2001; mumps; gukaku97a;
gupta__highly 1997 | approach, each column-block is associated with a frontal matrix,
also called Schur complement, that holds all the contributions from the corresponding
sub-tree of the elimination tree to its father (see figure [1.9). Algorithm [1] presents the

1.3. Sparse linear algebra methods 25

21 22 23 24 25

Figure 1.9 — Multifrontal algorithm applied on the matrix from Figure Level 2 frontal
matrix is updated using the Schur complement of level 3 frontal matrices (represented
with boxes and bent arrows for the most left bottom frontal matrices). And level 1 is
updated by its two sons from level 2.

26 Chapter 1. Linear algebra on modern architectures

sequential multifrontal LU algorithm. For each block column, the column block associ-
ated matrix is allocated and assembled using initial values and the sons contributions.
The diagonal-block is factorized, the off-diagonal system is solved and the frontal ma-
trix is updated. This frontal matrix is then passed to the column-block’s father in the
elimination tree. The latter adds up all the frontal matrices he receives with its own
Schur complement before sending the result to its father and so on. The presented al-
gorithm is easily adaptable to the symmetric case by substituting references to U; ; for
L;f':j (i.e. Lj;), removing the second solving operation, and performing only the lower
part of the frontal matrix update. With these methods, we try to express most of the
parallelism, not only by the frontal matrices dense block cutting and computations, but
also by reordering methods that maximize the elimination tree width. A description
of the uni-dimensional or bi-dimensional parallelization of this approach can be found
in [adlk:2001]. This method is particularly well suited for a parallel and out-of-core
implementation (i.e. with unused data stored on disk to save memory until it will be
reused). Indeed, the factorization can progress level by level in the tree, without any
requirement on data from the sons or the father nodes. All these data can be saved
to disk before and after they are eliminated. Moreover, nodes at the same level of the
tree can be eliminated independently providing parallelism. The dense operation on
the Schur complement update also allows a compute intensive BLLAS3 operation that
is efficient. The drawback of this method is the memory required for the storage of the
frontal matrices which grows while going up into the elimination tree and can become
large.

Algorithm 1 Multi-frontal factorization: A = LU.

1: k=1to N

> /* Assemble the matrix using frontal matrices from sons. */
2: Assemble the frontal matrix associated to Ay j

> /* Factorize diagonal block */
3: Factorize Ak,k in Lk,k'Uk,k

> /* Solve off-diagonal systems */

o

SOIV@ L(l—bk),k"Uk’,k’ — A(l—bk),k:
5: Solve Lk,k'Uk,(lfbk) = Ak,(lfbk)
> /* Update the Schur complement. */

A—b),0-b) = A=), (0-by) — L(—by) k-Uk,(1-by)

IS

Supernodal methods: Supernodal methods do not store contributions but apply
them to the targeted panel (or column block) as soon as they are produced. The global
storage of the data is then reduced, but all column-blocks (also named supernodes or
panels) from the upper part of the tree have to be allocated to apply contributions on
the destination column block. Within supernodal methods, one can distinguish two
sub-classes that differ in the way the contributions are taken into account. The right-

1.3. Sparse linear algebra methods 27

Algorithm 2 Right looking blocked sequential factorization: A = LU.

1: Fork=1toN Do
> /* Factorize the column block */

2: Factorize Ak,k in Lk,k-Uk,k
3: Solve L(lfbk),lka,k = A(lfbk),k
4: Solve LkJC'Uk,(l—bk) = Ak’,(l—bk)
> /* Trailling supernodes updates */
5: For j =1to b, Do
6: Fori=1to b, Do
7 Ao, =A0.6) — LowUko)
8: End For
9: End For

10: End For

Algorithm 3 Left looking blocked sequential factorization: A = LU.
1: Fork=1to N Do

> /* Apply updates from sons in the elimination tree */

2: For each Ly, ;) facing Ay Do
3: For each L ;) below Ly (5 Do
4 Ay = Ai) — Lio) Uk
5: End For
6: End For
> /* Factorize the column block */
7 Factorize Ak,k in Lng.Uk’k
8: Fori=1to b, Do
9: Solve L(z),szk,k = A(z),k
10: Solve Lk,k‘Uk,(i) = Ak,(z)
11: End For

12: End For

looking approach, presented in algorithm [2] and the left-looking, presented in [3] The
right-looking algorithm factorizes one column-block and then applies, once for all, the
contributions from the computed column-block onto the column-blocks on the right.
The left-looking approach switches the contribution adding and factorization phases.
Contributions from the left of current column-block are accumulated and then the panel
is factorized. It will later be read again to add its contributions. One can consider that
the right looking privileges the read data, while left looking focus on the written data. As
for multifrontal methods, these two algorithms can be adapted to the symmetric case by
substituting U; ; with LZj = L;; and removing operations on the upper matrix. Contrary
to multifrontal method, the trailing submatrix update cannot be gathered in one large
matrix-matrix multiplication as the data are only contiguous in a column-block. Thus,
the operation is less compute intensive than with multifrontal methods.The advantage

28 Chapter 1. Linear algebra on modern architectures

of this method is that it only allocates the structure of the factorized matrix, which can
save a lot of memory. A tradeoff between performance and memory consumption can be
found by grouping updates by column-block and scattering the result onto the targeted
panel. These operations can then be executed in parallel as they are updating different
panels.

Once these two sub-methods have been explicated, one can differentiate two differ-
ent parallel implementations of the supernodal method: fan-in or fan-out [ashc93; r88;
r97 |. The fan-in method, consist in compressing the exchanged data. All contribu-
tions computed on one processor and addressing the same column-block are added in a
temporary phantom column block, called fan-in buffer. As for frontal matrices in multi-
frontal methods this buffer covers all its contributions. The fan-out approach consists in
sending the column block once it has been computed so that the destination processor
can directly apply the update on the destination supernode. This last method is only
interesting with a right-looking approach which will consume messages as soon as they
are received. This two techniques will be detailed in chapter

fan-out/right-looking methods are generally used for dense matrices factorizations
where contributions must be sent the sooner as precedence constraints among computa-
tion are strong. In a sparse matrix parallel decomposition context, the fan-in approach
happens to be more efficient because it can reduce communications volume significantly.
Indeed, as one can see in figure [1.8], in the sparse matrix case, contributions are often
smaller than the targeted block (or column-block) and the cost of these “small” commu-
nications is harder to hide. On the contrary, storing these contributions locally can lead
to a memory overhead which can become very high, or even prohibitive when factorizing
huge problems [hengpe91 |. In this case, using a mix of shared memory, with no fan-in
buffer requirement but direct updates using shared memory, and distributed memory
algorithm can lead to a good tradeoft.

1.3.3.4 Triangular system solve

Once the matrices L and U (or L and D) are computed, the solution can be obtained
by solving successively the following systems:

Ly=1b (1.1)
(only with LDLT)D.z =y

Uzx=zor LT.x =2

The first step, called forward substitution phase, solves the equation The second
one, called diagonal phase, computes the quotient of the previously computed vector
over the diagonal (equation), it’s only computed for Cholesky-Crout decomposition
(LDLT). Finally, the backward substitution phase, solves the equation In the case of
a single right-hand-side (i.e. b is a vector), the triangular solve step is cheap in number
of operations compared to the numerical factorization. Thus, data are distributed on
the node regarding the factorization [WSSMP98; jkkgg99 |. In the column-block

1.3. Sparse linear algebra methods 29

data distribution context, b’s elements are distributed using the same distribution as the
columns of A. In the case of multiple right-hand-sides, b is a rectangular n x m matrix,
where m is the number of right-hand-sides. If m is large enough, the computational
intensity when solving the triangular systems becomes comparable to the one of the
numerical factorization, and redistributing A and b on the computational nodes could
be worth trying. While this step is not often detailed in the literature it can be critical
in simulations. Indeed, several triangular systems can be solved for one factorization.
For example, it occurs when the factorized matrix is used as a preconditioner for an
iterative method. Multiple triangular systems solving steps also occurs when the solver
uses a static pivoting [li__making_ 1998 |, where nil values found on the diagonal are
replaced by an e, instead of real pivoting, where columns and/or rows permutations
maximize values on the diagonal and increase the stability. Such pivoting results in an
approximate factorization that can be used as a preconditioner in an iterative solver to
reach an accurate solution.

We have described here the different part of a direct sparse linear solver. Different
implementations of such a solver were developed to solve linear systems in simulation
software. The next subsection describes the existing implementations and their partic-
ularities.

1.3.4 Linear algebra on homogeneous clusters

During last 15 years, direct sparse linear solvers have been improved signifi-
cantly [adlk:2001; guptaOlrecent; A:LaBRI::HRRO1la; lidemmel03 |. It is now
possible to solve efficiently, and in a reasonable time 3D problems with millions of un-
knowns. To face the multiplication of SMP and NUMA based super-computers, linear
solvers had to propose implementations more suited to multi-core architectures. Most of
them first adapted their sequential version using the Message Passing Interface (MPI)
model to exploit clusters. Others developed multi-threaded versions adapted to multi-
core architectures. Finally, some of these solvers proposed algorithms using a combina-
tion of these solutions. We present here the main existing sparse direct solvers which are:
CHOLMOD, MUMPS, PARDISO, PASTiX, SuUPErRLU, TAUCS, UMFPACK, and
WSMP. This subsection details the different methods used by those libraries to exploit
clusters and solve large problems. An exhaustive list of sparse linear algebra solvers can
be found in [dongarra__freely_ 2003].

MUMPS solver is developed by Patrick Amestoy team in Toulouse and Jean-Yves
L’Excellent in Lyon. It uses a multifrontal method with a dynamic computation schedul-
ing [adlk:2001; mumps |. This solver provides many numerical preprocessing tech-
niques to improve the stability of the numerical factorization. To handle large memory
requirement, an efficient out-of-core implementation can also be used. With this ver-
sion one can limit the memory requirement to the minimum by storing most of the
data on the hard drive and solve larger problems on clusters with low memory avail-
able. The last distributed version is a MPI version developed in Fortran. Recently, a
study [lexcellent:hal-00786055 | was carried out to target multi-core architectures.
It proposes to use multi-threaded BLAS and add some OPENMP loop instructions to

30 Chapter 1. Linear algebra on modern architectures

parallelize main sequential loops. With this solution, a good efficiency has been obtained
on the eight computational cores during the experimentation. Most of the parallelism is
here exploited by the multi-threaded BLLAS library.

Timothy A. Davis, formerly from the University of Florida and now at Texas
A&M University, proposes several solvers. UMFPACK [davis__algorithm_ 2004]
is an unsymmetric-pattern multifrontal solver. It provides scaling techniques to im-
prove the stability of the factorization. CHOLMOD [chen__algorithm_ 2008 | uses
a left-looking supernodal sparse Cholesky method. It can also solve unsymmetric prob-
lems by symmetrizing the pattern of the matrix, and performing the symmetric op-
erations. Both solvers can also handle rectangular matrices and are integrated into
MATLAB [the__mathworks__inc__matlab:__2005 |. These solvers are implemented
using shared memory parallelism.

Silvian Toledo et al. developed several solvers in TAUCS [toledo__taucs:__2003 |.
They implemented shared memory version of the multifrontal method and a left looking
supernodal sparse linear solver. They also propose incomplete factorization methods and
out-of-core solution. The authors parallelized their solvers using Cilk language extension.

PARDISO [pardiso | is developed by Olaf Schenk and Klaus Gértner team to
target specifically shared memory machines. The PARDISO solvers now proposes a
bit-identical solution for shared memory and distributed architectures. This solver relies
on a supernodal method with a mixing left and right-looking scheduling method. It is
developed in Fortran, and the shared memory algorithm uses OPENMP directives. As
for MUMPS, non-symmetrical permutation techniques based on coefficient values are
offered to obtain a better matrix conditioning. This solver is included in the Intel MKL
library

Jim Demmel, Sherry Li et al. have developed several versions of their
solver SUPERLU to address sequential, shared memory or distributed memory ma-
chines [demmel__supernodal__1999; superlu__dist]. The underlying algorithm is
similar to PARDISO’s one: it uses a supernodal method with a hybrid left and right-
looking communication scheme. SUPERLU__DIST is the distributed memory version us-
ing MPI, and SUPERLU__MT [1i:08 | is the shared memory one. This version had been
developed before the P-Thread library and OPENMP emergence. It used inter-process
sharing memory techniques. Several solutions have been developed to address the dif-
ferent architectures and operating systems. The package now also proposes OPENMP
and POSIX threads versions that have been developed to handle new architectures and
have a more generic code. A hybrid version, based on SUPERLU__DIST is proposed
in [yamazaki_new__2012 |. The authors present a scheduling strategy to improve
the scaling of SUPERLU__DIST on a large number of cores and integrated OPENMP
to save memory while exploiting more efficiently large multi-core architectures. As far
as we know, the OPENMP part of this study is not available yet in the last release.
A solution to obtain a hybrid solver from SUPERLU__DIST is to use a multi-threaded
BLAS library with the distributed implementation. Using these libraries requires being
able to change block’s (or column block’s) size to adapt the granularity to the number of
threads used. It also requires being able to limit the number of threads created by the

1.3. Sparse linear algebra methods 31

underlying library to avoid loosing BLLAS library efficiency by exceeding the number of
cores available on the node and overloading the machine.

In [hogg_new__2013 |, authors present several multi-core sparse direct factorization
algorithms from HSL [duff _sparse__ 2006 | (Harwell Subroutine Library). This library
provides a collection of algorithms, from which direct sparse solvers, to solve sparse
linear systems or eigenvalues problems. In particular, HSL_MA87 [hogg_ design_ 2010
] algorithm provides a DAG based Cholesky shared memory factorization comparable
to the shared memory implementation of PASTIX direct solver. Their main differences
and a performance comparison are detailed in [hogg_ high_ 2010].

Finally, PASTIX [faverge:inria-00344026; ramet__optimisation__ 2000 | solver,
by Pierre Ramet et al., and WSMP [wsmp |, by Anshul Gupta, George Karypis and
Vipin Kumar, provide hybrid MPI and POSIX Threads implementations. They are
both developed in C and rely respectively on a supernodal right-looking method and
a multifrontal method. Both implementations provide four running modes: sequential,
shared memory, distributed memory, or hybrid shared and distributed memory. PASTIX
solver is a single library than can be built in the different modes using compilation flags.
On the contrary, WSMP has been developed in two distinct versions: a distributed
memory and a shared memory one. These libraries can be used separately or coupled to
obtain the hybrid version. Using MPI for the distributed memory communications and
POSIX threads in shared memory, these solvers can significantly reduce the memory
overhead resulting from the communication buffers and, in WSMP case, from the num-
ber of contributions blocks in the multifrontal method that is an obstacle to the usage
of direct methods for large 3D problems. These two solvers are meant to be the best
candidates to exploit as efficiently as possible clusters of multi-core nodes.

1.3.5 Linear algebra on heterogeneous clusters

We presented in last subsection how sparse linear algebra got adapted to the emergence
of multi-core nodes. Linear algebra libraries propose either a distributed memory, a
shared memory, or mix of distributed and shared memory implementations. As we
have seen earlier, new machines now commonly integrate accelerators such as GPUs
or Xeon Phi. Sparse linear algebra has to evolve to benefit as much as they can from
these new energy-efficient devices. This subsection presents how the dense linear algebra
community initiates its evolution toward heterogeneous architectures. Then, it details
the existing sparse direct solvers evolution toward those architectures. Indeed, the sparse
linear algebra algorithms are comparable to dense linear algebra. The sparsity however
introduces more complexity and irregularity. Due to this complexity, preliminary works
are generally first performed on dense linear algebra, and then extended, when possible,
to sparse linear algebra.

1.3.5.1 Dense linear algebra evolution

The dense linear algebra community spent a great deal of effort to tackle the chal-
lenges raised by the sharp increase of the number of computational resources. Because

32 Chapter 1. Linear algebra on modern architectures

of their heavy computational cost, most of their algorithms are relatively simple to
handle. Avoiding common pitfalls such as the “fork-join” parallelism and expertly se-
lecting the blocking factor (i.e. the size of the blocks the matrix is split in) provides an
almost straightforward way to increase the parallelism, and thus achieves better perfor-
mance. Moreover, thanks to their natural load-balance, most of the algorithms can be
approached hierarchically, first at the node level, and then at the computational resource
level. In a shared memory context, one of the seminal papers [icl:369 | replaced the
commonly used LAPACK column major layout with one based on tiles/blocks. Us-
ing basic operations on these tiles exposes the algorithms as a Directed Acyclic Graph
(DAG). The nodes of this graph represent the tasks to be executed, and the directed
edges represent the data dependencies among them. In shared memory, this approach
quickly generates a large number of ready tasks, while, in distributed memory, the de-
pendencies allow the removal of hard synchronizations. This idea leads to the design of
new algorithms for various algebraic operations [icl:509], now at the base of well-known
software packages like PLASMA [agullo__numerical_ 2009 |, that aims at replacing
LAPACK in a shared memory context. MAGMA [nath__accelerating_ 2011 | pro-
vides LAPACK linear algebra routines equivalents for either NVIDIA or AMD GPUs,
and Intel Xeon Phi relying on vendors BLAS implementations. Indeed, each of the
device vendors quickly provided its implementation of the BLAS routines. NVIDIA
developed cUBLAS [nvidia__inc__cublas__2008 | for its GPU, and AMD and Intel
respectively adapted ACML and MKL to use their accelerators. MAGMA exploits
those libraries to extend higher level algorithms from LAPACK to those devices. With
distributed memory systems, DPLASMA [dague-la | was developed on top of PAR-
SEC to be efficient on distributed heterogeneous systems and eventually replace SCAL A-
PACK. A concurrent to those solutions developed by the University of Tennessee is the
FLAME [igual_flame_ 2012] library developed by the University of Texas at Austin.
This library is also adapted to distributed heterogeneous platforms.

This idea is recurrent in almost all novel approaches surrounding the many-core
revolution, spreading outside the boundaries of dense linear algebra. Looking at the
sparse linear algebra, the efforts were directed toward improving the behavior of the
existing solvers by taking into account both task and data affinity, and relying on a
two-level hybrid parallelization approach, mixing multi-threading and message passing.
We will now describe the evolution of sparse linear algebra solvers during last years.

1.3.5.2 Sparse linear solver on heterogeneous machines

At the moment this thesis started, only few preliminary studies had been performed
toward adapting sparse linear solvers to heterogeneous architectures. As a first step to
heterogeneous system we can consider the evolution toward large NUMA nodes uti-
lization. The chosen approach follows the one for dense linear algebra, fine-grained
parallelism, thread-based parallelization, and advanced data management to deal with
complex memory hierarchies. Most of the time, this is done using task-based runtime
systems that can be seen as a first step toward heterogeneous clusters. We can cite
qr_mumps [buttari_ fine-grained_ 2013 | for sparse QR fine grain multi-threaded fac-

1.3. Sparse linear algebra methods 33

torization using a DAG of tasks. QR factorization is more stable but involves more
operations than a Cholesky factorization (in dense: % with QR factorization versus %3
with Cholesky). This additional computational intensity makes it a good candidate to
target GPUs. In [yeralan__sparse_ 2013 |, authors propose a mono-GPU implemen-
tation of the QR factorization and obtain a speed-up up to 11 compared to the 12 cores

execution.

In [vuduc_ limits_ 2010 |, authors pointed out the limits of the GPU computa-
tions. In particular, they implemented a CUBLAS based direct sparse linear solver and
compared it to the MKL one. The speed-up obtained, without taking into account the
data transfers, compared to a single core did not exceeded three. They concluded that
using a shared memory implementation would give better performances than using a full
GPU based sparse solver.

Another option, implemented by the HSL team in the
SPRAL [hogg_sparse_2014 | library, proposed to execute the whole factoriza-
tion and upward/backward substitutions algorithms on a GPU device. SPRAL
implements a multifrontal method with pivoting and obtains decent speedup compared
to a pair of quad-core processors. The main drawback of this approach is that the library
is limited by the GPU device internal memory, but one could imagine implementing a
domain decomposition method on top of this solver to reach higher scale matrices.

Pardiso team also investigates the possibility of using GPUs for sparse direct factor-
ization. In [christen__general-purpose_ 2007; schenk__algorithmic_ 2008 |, au-
thors first compare the performance of simple precision matrix-matrix multiplication on
CPU and GPU. If for large sizes GPU outperforms the CPU, for small matrices, as
we encounter in sparse solvers, it is rarely the case. We can also notice that, because
of cache effects, if the performance of the A x B product are symmetric on a GPU it
is not the case on CPU and having a tall and skinny matrix A with a small B, as it
occurs with sparse solvers, is really bad for performance. In a second time, the authors
propose to replace the BLAS calls with CUBLAS ones if the number of Flops involved
is beyond a given limit. Doing so, in simple precision, they could obtain a speed-up up
to 4 against the simple precision CPU version (6.5 against double precision).

In CHOLMOD [rennich__accelerating_ 2014 |, investigations have been carried
toward the use of CUBLAS kernel for the dense linear operations. Operations on the
lower part of the elimination tree are sent to the GPU using concurrent batched ker-
nels while for the largest supernodes, at the top of the elimination tree, operations are
processed either on CPU or GPU depending on a threshold. The chosen threshold is
particular for each kernel as their efficiency is different. Doing so they could achieve a
speed-up of up to 4.1 against the CPU version in double precision.

Authors of [krawezik__accelerating_ 2010 | propose to use a GPU to perform
GEMM uptates in their LDLT solver, both in double precision and mixed precision and
obtained a speed-up up to 4 in double and 2.9 in mixed precision (i.e. CUBLAS calls
in simple precision and CPU code in double precision) on a benchmark using one test
case with a varying number of unknowns.

In [lucas__multifrontal__2011], authors also replaced the BLAS calls on a multi-

34 Chapter 1. Linear algebra on modern architectures

frontal method and outperform the multi-core BLAS using CUBLAS in simple precision.

In [yu__cpugpu__ 2011 |, in the multifrontal solver UMFPACK, the replacement
of some of the BLAS operations with CUBLAS equivalent operation following certain
threshold can give a speed-up of 3 in double precision against the CPU version.

On multifrontal methods, a study has been performed to estimate the benefits that
one can obtain using accelerators in WSMP [george_ multifrontal 2011 |. The
multi-frontal methods, which generate operations on larger datum blocks are well suited
to target accelerators. In this study, part of the BLAS operations involved in direct
sparse factorization — POTRF (factorization), TRSM (solve) and SYRK (C' = aAAT + 3C) -
is off-loaded to the GPU following empirical criteria based on the number of operations
involved. In most of the presented cases, off-loaded POTRF is not relevant, it is only
profitable with large 3D problems that lead to larger blocks with more computation to
perform. On the contrary, it is worth off-loading the two other operations. In mixed
precision, with two CPU threads and two GPU threads the speed-up reached is four
times what can be obtained from four CPU threads in double precision.

In [sao_ distributed__ 2014], authors added OPENMP and CUDA support to
SUPERLU__DisT. The most intensive part of the computation, the Schur complement
(columns on the right) update, is off-loaded to the GPU. To increase the computational
intensity of the kernel, the whole update is computed at once. The update is then
pipelined, the first columns are computed on CPU while data are transferred for the
other parts. After each block computation, the results are transferred to the CPU which
scatters the data on the destination blocks using OPENMP and MPI. Other BLAS
operations are performed on CPU using multi-threaded implementation. With a larger
temporary memory requirement, authors achieve up to three times faster computations
compared to the best full MPI implementation.

In [Bientinesi2010430 |, authors present a different vision of direct solver, not as
a black box, but tightly coupled with a finite element method. They consider their
finite element mesh as the recursive refinement of an original mesh. They obtain a
tree where an element’s sons are the elements obtained after refinement. They apply
a multi-frontal method on this tree, where the elementary matrix is only assembled
when it will be factorized, after receiving the Schur complement from its sons’ factor-
izations. They can extract parallelism from the geometry and handle hp-adaptative
(h for mesh refining using cell splitting, p for order increasing) finite elements method
easily without recomputing the whole factorization when a part of the mesh is refined.
In [kyungjoo_ kim__parallel_ 2014 | they describe how they parallelized this solver
using direct acyclic graphs and OPENMP. This way, they obtained a shared-memory
solver and could compete both with MUMPS and PARDISO when elements’ order
increases.

Thus, many studies concerning sparse linear solvers using accelerators were per-
formed using multifrontal methods, which a priori is more suited. Indeed, large front
updates are produced in multifrontal method, allowing efficient GEMM executions. Even
in the SUPERLU__DIiST supernodal method, the implementation they designed mimics
the front factorization by gathering all operations resulting from all updates from one

1.4. Discussion 35

panel. In these studies GPUs are handled manually by the application code, this one
will need to be adapted for each new architecture. The main idea is to treat some parts
of the task dependency graph entirely on the GPU. Therefore, the main originality of
these efforts resides in the methods and algorithms used to decide whether a task can
be processed on a GPU. Usually, this was achieved through a threshold based criterion
on the size of the computational tasks.

In our approach, we want to study GPUs usage with the supernodal methods. Our
approach is close to the SUPERLU__DIST one, but we do not want to increase the memory
requirement which is already very important with direct methods. These methods are
less memory consuming and can then address larger problems. Moreover, we want to
estimate the potential use of generic task-based runtime systems that gives a higher
abstraction of the machine architecture. Thus, moving to new computational units is
less painful to the application developer.

1.4 Discussion

In this chapter, we have presented the current evolution of the hardware used in high
performance computing field. New barriers have shown up preventing the continual in-
crease of frequency and the multiplication of the processors. The frequency could not
increase anymore without overheating the system. To bypass this limit, manufacturers
proposed to multiply the number of cores: first, with a flat architecture, connecting
multiple cores to a shared memory with symmetric memory accesses; then, with more
hierarchical architectures called NUMA, simpler to build but more complex for the
developer. The multiplication of sophisticated cores led to prohibitive energy consump-
tion. To work around this new barrier, manufacturers provided new accelerators, based
on GPUs or integrating many simplified and low energy-consuming cores. Developing
efficient kernels for these new devices is a tough task for the developers. New techniques
and tools can be used to produce high performance code adapted to these complex ma-
chines (either for distributed, shared memory or accelerator programming). However,
with these new heterogeneous and very evolving machines, a need for abstraction of the
machine architecture arose. As we have shown, task-based runtime systems provide a
solution to implement algorithms using an abstraction of the architecture, more flexible
and portable.

From fast iterative solvers to robust direct solvers, the linear algebra community
developed a large panel of methods to solve sparse linear systems depending on the
characteristics of the system. The simulation developer must then choose the best al-
gorithm. In this thesis, we focused on sparse direct solvers. Thus, we presented the
different steps involved in a sparse direct factorization. We have seen that direct sparse
linear solvers have already been adapted to the distributed clusters of SMP and, after-
wards, NUMA multi-core nodes. The distributed parallelism is generally exploited using
MPI, while there are various implementations to handle the shared memory parallelism.
During last three years, the sparse linear algebra community studied the possibility to
integrate GPU accelerators into sparse linear direct solvers. Most of them targeted mul-

36 Chapter 1. Linear algebra on modern architectures

tifrontal methods which use more compute intensive kernels well suited to GPUs. In
these attempts, developers manually handled GPUs using the CUDA toolkit. In this
work, we want to study the path taken by dense linear algebra developers, and use task-
based runtime systems to abstract the machine architecture from the algorithm. Once
the algorithm is transposed into a DAG of tasks, one can use accelerators by proposing
new kernels to the runtime system.

Chapter 2

Sparse factorization on
shared-memory heterogeneous

machines
Contents

2.1 Framework|l oo n oo 39
[2.1.1 PASTIX original algorithm description| 39
2.1.1.1 Scheduling and data mapping] 39

2.1.1.2 Numerical factorizationl 40

[2.1.2 Elected runtime systems| 41
EI2T PARSEC] e 45

2122 STaARPUl 46

2.2 Implementation on top of generic runtime systems| 49
[2.2.1 PARSEC implementation|, 50
2.2.2 STARPU implementation| 53
[2.2.3 Multi-core Architecture experimentation|. 55

2.3 Heterogeneous systems|, ..., 57
[2.3.1 TImplementation of a specific GEMM kernel| 60
[2.3.2 Data mapping over multiple GPUs|. 66
[2.3.3 Heterogeneous experiments| 69
2.3.4 Memory study| o 69

2.4 Optimizations|.« c v v v v v i vttt e e e e e e e e 71
[2.4.1 Task granularity adapted to the runtime|. 71
[2.4.2 Block splitting algorithm| 73
2.5 Discussionl oo o e 79

37

38 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

This thesis aims at proposing a sparse direct solver adapted to emerging clusters
of heterogeneous nodes. In previous chapter, we have presented the architectures and
solutions to use them. We also presented the multiple solutions available to solver sparse
linear systems. In particular, we presented the sparse direct methods framework and
compared the main direct sparse solvers libraries available.

Among previously presented solvers, we chose to rely on the PASTIX solver to per-
form the studies described in this thesis. This solver was initiated in Bordeaux, to be
used in electromagnetic field by the CEA Cesta. This library has been written in C,
initially using MPI for the parallel version. Then, to reduce memory overhead induced
by MPI communication buffers, a hybrid MPI/POSIX Threads version has been devel-
oped. Besides being locally developed, several criteria guided our choice of this solver.
We want to describe our algorithm as a task graph in order to execute it with a task-based
runtime. In PASTIX, operations are already separated into tasks that are distributed by
a specific scheduler on the computational cores. Moreover, by its advanced adaptation
to multi-core clusters, PASTIX is a good challenge for our performance studies. Last,
but not least, with its open source Cecill-C license, PASTIX is a good framework to
integrate our developments.

For a better flexibility and upgradability in our developments we elected the generic
task-based system to integrate accelerators into the PASTIX library. In our exploratory
approach moving toward a generic scheduler for PASTIX, we considered two different
runtime systems: STARPU and PARSEC. Both runtime systems have been proven
mature enough in the context of dense linear algebra, while providing two orthogonal
approaches to task-based systems.

In this chapter, we describe the implementation of a sparse factorization algorithm
on top of tasks based runtime systems to target heterogeneous shared memory machines;
distributed memory systems will be addressed later in Chapter [3] We first detail the
library used for our implementation. We describe the static scheduling system and the
numerical factorization algorithm used in PASTIX solver. This implementation, prior to
this thesis, will be referred to as the original PASTIX implementation in all the following
of the manuscript. We also present the two task-based runtime systems we have chosen
to use in our experiments.

After that, we describe the implementation of PASTIX algorithm on top of the two
elected runtimes. Then, multi-core results validate our task-based runtime implementa-
tion.

We also present our specialized kernel which performs our updates on trailing supern-
odes and study its performances separately from PASTIX. Then, we use this new kernel
with task-based runtime systems to benefit from all the computing resources available
on an heterogeneous node in our sparse linear algebra library.

2.1. Framework 39

2.1 Framework

In this section, we go further into PASTIX algorithms. We explain how we can exhibit
parallelism, at multiple levels, from the operations involved in the factorization. We also
describe the data distribution and the computations scheduling. Then we detail the par-
allel blocked supernodal algorithm used in PASTIX. Static scheduling, and factorization
algorithm are the only parts of the code that are involved in this thesis, a latter study
may address the forward and backward substitutions. Finally, we present and compare
the two generic task-based runtime systems selected for this thesis.

2.1.1 PaStiX original algorithm description

The first issue encountered when developing an application for a distributed memory
machine is to decide on the data distribution. The PASTIX solver, contrary to some
other solvers, chooses to statically distribute its data once, during preprocessing. Data
are not redistributed dynamically afterwards, during factorization, as it might be done
in MUMPS for example. To achieve good performance, the data distribution and nu-
merical factorization steps must be strongly coupled.

2.1.1.1 Scheduling and data mapping

The numerical factorization algorithm efficiency relies on a good partitioning and data
mapping over the computational nodes. This step has been developed in Pascal Hénon’s
thesis [thpascal |. It statically computes a balanced regulation for the solver follow-
ing load balancing between processors and precedence constraints between blocks of the
matrix. Dependency rules between computations are given by the blocked elimination
tree structure described in page the decomposition of a column block can-
not be performed before all its descendants in the elimination tree have brought their
contributions to it. Conversely, a column block’s factorization will produce a contribu-
tion to all its ancestors. The wider the elimination tree is, the more the sparsity of the
matrix induces parallelism. The computational cost regulation and the data mapping
over processors rely on a precise modelization of BLAS routines and communications
required by the algorithm. Those cost models have been developed in Pierre Ramet’s
thesis [ramet__optimisation_ 2000 | and are obtained experimentally on a large range
of different sized input data on the target architecture. The behavior of the studied oper-
ations is then represented by a polynomial formula using a linear regression. A message
passing benchmark tool has been designed to simulate communication through the com-
putation of the network’s latency and bandwidth. The MPI/Thread implementation of
the solver required distinguishing between intra-node communications and extra-node
ones. Indeed, a multi-threaded application incurs no cost for a shared memory data
transfer.

The goal of this data distribution step is to exploit, using cost models, the different
existing level of parallelism in computation:

40 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

1. the coarse grain parallelism, induced by independent computations between sub-
trees of a same node of the elimination tree. This parallelism is induced by the
sparsity of the matrix. As we have seen in the reordering of the unknowns
leads to the creation of an elimination tree. Distinct branches of the tree can be
eliminated independently.

2. the mean grain parallelism. To obtain more parallelism, one can split large nodes
and distribute their computations over several processors (see . This par-
allelism is induced by the dense block factorization. It is also called node level
parallelism.

3. the fine grain parallelism, or micro-parallelism. It is obtained, when performing
block operations, using the internal processor parallelism (optimal usage of the
pipeline effect of super-scalar processors). This last level is absolutely necessary
to obtain a good performance. It relies mainly, with a given good block size, on
the usage of BLAS 3 routines [gukaku97a; gupta__highly_1997; r88; rot96a;
rogu94a; rosc94a |.

This scheduling step uses the elimination tree to distribute, in a balanced way, the
independent column-blocks from the bottom of the tree. The sub-blocks of higher levels
in the tree are most of the time bigger and denser. A larger number of operations are
performed on these blocks. Thus, it is necessary to split them into smaller ones, using
an optimal size, to extract more parallelism from them. After that, they are distributed,
following a block cyclic pattern, to exploit the dense computation parallelism. Using
this process we can obtain a good static computation regulation, by simulating the
factorization using cost models [r190; r14; r212; rogu94a |.

This technique can be used following a block-column unidimensional distribution
scheme (1D), which allows to exploit the parallelism linked with the independence of the
computations between column-blocks, or following a bi-dimensional scheme (2D) where
we also exploit the independence between computations on elementary blocks of this
distribution, as it is done with dense matrices. A 2D distribution gives a better scala-
bility of the parallel solver [rogu94a; schreiber__scalability__1993 | but the timing
overhead during preprocessing is very large. Indeed, the complexity of the simulation
used to compute the static distribution increases. Moreover, a 2D distribution creates a
communication overhead compared to a 1D distribution.

2.1.1.2 Numerical factorization

The previous step provides a static scheduling of computations that must be followed
literally if we do not want to break the computed regulation. To store this scheduling
order we use an ordered bi-dimensional array, Task(t,7), associating the factorization
of a column-block i to the thread ¢. Moreover, to obtain a good reuse coherency in
BLAS calls, PASTIX solvers bind each computational thread on a computational core
using HWLoOC library [BroCleMorFurGogMerThiNam10hwloc |. Once bound to a
computational core, during numerical factorization, each thread follows the array of Ny

2.1. Framework 41

tasks that are assigned to it, as shown in Algorithm[4] that uses notations from Figure[2.1]
For each task, the thread executes the following steps:

e it receives and adds the column-block associated data;

e it waits for local contributions to be applied;

it factorizes the diagonal block;

it solves an off-diagonal blocks triangular system;

it computes the outgoing contributions and sends them.

The first step of each task computation is data reception (lines 3 to 7). In this compu-
tational loop, the thread waits for each remote contribution required by the factorization
of the column-block k. To improve communication reactivity, each thread waits for any
communication it might receive, not specifically the ones needed for column-block k.
Additions can then be performed before the computation of the receiving task. Once
all remote contributions have been received, the thread waits for all local contributions
that are computed by other threads belonging to the same MPI process (lines 8 to 10).

The remainder of the factorization algorithm, for the task computation, is similar to
the sequential algorithm: diagonal block factorization and the solution of the off-diagonal
blocks triangular system (line . The contribution addition is decomposed into two
steps, the computation (lines [15| to and the send (lines 32| to . We use here a
“fan-in/right-looking” method, hence, remote contributions are added in a provisional
block-column before being sent (lines 27| and . In the hybrid MPI/Thread version,
the storage of these block-columns is avoided as we can directly add contributions on
the recipient block-columns with shared memory (lines and . In this case, we
use a “fan-out” approach. The two approaches are automatically mixed following the
MPI/Thread distribution.

Now that we have seen more in details the PASTIX main algorithm we can present the
two task-based runtime systems we want to couple PASTIX with. Using these libraries,
the algorithm can be separated from the hardware kernel implementation, and ease the
introduction of new computational devices.

2.1.2 Elected runtime systems

The PARSEC [dague:12 | distributed runtime system, developed by the University of
Tennessee in Knoxville, is a generic data-flow engine supporting a task-based implemen-
tation and targeting hybrid systems. Domain specific languages are available to expose
a user-friendly interface to developers, and allow them to describe their algorithm using
high-level concepts. This programming paradigm relies on an abridged representation
of the tasks and their dependencies. This representation structure is agnostic to algo-
rithmic subtleties, where all intrinsic knowledge about the complexity of the underlying

42

Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Notations: For each column-block k, 1 <k < N,

Proc,, and Thready, are respectively the process and the thread elected
by the static scheduler to factorize the column-block k;

Ly is the column-block k, symmetrically, Uy is the row-block from U;

L)k 1s the i-th block in column-block k, symmetrically, Uy ;) is the i-th
row-block k from U,

by, is the number of off-diagonal blocks in column-block k;

C,g (resp. CkU) is the contributions column-block computed on process
Procy, for column-block k to be applied on L (resp. U);

NCDy, is the number of remote contributions the column-block k& will
receive;

N}, is the total number of contributions the column-block k will receive:
remotely and locally;

N'T; is the number of tasks assigned to thread t;
Task(t,1) is the I column-block thread t has to factorize;

getLock() (resp. releaseLock()) are used to enter (resp. leave) a protected
shared memory area. It prevents two threads from modifying the same
data concurrently.

For the sake of simplification, we consider that A ;) ~ A; ;. In other words,
we consider that L; ; is in column block ¢ and U; ; is in row block j.

Figure 2.1 — Notations used in algorithms

2.1. Framework 43

Algorithm 4 Parallel column-block factorization on thread ¢ of process p.
1: Forl=1to NT; Do
2: k = Task(t,l)

> Wait for a contribution to a local column-block » and add the received contribution

CE,CY in the correct place
While NCD;, >0 Do
(r,CE, CY) « WaitContributions(); > Receiving
GetLock(L,);
L.=L,—CFk
U-=U,-CY
RealeaseLock(L,);
NCD,—; NCp—;
10: End While
11: While NCj, >0 Do

12: Wait for a signal for k
13: End While
14: Task | computation: Ay factorization and Lj, and Uy, solve > Computation
15: For j =1%o b, Do
16: Fori=jtob, Do
17: It A; j is local Then
> Prevent other shared memory access to the blocks owning A; ; and A, ;
18: GetLock(L; j);
19: Li,j = Li,j — Li,k-Uk,j;
20: Ujﬂ' = Uj’i — Lj,k-Uk,i§
21: RealeaseLock(L; j);
22: NCj-—;
23: It NC; =0 Then
24: Send signal to column-block j
25: End If
26: Else
27: CLZ'J‘ = CLZ',]' — Li,k-Uk,j
28: CUM = CUj’i — Lj7k.Uk,j
29: End If
30: End For
31: End For
32: Fori=1to b, Do
33: If A; is non local and C; has received its contributions Then
34: Send C; contribution to process Proc; for Thread; > Sending
35: End If

36: End For
37: End For

44 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

algorithm is extricated, and the only constraints remaining are annotated dependencies
between the tasks [CJY04 |. This symbolic representation, augmented with a spe-
cific data distribution, is mapped on a particular execution environment. The runtime
supports the usage of different types of accelerators, GPUs and Intel Xeon Phi, besides
distributed multi-core processors. Data are transferred between computational resources
based on coherence protocols and computational needs, with emphasis on minimizing
the unnecessary transfers. The resulting tasks are dynamically scheduled on the avail-
able resources following a data reuse policy mixed with different criteria for adaptive
scheduling. The entire runtime targets very fine grain tasks (order of magnitude under
ten microseconds), with a flexible scheduling and adaptive policies to mitigate the effect
of system noise and take advantage of the algorithmic-inherent parallelism to minimize
the execution span.

The experiments presented in this thesis take advantage of a specialized domain
specific language of PARSEC, designed for affine loops-based programming [dague-la
]. This specialized interface allows for a drastic reduction in the memory used by the
runtime, as tasks do not exist until they are ready to be executed, and the concise
representation of the task-graph allows for an easy and stateless exploration of the graph.
In exchange for the memory saving, generating a task requires some extra computations,
and lies in the critical path of the algorithm. However, these task’s generations are
executed concurrently by each thread reducing this extra-cost. The runtime can explore
the graph dynamically based on the ongoing state of the execution without need to
compute and store the whole task graph.

STARPU [Augonnet__2010__ccpe | is a runtime system aiming to allow program-
mers to exploit the computing power of clusters of hybrid systems composed of CPUs
and various accelerators (GPUs, Intel Xeon Phi, etc.) while relieving them from the
need to specially adapt their programs to the target machine and processing units. The
STARPU runtime supports a task-based programming model, where applications sub-
mit computational tasks, with dependency analysis computed at the submission. These
tasks are composed with the data from the algorithm and the different implementations
of the kernel available (e.g. CPU or GPU implementations). Then STARPU schedules
these tasks, and the associated data transfers on available resources. The data that a
task manipulates are automatically transferred among the accelerators and the main
memory in an optimized way: minimized data transfers, data prefetch, communications
overlapped with computations, etc. Programmers are relieved of the scheduling issues
and technical details associated with these transfers. STARPU takes particular care
of scheduling tasks efficiently by establishing performance models of the tasks through
on-line measurements, and then using well-known scheduling algorithms from the lit-
erature. In addition, it allows scheduling experts, such as compilers or computational
library developers, to implement custom scheduling policies in a portable fashion.

The differences between the two runtime systems can be classified into two groups:
conceptual and practical differences. At the conceptual level the main differences be-
tween PARSEC and STARPU are the tasks submission process, the centralized schedul-
ing, and the data movement strategy. PARSEC uses its own parameterized language to

QU W N =

2.1. Framework 45

describe the DAG in comparison with the simple sequential submission loops typically
used with STARPU. Therefore, STARPU relies on a centralized strategy that analyzes,
at runtime, the dependencies between tasks and schedules these tasks on the available
resources. On the contrary, through compile-time information, each computational unit
of PARSEC immediately releases the dependencies of the completed task solely using
the local knowledge of the DAG. At last, while PARSEC uses an opportunistic ap-
proach, the STARPU scheduling strategy exploits cost models of the computation and
data movements to schedule tasks to the right resource (CPU or GPU) in order to
minimize execution makespan. However, it does not have a data-reuse policy on CPU-
shared memory systems, resulting in lower efficiency when no GPUs are used, compared
to the data-reuse heuristic of PARSEC. At the practical level, PARSEC supports mul-
tiple streams to manage the CUDA devices, allowing partial overlap between computing
tasks, and maximizing the occupancy of the GPU. On the other hand, STARPU allows
to transfer data directly between GPUs without going through central memory, poten-

tially increasing the bandwidth of data transfers when a datum is needed by multiple
GPUs.

2.1.2.1 PaRSEC

PARSEC uses the task graph differently avoiding manipulating the whole graph at
anytime. This different usage implies a different way of describing the graph for the user.
The data distribution and dependencies are specified using the Job Data Flow (JDF)
format. Listing [I| presents the description of the dense POTRF task (i.e. diagonal block
factorization) in a JDF format. The JDF file starts with a C preamble including all
headers required to describe the task (line [1] to . Then, a set of global variables is
defined to be used in the task descriptions (lineto. Next starts the description of the
POTRF task. It takes one parameter k (line that varies in the interval [0, SIZE — 1]
(line 21)). Line 24 indicates that the task will be executed were the datum A(k, k) is
located. The task will require a RW (i.e. read and write) access to a datum T that comes
either from the memory if it is the first block, or from the last SYRK (update from left
blocks L;; = L;; — L; ;.Lj) update (line . At the end of the POTRF task the TRSM
tasks (Solve L; ;.L;; = A; j,j > i) on the blocks beneath will receive the datum T (line
and it will also be and the data can be written back to the memory as it will not
be modified anymore (line . Finally, the lines 31| to [33| of the JDF file indicate the C
code that will correspond to the execution of the task. It can use the task parameters
(here k), the data elements (here T') and the global variables defined earlier (here A,
NB, SIZE, uplo, and INFO).

Listing 1 Part of the JDF description of the dense Cholesky factorization.

extern /A
#include <plasma.h>
#include <core_blas.h>

#include "parsec.h"

© 00 g O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

46 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

#include "data_distribution.h"

h}

A [type =]
NB [type = int]

SIZE [type = int]

uplo [type = PLASMA_enum]

INFO [type =]

/**

* POTRF *
% 5k sk ok sk ok ok ok ok sk sk ok sk % ok sk ok sk ok ok sk ok sk sk ok sk %k sk %k ok sk ok 5k k %k sk %k ok k %k sk %k ok k % k ok k ok % /

POTRF (k)

// Execution space
k = 0..8IZE-1

// Parallel partitioning
Alk, k)

// Parameters

RW T <- (k == 0) 7 A(k, k) : T SYRK(k-1, k)
-> T TRSM(k, k+1..SIZE-1)
-> A(k, k)

BODY

CORE_zpotrf (uplo, NB, T, NB, INFO);
END

When the JDF file is ready, one can use the JDF translator daguepp. This JDF
translator will define data elements (here T') as a function of the data flow in the C code
together with some tools to handle the data elements (i.e. move it to global memory,
pass it to other tasks...). Then, the user describes the data distribution in a C code and
instantiates the DAG generator that constructs the first tasks (i.e. the tasks with no
parent in the DAG that are ready at the beginning of the algorithm) of the DAG, and
enqueues these tasks into PARSEC context. PARSEC will never construct the whole
graph of the factorization but discovers it while the tasks are executed.

2.1.2.2 StarPU

Implementing an algorithm using STARPU is fairly simple. Listing [2| presents the dense
Cholesky factorization written using STARPU. First, the user describes the codelets. A
codelet is a structure describing a computational kernel with all the available imple-
mentations targeting different architectures. The codelet describes the number of data

O© 00 N 3T W=

NN DN DNDNDN = = = e s
Tl W NN~ O OO Ui WwWwNn = O

2.1. Framework 47

accessed and the access mode (e.g. STARPU_R, STARPU_W, STARPU_RW standing respec-
tively for read, write and read/write accesses). Here, we have three codelets, one per
each of the BLLAS operations involved in the factorization. The first one, c1_spotrf
use one datum in read/write mode. The codelet is associated to a datum (or a set of
data) with the starpu_insert_task() function. The tasks are inserted into STARPU
runtime system that will execute them, when the dependencies are satisfied.

STARPU builds the DAG following the sequential order of submission, and following
data dependencies. Indeed, the user only follows the sequential algorithm he wants to
execute and replace the calls to the kernels with task submissions. The submission call
is asynchronous; the user will continue submitting all its tasks without waiting for their
execution. Once a task is ready (i.e. all the tasks it depends on have been executed), it
is scheduled for execution on a given resource and, at the end of its execution, it releases
the dependencies on its children in the task graph. STARPU is then able to decide which
tasks can be executed concurrently on the multiple computing units following the data
accesses and the access modes. It also decides which computing unit will execute the
tasks depending on the expected kernel performance and the computing units availability.

Listing 2 STARPU dense Cholesky example.

void spotrf_cpu(void *buffer[], void *cl_arg)

{
float * A = (float *)STARPU_MATRIX_GET_PTR (descr[0]);
unsigned nx = STARPU_MATRIX_GET_NY (descr [0]);
unsigned 14 = STARPU MATRIX GET _LD(descr[0]);
int info;
spotrf (,nx, A, 1d, info);
}

void spotrf_cuda(void *buffer[], void *cl_arg);
void strsm_cpu(void *buffer[], void *cl_arg);
void strsm_cuda(void *buffer[], void *cl_arg);
void sgemm_cpu(void *buffer[], void *cl_arg);
void sgemm_cuda(void *buffer[], void *cl_arg);

static struct starpu_codelet cl_potrf =

{
.cpu_funcs = {spotrf_cpu, NULL},
.cuda_funcs = {spotrf_cuda, NULL},
.nbuffers = 1,
.modes = {STARPU_RW}

};

static struct starpu_codelet cl_strsm =

{

48 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

26 .cpu_funcs = {strsm_cpu, NULL},

27 .cuda_funcs = {strsm_cuda, NULL},

28 .nbuffers = 2,

29 .modes = {STARPU_R, STARPU_RW}

30 3}

31

32 static struct starpu_codelet cl_sgemm =

33 A

34 .cpu_funcs = {sgemm_cpu, NULL}Z,

35 .cuda_funcs = {sgemm_cuda, NULL},

36 .nbuffers = 3,

37 .modes = {STARPU R, STARPU R, STARPU RW}

38 };

39

40 int main(int argc, char x*argv)

41 A

42 /* Initialisation of the matrix data handles and
parameters*/

43 starpu_init () ;

44

45 /* create all the DAG nodes x/
46 for (k = 0; k < nblocks; k++) {

47 /* insert the factorization of Agi */

48 ret = starpu_insert_task(&cl_sportf,

49 STARPU_RW, MATRIX DATA[k][k],

50 0);

51 for (j = k+1; j<nblocks; j++) {

52 / * Akﬂ‘ = AkJ, A_lng */

53 ret = starpu_insert_task(&cl_strsm,

54 STARPU_R, MATRIX _DATA[k][k],

55 STARPU_RW, MATRIX_DATA([k][j],

56 0);

57 for (i = k+1; i<nblocks; i++) {

58 if (i <= j) {

59 starpu_data_handle_t sdataki =
starpu_data_get_sub_data(dataA, 2, k, 1i);

60 starpu_data_handle_t sdataij =
starpu_data_get_sub_data(dataA, 2, i, j);

61

62 ret = starpu_insert_task(&cl_sgemm,

63 STARPU R, MATRIX DATA[k][i]l,

64 STARPU_R, MATRIX_DATA[k][j],

65 STARPU_RW, MATRIX_DATA[i]l[j],

66
67
68
69
70
71
72
73
74

2.2. Implementation on top of generic runtime systems 49

0);

}
starpu_task_wait_for_all();
starpu_shutdown () ;

return O;

2.2 Implementation on top of generic runtime systems

This section presents our implementation of a sparse direct linear solver on top of a
generic task-based runtime system. As we have seen before, for this study, we use the
PASTIX library as a starting point and couple it with two generic runtime systems:
PARSEC and STARPU. First, we describe the multi-core implementation, and the next
section deals with integration of heterogeneous architectures. The section describes
the optimizations that were integrated to obtain an efficient implementation on top of
tasks based runtime systems. These optimizations are enabled in all results shown in
this section and the next one, and benefit both to the original scheduler and to the
runtime system libraries.

We present how we adapted our direct sparse solver algorithm to generic runtime
systems in order to target accelerators. The two scheduling systems we want to use to
help accessing accelerators may lead to some additional cost compared to the lightweight
original solvers scheduler and, to reduce the overhead, we had to adapt the task granu-
larity to the runtime systems. To ensure the introduction of the runtime systems gives
decent performance, we compare its execution with the original finely tuned PASTIX
static scheduler.

Figure presents the three tasks that compose the blocked sparse supernodal
decomposition. This decomposition uses the same tasks as the dense factorization (Fig.
, but the sparsity induces irregularity in the size of the data it is applied to. The
blocks created in a sparse context are also generally smaller than with dense linear alge-
bra leading to less compute intensive tasks. The three tasks involved in a decomposition
are:

1. the factorization of the diagonal block: A;; = L;; LY, (POTRF);

2. triangular system solving using the previously factorized block and the off-diagonal
blocks of the panel: Lj;L; = Aj;,j >t (TRSM);

3. the update to the trailing sub-matrix: L;, = Ly; — LkiLﬁ-,j > i,k > j (GEMM).

Whereas the tasks dependencies graph from a dense Cholesky factorization [icl:509
] is extremely regular (Fig. [2.2(c))), the DAG describing the sparse supernodal method

50 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

contains rather small tasks with variable granularity and less uniform ranges of execution
space. This lack of uniformity makes the DAG resulting from a sparse supernodal
factorization complex (Fig [2.2(d)), increasing the difficulty to efficiently schedule the
resulting tasks on homogeneous and heterogeneous computing resources.

The current scheduling scheme of PASTIX exploits a 1D-block distribution, where
a task assembles a set of operations together, including the tasks factorizing one panel
(POTRF and TRSM) and all updates generated by this factorization (GEMMs). However,
increasing the granularity of a task in such a way limits the potential parallelism and
has a growing potential of bounding the efficiency of the algorithm when using many-
core architectures. To improve the efficiency of the sparse factorization on a multi-
core implementation, we introduced a way of controlling the granularity of the BLAS
operations. This functionality dynamically splits update tasks, so that the critical path
of the algorithm can be reduced. In this thesis, for both the PARSEC and STARPU
runtime systems, we split PASTIX tasks into two subsets of tasks:

panel (C) or panel factorization: diagonal block factorization and off-diagonal
blocks updates, performed on panel C

gemm(B) or GEMM updates: the updates from off-diagonal blocks of the panel C; to one
other panel co of the trailing sub-matrix, where C'; owns B and B is in the row
block of the diagonal block of Cy (we say that Co is the column block facing B).

Hence, the number of tasks is bound by the number of blocks in the symbolic structure
of the factorized matrix.

Moreover, when taking into account heterogeneous architectures in the experiments,
a finer control of the granularity of the computational tasks is needed. Some references
for benchmarking dense linear algebra kernels are described in [Volkov2008 | and show
that efficiency could be obtained on GPU devices only on relatively large blocks (a
limited number of such blocks can be found on a supernodal factorization only on top
of the elimination tree). Similarly, the amalgamation algorithm [A:LaBRI::HRRO07
|, reused from the implementation of an incomplete factorization, is a crucial step to
obtain larger supernodes and efficiency on GPU devices. The default parameter for
amalgamation has been slightly increased to allow up to 12% more fill-in to build larger
blocks, increasing the power efficiency, while maintaining a decent memory consumption.

2.2.1 PaRSEC implementation

Listings [3|and 4| show our JDF representation of the sparse Cholesky factorization using
the previously described panel factorization and GEMM updates tasks.

On line [3| of panel(j)’s JDF, cblknbr is the number of block columns in the
Cholesky factor. Once the j-th panel is factorized, the trailing sub-matrix can be up-
dated using the j-th panel. This data dependency of the sub-matrix update on the
panel factorization is specified on line where firstblock is the block index of the
j-th diagonal block, and lastblock is the block index of the last block in the j-th block
column. The output dependency on line [17] indicates that the j-th panel is written to

2.2. Implementation on top of generic runtime systems o1

Update
[] POTRF
[] TRsSM
[SYRK -
B GEMM - .
I I o
B .
(a) Dense tile task decomposition. (b) Decomposition of the task applied while process-

ing one panel.

(¢) Dense DAG representation. (d) Sparse DAG representation of a sparse
LD LT factorization.

Figure 2.2 — Comparison of dense and sparse task decomposition.

© 00 O Ui Wi

T T N R O e T e W e W G S G S Gy
N — O © 0030 Ui WO

52 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Listing 3 Panel factorization JDFdescription.

panel (j)

/* Execution Space */
j = 0 .. cblknbr-1

/* Local variables x/

leaf
lastbrow
firstblock
lastblock

inline_c
inline_c
inline_c
inline_c

3t
i
hi
i

return
return
return
return

is_leaf(j); %}

last_block_row(j);

firstblock (j);
lastblock (j);

/* Task Locality (Owner Compute) */

:A(3)

/* Data dependencies
RW A <- (leaf) ? A(j)
-> A gemm(firstblock+1
-> A(j)

/* Kernel function */

BODY
panel (j);
END

*/

C gemm(lastbrow)

lastblock)

h}
h}

h}

2.2. Implementation on top of generic runtime systems 53

memory at the completion of the panel factorization. The input dependency of the j-th
panel factorization is specified on line where leaf is true if the j-th panel is a leaf
in the elimination-tree and lastbrow is the index of the last block updating the j-th
panel. Hence, if the j-th panel is a leaf, there are no updates to wait for, and the panel
is directly read from memory. Otherwise, the input is the result of the last update task
performed on the panel.

Similarly, gemm(k) (see listing {4 updates the fcblk-th block column using the k-
th block, where fcblk is the index of column block facing the k-th block (i.e. which
diagonal block is in the same block row), and blocknbr on line|3|is the number of blocks
in the Cholesky factorized matrix. The input dependencies of gemm (k) are specified on
lines |17 and where the cblk-th panel A is being used to update the fcblk-th column
C. Specifically, on these lines:

e diag is true if the k-th block is a diagonal block, and it is false otherwise;
e first is true if the k-th block is the first block to contribute to the fcblk-th panel;

PARSEC does not provide reduction operators yet. Thus, it forces us to impose an
order to apply the updates. In this sequence, prev and next are respectively the indices
of the previous and the next block updating the fcblk-th panel. Solutions with control
dependencies could bypass this restriction to restore an out of order scheduling of the
updates, but those solutions were not compatible with the use on a heterogeneous ar-
chitecture. Consequently, the data dependencies of the gemm (k) task are resolved once
the cblk-th panel is factorized, and all previous updates are performed. The fcblk-th
column is updated using the prev-th block. The diagonal blocks are not used to update
the trailing sub-matrix, but it is included in the code to have a continuous space of
execution for the task. This is required by the abridger representation of PARSEC. In
that case, we use A(fcblk) for both inputs as it is always available locally, and anyway
the task will do nothing. Finally, lines [I9] through [21] specify the output dependencies
of the gemm(k) task. If this is the last update to the fcblk-th panel, then next is null
and the panel is forwarded to the factorization task. Otherwise, the panel is released to
the next update in the precomputed order.

This algorithm can be seen as a left-looking variant for the inputs, and right looking
for the outputs.

2.2.2 StarPU implementation

The pseudo-code presented in algorithm [5| shows the STARPU tasks submission loop
for the Cholesky decomposition. The submission of the tasks follows the sequential
algorithm. STARPU uses the task insertion order to discover the dependencies between
the tasks using the same data.

It is also possible to submit only ready tasks, as it would be the case using PARSEC
and use nested task submission inside tasks. This reduces the size of the DAG the
runtime system must maintain, but gives it less information about the DAG at any given
time. In that case, the panel factorization kernel of a supernode S; submits all the GEMM

© 00 O Ut i W N

CLO W DN NDNDDNDNDDNDDNDNDNNDN = = === = = =
—_ O © 00 IO Ui WNH O ©WOW=IO Uk W —O

54 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Listing 4 Trailing sub-matrix update JDF'description.

gemn (k)
/* Execution space */
k = 0 .. blocknbr

/* Local variables x*/
fcblk = inline_c %{ return facing_cblknum(k); %}

cblk = inline_c %{ return cblknum(k); %7}

diag = inline_c %{ return is_diag(k); %}

prev = inline_c %{ return prev_in_row(k, fcblk); %}

next = inline_c %{ return next_in_row(k, fcblk); %}
first = inline_c %{ return prev_in_row(k, fcblk) == 0; %}

/* Task Locality (Owner Compute) x*/
:A(fcblk)

/* Data dependencies */

R A <- diag ? A(fcblk) : A panel(cblk)

RW C <- first ? A(fcblk) : C gemm(prev)
-> (!diag && next == null) ? A panel(fcblk)
-> (!diag && next != null) ? C gemm(next)

/* Kernel function %/
BODY
if (ldiag)
if (EXECUTION_ON_GPU) {
sparse_gemm_update_gpu(k);
} else {
sparse_gemm_update_cpu (k) ;
}
END

Algorithm 5 STARPU tasks insertion algorithm.

1: For all Supernode S; Do

2 submit__panel(Sy) > update of the panel
3 For off-diagonal block b; of S1 Do

4: Sy < supernode__in__front_of(B;)

5 submit__gemm(S1, S2) > sparse GEMM By, p>; x Bl subtracted from S5
6 End For
7. End For

2.2. Implementation on top of generic runtime systems 55

updates using S;. The GEMM task’s kernel submits the factorization of the output panel
if there is no other update to perform on it. This requires the introduction of an update
counter per column block, as it is already done in PASTIX original implementation. An
additional conditional wait is also required. Indeed, the main thread has to wait for all
the tasks to be submitted before calling starpu_wait_for_all(). This is done using
a pair of pthread_cond_wait () /pthread_cond_signal() where the main thread waits
for the condition to be set by the last panel factorization. A quick study of the two
different implementations showed no significant performance differences.

Thus, with PARSEC and STARPU we can express the same task parallelism in a
different way. At the moment of the experimentation, the two schedulers did not provide
the same capabilities. For example, PARSEC respects data locality while tasks can be
commutable using STARPU.

2.2.3 Multi-core Architecture experimentation

In this thesis, we present the extensions to the solver to support heterogeneous many-
core architectures. These extensions were validated through experiments conducted on
Mirage nodes from the PLAFRIM cluster at INRIA Bordeaux - Sud-Ouest. A Mirage
node is equipped with two hexa-core Westmere Xeon X5650 (2.67 GHz), 32 GB of mem-
ory and 3 Tesla M2070 GPUs. The theoretical peak of one node reach 128.16 GFlop/s
on this machine. PASTIX was built without MPI support using GCC4.6.3, CUDA
4.2, Intel MKL 10.2.7.041, and SCOTCH 5.1.12b. Experiments were performed on
a set of nine matrices, most of them parts of the University of Florida sparse matrix
collection [davis__university__ 2011 | (matr5, and PmlDF are respectively coming from
University of Minnesota, and University of Cambridge). Their main characteristics are
given in Table These matrices represent different research fields and exhibit a wide
range of properties (size, arithmetic, symmetry, definite problem, etc.). The TFlop col-
umn reports the number of floating point operations (Flop) required to factorize those
matrices. Those numbers are used to compute the performance results shown in this
section. The Number of tasks is computed for a shared memory run with twelve threads,
minimal and maximal block sizes respectively set to 60 and 120, and minimal amalga-
mation level during graph preprocessing in SCOTCH set to 20. The total number of task
is displayed and the number of column block factorization is between brackets. The
number of sparse GEMM tasks can then be deducted by subtracting these two numbers.

As mentioned earlier, the PASTIX solver has already been optimized for distributed
clusters of NUMA nodes [faverge_ ordonnancement_ 2009 |. We use the current
state-of-the-art PASTIX scheduler as a basis, and compare the results obtained using
the STARPU and PARSEC task-based runtime systems from there.

In this experiment, we do not expect to outperform the original PASTIX dedicated
scheduler. However, we want to estimate the possible loss of performance introduced by
using a generic task-based runtime system.

Figure reports the results from a strong scaling experiment, where the number of
computing resources varies from one to twelve cores, and where each group represents
a particular matrix. Empty bars correspond to the PASTIX original scheduler, shaded

Chapter 2. Sparse factorization on shared-memory heterogeneous machines

o6

Matrix Prec _ Method _ Size _ nnza nnzp, _ Field Profile TFlop | Tasks number (panel)) _

af_shelll0 D LU 1.5e+6 | 27e+6 | 610e+6 Sheet metal forming 0.12 83989 (13970)
High-order vector finite el- .

dielFilterV2clx | Z LU 0.6e+6 | 12e+6 | 536e+6 ement method in electro- /// 3.6 264 383 (11289)
magnetic L

N\

Flan_1565 D LLT 16646 | 59e4+6 | 1712646 | S model of a steel flange, 5.3 311494 (14986)
hexahedral finite elements

audikw_1 D LT 0.9e+6 | 39e+6 | 1325e+6 | structural problem 6.5 338493 (10082)

matr5 D LU 0.5e+6 | 24e+6 | 1133e+6 | Magneto-hydrodynamic 6.6 189661 (9292)
geomechanical model of

Geo_1438 D LT 1.4e+6 | 32e+6 | 2768e+6 | earth crust with under- 23 608 356 (15100)
ground deformation

Pm1DF Z LDLT 1.0e4+6 | 8e+6 1105e+6 | Accoustic 28 1047556 (30588)
3D model of a steel hook

Hook_1498 D LU 1.5e+6 | 3le+6 | 4168e+6 | with tetrahedral finite ele- 35 561323 (21519)
ments

Serena D LDLT | 1.4e46 | 32c+6 | 3365046 | 825 resevoir simulation for 47 683337 (15515)
CO2 sequestration

Table 2.1 — Description of the matrices (Z: double complex, D: double real).

2.3. Heterogeneous systems o7

bars correspond to STARPU, and filled bars correspond to PARSEC. The performance
results are in Flop/s, the higher the better. Overall, this experiment shows that on a
shared memory architecture the performance obtained with all of the above-mentioned
approaches is comparable, the differences remaining minimal on the target architecture.
We could reach respectively 57.6%, 63.7%, and 68.9% of the peak performance with
STARPU, PASTIX original scheduler, and PARSEC in double precision.

Figure [2.4] shows results on audi_kwl test case with a larger number of cores. The
experiment was performed on Romulus machine at ICL laboratory at UTK (University
of Tennessee, Knoxville). The machine comprises four 12-core AMD Opteron 6180 SE
at 2.5GHz with 256 GB RAM. One can notice that the scaling of the task-based runtime
systems implementation compared to the original scheduler one is slightly reduced when
the number of cores becomes greater than 12. This is due to the increasing overhead in
the runtime scheduler when the number of computing units increases.

One can see that, in most cases, the PARSEC implementation is more efficient than
STARPU, especially when the number of cores increases. STARP U shows an overhead on
multi-core experiments attributed to its lack of cache reuse policy compared to PARSEC
and the PASTIX internal scheduler. A careful observation highlights the fact that both
runtime systems obtain lower performance compared to PASTIX for LD L factorization
on both Pm1DF and Serena matrices. This comes from a different implementation of
the kernels. Due to its single task per node scheme, PASTIX stores the D;akLz? ; matrix
in a temporary buffer which allows the update kernels to call a simple GEMM operation.
On the contrary, both STARPU and PARSEC implementations are using a less efficient
kernel that performs the full 4; ; = A; ; —Li,kaykL%i ; operation at each update. Indeed,
because of the extended set of tasks, the life span of the temporary buffer could cause
large memory overhead.

In conclusion, using these generic runtime systems shows similar performance and
scalability to the PASTIX internal solution on the majority of the test cases, while
providing a suitable level of performance and a desirable portability, allowing for a
smooth transition toward more complex heterogeneous architectures.

2.3 Heterogeneous systems

While obtaining an efficient implementation is one of the goals of the previous exper-
iments, it is not the major one. The ultimate goal is to develop a portable software
environment allowing for a smooth transition to accelerators, a software platform where
the code is factorized as much as possible, and where the human cost of adapting the
sparse solver to current and future hierarchical complex heterogeneous architectures re-
mains consistently low. Building upon the efficient supernodal implementation on top
of DAG based runtimes, we can more easily exploit heterogeneous architectures. The
GEMM updates are the most compute-intensive part of the matrix factorization, and it
is important that these tasks are offloaded to the GPU. We decide not to offload the
tasks that factorize and update the panel to the GPU due to the limited computational
intensity, in direct relationship with the small width of the panels. It is common in

Chapter 2. Sparse factorization on shared-memory heterogeneous machines

o8

Original implementation STARPU PARSEC
0o 1 core 1 core In 1 core
0o 3 cores 3 cores I 3 cores
0o 6 cores 6 cores I 6 cores
0o 9 cores 9 cores 1] 9 cores
| 0o 12 cores 12 cores Hn 12 cores i
90 | : 1
80 L N - |
70 \\ n n M
= 60| i _ |
2 | . . . |
= | |
< | |
o 50 N
8 | |
= .
IS 5 |
m | : - . N
rm 40 - N q - - N
mu. . -
¥ i i
30 - N
) | : : : : | : | | |
100 i
| f f i
KL JAREL DREELT DUURRS DURELD DR ORRED IDEA e
ol | | i
T T T T T T T T T
o) 0)) 0 (%) %) 0 %)
06, /uﬂﬁ\h: WOJT WOJAL @QUJ fOJf SJFO @6, OJTC
S\ N2° 7500 R okt ADD v 449 Q
AT et e Y . Geo pro? 00 gexe™®

Figure 2.3 — CPU scaling study: GFlop/s performance of the factorization step on a set of nine matrices with the three
schedulers.

2.3. Heterogeneous systems 59

103 |-]
- Oo PASTIX i
H 00 PASTIX with STARPU |[{
i 00PASTIX with DAGUE ||
= - |
] =
& | n i
g
=
:Lg
E 102 T _ i
£ I ,
= i]

1 2 4 6 12 24 36 48
Number of Threads

Figure 2.4 — CPU scaling study: Time to factorize on audikw_1 test case on Romulus
machine.

dense linear algebra to use the accelerators for the update part of a factorization while
the CPUs factorize the diagonal blocks; so from this perspective our approach is conven-
tional. However, such an approach, combined with look-ahead techniques, gives really
good performance for a low programming effort on the accelerators [yamazaki2012one
]. The same solution is applied in this study, since the panels are split during the analysis
step to fit the classic look-ahead parameters.

When working on CPU the GEMM product corresponding to an update from a panel to
another one is performed once, in a temporary buffer, and scatter added into the target
column block. Indeed, performing a larger GEMM update increases the performance of
the update. On a GPU we also want to perform the largest matrix product possible.
However, we do not want to use a temporary buffer on the limited memory of the
accelerator nor to multiply the small kernel addition calls as CUDA start-up would be
paid for each one of them. Thus, we introduce a new kernel to perform the update at
once on the GPU. This start-up cost could be reduced by using batch kernels submission
on GPU but this is only available for identical task execution where only the data change
while the sparse linear algebra decomposition produces very irregular tasks. The next
subsection presents the new “sparse” GPU kernel that performs the trailing supernodes
updates. Then, it compares the performance of this kernel with the original dense one
to estimate the performance drop resulting from the sparsity of the update. After that
we describe how we indicate the scheduler which update will be performed on GPU.
Finally, we present a scaling study of the two runtime systems implementations with
accelerators on a single node.

60 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

2.3.1 Implementation of a specific GEMM kernel

It is a known fact that the update is the most compute intensive task during a fac-
torization. Therefore, generally speaking, it is paramount to obtain good efficiency on
the update operation in order to ensure a reasonable level of performance for the entire
factorization. Because of the embarrassingly parallel architecture of the GPUs and to
the extra cost of moving the data back and forth between the main memory and the
GPUs, it is of greatest importance to maintain this property on the GPU.

As presented in Figure the update task used in the PASTIX solver groups
together all outer products that are applied to a same panel. On the CPU side, this
GEMM operation is split in two steps because of the gaps in the destination panel: the
outer product is computed in a contiguous temporary buffer, and upon completion, the
result is scattered on the destination panel. This solution has been chosen to exploit
the performance of vendor provided BLAS libraries in exchange for constant memory
overhead per working thread.

For the GPU implementation, the requirements for an efficient kernel are different.
First, a GPU has significantly less memory compared with what is available to a tra-
ditional processor, usually between 3 to 6 GB that can be used by multiple kernels
simultaneously. This forces us to carefully restrict the amount of extra memory needed
during the update, making the temporary buffer used in the CPU version unsuitable.
Second, the uneven nature of sparse irregular matrices might limit the number of active
computing units per task. Hence, only a partial number of the available warps on the
GPU might be active, leading to a deficient occupancy. Thus, we need the capability
to submit multiple concurrent updates in order to provide the GPU driver with the op-
portunity to overlap warps between different tasks to increase the occupancy, and thus,
the overall efficiency.

Many CUDA implementations of the dense GEMM kernel are available to the scien-
tific community. The most widespread implementation is provided by NVIDIA itself in
the CUBLAS library [nvidia__inc__cublas_ 2008 |. This implementation is extremely
efficient since CUDA 4.2, allows for calls on multiple streams, but is not open source.
Volkov developed an implementation for the first generation of CUDA enabled de-
vices [Volkov2008 | in real single precision. In [Tan:2011:FID:2063384.2063431 |,
authors propose an assembly code of the DGEMM kernel that provides a 20% improvement
on CUBLAS 3.2 implementation. The MAGMA library proposed a first implementation
of the DGEMM kernel [nath2010improved | for the NVIDIA Fermi GPUs. Later, an
auto-tuned framework, BEAST (Bench-testing Environment for Automated Software
Tuning) from ICL, was presented in [10.1109/TPDS.2011.311 | and included into
the MAGMA library. This implementation, similar to the ATLAS library for CPUs,
is a highly configurable skeleton with a set of scripts to tune the parameters for each
precision.

As our update operation is applied on a sparse representation of the panel and
matrices, we cannot exploit an efficient vendor-provided GEMM kernel in a single call
per panel. We need to develop our own, starting from a dense version, and altering the
algorithm to fit our needs. Because of the source code availability, the coverage of the four

2.3. Heterogeneous systems 61

T
P P1,2
N i 1
N] 1
A 3 [
P S u
N =
N ;.
N R L
AN Pz
N i
,_EL__l
Py N
RN Py P,
T
! : \\ _
: ! \\ ZI I
— | N Pl
S 7
Pi3 n ‘\\ vvvvv R
7__I__I . Lo _ - 1]
D! Compacted in memory e -7
.o 7 [mamansaseaney o N
| I -
— [rr
(B [
P, L N e /= [
1,3 [! [
[[(]
! L re T s Y
- |
|

Figure 2.5 — Description of the panel update task. On the right we see the panel with
the non allocated zeros represented in white. On the left the panels are represented as
they are stored in memory. Each column block is a dense memory area in column-major
order. Red color represent the diagonal blocks and blue off-diagonal blocks.

floating point precisions, and its tuning capabilities, we decided to use the BEAST-based
version for our sparse implementation. As explained in [10.1109/TPDS.2011.311 |
the matrix-matrix operation is performed in two steps in this kernel. Each block of
threads computes the outer-product tmp = AB into the GPU shared memory, then
the addition C = SC + atmp is computed. To be able to compute the result of the
update from one panel to another directly into C, we altered the kernel to provide the
structure of each panel to the kernel. This allows the kernel to compute the correct
position inside C' during the sum step. This introduces a loss in the memory coalescence
and deteriorates the update parts. However, it prevents the requirement of an extra
buffer on the GPU for each offloaded kernel. Figure describes how a panel receives
an update from another panel. On the picture, P; updates P> by deducting from it the
result of the product PLj.Pf: 9,4 = 2 in the corresponding memory area of P». The right
part of the Figure presents how the update is performed on a CPU. The product is first
computed in a temporary buffer with a GEMM operation, then it is scatter-subtracted from
P, using multiple BLAS matrix-matrix additions. Figure describe the execution of
our modifications to the original BEAST kernel. In that case, everything is performed
in one kernel call. First, each tile of the product is computed in the shared memory then
the result is deducted, using a computed offset, in the target panel. Our contribution
here is to use the offset to directly update the panel in one call and without additional
temporary buffer.

62 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

blocknbr = 3; /* We have 3 blocks in | *
blocktab = [fri1, Iri,1,
lr1,2
pr P frie, lri2,
R rias)
1 : 1
s : | ! o fria fblocknbr = 2;/* We have 2 blocks in % *
: : N . //JAJ Iri1 fblocktab = [fro 1, lra 1,
‘ | Tiled 2,1 | fra,2, lra ol;
R A o
[} A ’ I
Pl un.-- - sparseGemmCuda(char TRANSA, char TRANSB,
A b ==l fria int m, int n, int k,

cuDoubleComplex alpha,

const cuDoubleComplex *d__A, int 1da,
-—- fri3 const cuDoubleComplex *d_ B, int 1db,
cuDoubleComplex beta,
cuDoubleComplex *d_ C, int ldc,
‘ int blocknbr, const int *blocktab,
frap ———Ffrs int fblocknbr, const int *fblocktab,
CUstream stream);

Figure 2.6 — Description of the GPU sparse GEMM update operation. fr (resp. Ir) stands
for first row (resp. last row). Four parameters — in red — are added to describe the sparse
structures.

The BEAST kernel has been tuned in MAGMA library with texture usage enabled,
which gives the best performance. Our problem is that the functions cudaBindTexture
and cudaUnbindTexture are not compatible with concurrent kernel calls on different
streams. Therefore, the textures have been disabled in the kernel, reducing the perfor-
mance of the kernel by about 5% on large square matrices, and by a larger factor on
irregular sizes.

Figure 2.7 and Figure 2.8 show the study made on the GPU GEMM kernel and the
effect of the modifications done on the BEAST kernel. These experiments are done
on a single GPU of the Mirage cluster (NVIDIA M2070). The experiment consists of
computing a representative matrix-matrix multiplication of what is typically encountered
during sparse factorization in double precision. Each point is the average performance
of 100 calls to the kernel that computes: C = C — ABT, with A, B, and C, matrices
respectively of dimension M-by-K, N-by-K, and M-by-N. B is taken as the first block
of K rows of A as it is the case in Cholesky factorization. M, N and K are set according
to the average values encountered as presented in subsection N being the height
of the first block (and the width of the updated panel), it has been set to 32. K is
the width of the first panel and has been set to 96. M varies from 192 to 9600. In
Figure [2.7], we first compare the lost of performance of our sparse kernel against a single
dense kernel. For the sparse kernel, blocks in A are also randomly generated, with
an average eight of 32, with the constraint that the rows interval of a block of A is
included in the rows interval of one block of ', and no overlap is made between two
blocks of A. The plain lines are the performance of the CUBLAS library with one stream

2.3. Heterogeneous systems

63

350 T T T T T T T T T
CUBLAS peak s
CuBLAS - 1 stream —— ASTRA - 1 stream - = Sparse - 1 stream - - - -
CUBLAS - 2 streams ASTRA - 2 streams — - Sparse - 2 streams - - - -
300 L CUBLAS - 3 streams ASTRA - 3 streams Sparse - 3 streams
250

/w—

200

GFlop/s

150

100

50

0 1000 2000 3000 4000 5000

6000

7000 8000 9000

Matrix size M (N=32,K=96)

10000

Figure 2.7 — Multi-stream performance comparison, on a M2070 GPU, on the DGEMM
kernel for three implementations: CUBLAS (one dense GEMM) library, BEAST (one
dense GEMM) framework, dense operations, without taking into account the sparsity of
the matrix, and our sparse adaptation of the BEAST framework with additional offset

to the C' updates.

64 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

(purple), two streams (green), and three streams (blue). The black line represents the
peak performance obtained by the CUBLAS library on square matrices. This peak is
never reached with the particular configuration case studied here because of the tall and
skinny shape of A and C that decreases the ratio of computations per data. The dashed
lines are the performance of the BEAST library in the same configurations. We observe
that this implementation already loses 140GFlop/s, around 60%, against the CUBLAS
library in that configuration. Removal of texture and design for square matrices even if
tuned for rectangular one are responsible for this performance loss. Finally, the dotted
lines illustrate the performance of the modified BEAST kernel to include the gaps into
the C matrix. It highlights the loss of performance due the memory fragmentation and
the additional tests. Introducing the sparsity, 50 GFlop/s more are lost. We observe a
direct relationship between the height of the panel and the performance of the kernel:
the taller the panel, the lower the performance of the kernel. The memory loaded to
do the outer product is still the same as for the BEAST curves, but memory loaded
for the C' matrix grows twice as fast without increasing the number of Flop to perform.
The ratio Flop per memory access is dropping and explains the decreasing performance.
However, when the factorization progresses and moves up the elimination trees, nodes
get larger and the real number of blocks encountered is smaller than the one used in this
experiment to illustrate worst cases.

Another alternative solution to the implementation of a new kernel would have been
to call a dense kernel for each block of contribution. In Figure 2.7, cUBLAS and
BEAST were given a single large block to update, whereas Sparse was given an update
to a matrix of the same size, but which has been split into a randomly generated set
of smaller non-contiguous blocks. In Figure the Sparse kernel performs the same
operation (on a set separate blocks) as in Figure but CUBLAS and BEAST are
now being used to compute on the same set of split blocks. This is a fairer comparison
of the three kernels, since this computation mimics what occurs in a supernodal update
show in Figure Now that all three kernels are performing the same task on the same
data structure, we see that the sparse kernel implementation is ten to twenty times more
efficient than the solution multiplying the calls to GEMM routine.

Without regard to the kernel choice, it is important to notice how the multiple
streams can have a large effect on the average performance of the kernel. For this
comparison, the 100 calls made in the experiments are distributed in a round-robin
manner over the available streams. One stream always gives the worst performance.
Adding a second stream increases the performance of all implementations and especially
for small cases when matrices are too small to feed all resources of the GPU. The third
one is an improvement for matrices with M smaller than 1000, and is similar to two
streams when greater than 1000.

Our modified kernel is the one we provide to both runtime systems to offload compu-
tations on GPUs. An extension of the kernel to handle the LDL” factorization has also
been developed. It takes an extra parameter to the diagonal matrix D and computes:
C =C — LDLT with a 5% additional cost.

2.3. Heterogeneous systems

65

100
cuBLIAS -1 stréam —_— P:STRA -1 Istream - - Sparse I— 1 streamI R
CUBLAS - 2 streams ASTRA - 2 streams = = Sparse - 2 streams - - - -
CUBLAS - 3 streams ASTRA - 3 streams Sparse - 3 streams
80 B
60 [.. .
%)) . T
B. (] ,’) - F‘
o] " 1 a==" s
L] 4 1 [) - e
O] " "l . v ve =t ‘\'_--‘ TTse
40 S TN LV |
20 |+ 4
';
S e o 7
0"“~.*“.’44’rﬂ [A T B S | —
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size M (N=32,K=96)

Figure 2.8 — Multi-stream performance comparison, on a M2070 GPU, on the DGEMM
kernel for three implementations: CUBLAS (mutiple dense GEMMs) library, BEAST
(multiple dense GEMMs) framework, with the sparsity taken into account, and our sparse
adaptation of the BEAST framework with additional offset to the C' updates.

66 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

panel;
gemm; panels panely panels
gemmsy gemmg gemmsy
panels panels
a) without commutable GEMMs with commutable GEMMs
ith bl b) with bl

Figure 2.9 — Effects of commutable tasks on the graph.

Whereas PARSEC requires the GEMM tasks to be chained more parallelism
can be exposed using the STARPU_COMMUTE option provided by STARPU to allow
two tasks targeting the same data to be executed in an undefined order.

The GEMM updates could also be considered as a reduction operation, but this pos-
sibility is not used because it would imply more operations. Indeed, a reduction would
imply adding together all coefficients of each copies of the whole panel whereas the GEMM
panel updates affect only a small part of the panels. Moreover, a reduction requires a
copy of the destination supernode on each computing device, which could represent a
large memory overhead. These commutable tasks allow only an out of order execution
of the updates while guaranteeing the mutual exclusion of the computations, and the
consistency of the data on all devices. PARSEC in its actual release does not allow
those commutable operations and keep the order defined by the dependencies. As the
order of the reduction is imposed by the data dependencies, the potential concurrency is
reduced but the accuracy of the numerical results is maintained among successive runs.

2.3.2 Data mapping over multiple GPUs

The two considered runtimes handle the tasks distribution over the heterogeneous re-
sources differently. PARSEC was originally designed for dense algorithms such as dense
Cholesky or QR factorizations. In these very regular algorithms, GEMM updates can be
considered as reductions on each tile of the matrix. To avoid data movement, PARSEC,
in its simple heuristic, maps all the GEMM operations involved in one reduction to a single
computing unit (one GPU or all CPUs). To decide where to map each reduction, PAR-
SEC relies on a dynamic decision based on a counter of load for each unit when the first
operation of a reduction is triggered. PARSEC considers the number of Flops involved

2.3. Heterogeneous systems 67

in the whole reduction and the known performance of the considered accelerator. If the
computation of the number of Flops received by a tile is easy in dense algorithm, it is
more costly to compute the number of Flops received by a panel at runtime in sparse
algorithms. Moreover, the performance on the GPUs of the irregular small sparse GEMMs
operations that occur in sparse algorithm is not known. For this reason, we decide to
compute a static mapping of the GEMM updates at analysis step. The static mapping
could lead to deadlocks as PARSEC 1.0 has no LRU (Least Recently Used: algorithm
used by the runtime to discard in priority least recently used data from cache) to remove
unused written data from the GPU before the last update has been performed, and re-
quires to keep the written data on GPU until all contributions are received. Thus, there
could be no memory left for read only data required to perform the updates and, in that
case, the computation would be locked. Therefore, a memory constraint is required to
limit the load of a GPU.

On the other side, the STARPU runtime can compute historically based prediction
models and dynamically decide when to offload tasks to GPUs. Then, it can use an
HEFT (Heterogeneous Earliest Finish Time) algorithm to schedule the tasks on the
available computing units. However, the performance sampling build by STARPU on
our sparse kernel is highly disrupted by noise and STARPU can not take good decisions.
Moreover, STARPU takes the scheduling decision early in the task submission process
and is not able to reconsider its decisions bad or good. Thus, we decided to use the same
static mapping for STARPU as the one we had to use with PARSEC.

The static mapping algorithm is a bin-packing algorithm were all column blocks are
sorted following a given criterion where the load of a GPU is limited by the amount of
memory it can store. Besides avoiding filling the whole GPU, this limit will reduce the
data transfer by keeping data on the GPUs. Several criteria can be used:

Surface of the target panel: This criteria corresponds to the memory occupied by
the panel receiving the update. This will avoid filling the whole GPU with the
small panel on the bottom of the elimination tree. The larger is the panel the more
chances it has to receive updates;

Number of updates received by the panel: This criteria corresponds to the number
of GEMM applied to the panel;

Number of Flops received by the panel: Here we consider the number of Flops in-
volved in all the updates a column block will receive. Indeed, not only the number
of update is important, but larger are those updates, the more Flops will be per-
formed. This criterion is close to the one used in dense linear algebra algorithms
except that we have no good prediction of the performance of the kernel in sparse
linear algebra. Thus we cannot use the Flop/s as it would be used in dense, but
only the Flops;

Position in the critical path: Here we want to accelerate the tasks that are more
critical to the execution. Thus, we use the priority computed by PASTIX that

68 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

corresponds to the position in the critical path. The higher is the priority, sooner
the result is required, and accelerators can help providing them quickly.

A greedy bin packing algorithm dequeues the first panel according to the selected criteria
and associates it with the less loaded GPU. When a panel is associated to a GPU, all
the updates on this panel will be performed on the GPU. A verification is made to
guarantee we do not exceed the memory capacity of the GPU to avoid excess use of the
runtime LRU.

|- af_shell10 - dieFilterV2clx - Flan_1565 - audikw_1 ™ matr5
™ Geo_1438™ PmIDF Hook 1498 ™ Serena

updates number _

priority s

updates Flop .

panel’s size —

| | | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 220 240

GFlop/s

Figure 2.10 — Sort criteria study: Flop/s obtained with PARSEC, on 3 GPUs, with 3
streams.

Figure compares Flop/s obtained with the different criteria on our set of matri-
ces. Each color corresponds to a matrix, and the bars are grouped by criterion. The best
performances were obtained using the Flops criterion. Indeed, on average, the priority
criteria, which will offload small panels, from the leaves of the elimination tree, first
produces less Flop/s than the others. Using the number of updates, the panel’s size, and
the number of Flops we obtain respectively 36%, 38%, and 42% more Flop/s. We could
expect that except the priority criteria, all the other would have similar results. Indeed,
the larger is the panel the more update it will received, and the number of Flops is also
linked with the number of updates. In future experiments, we report only results with
the Flops criterion.

2.3. Heterogeneous systems 69

2.3.3 Heterogeneous experiments

Figure presents the performance obtained on our set of matrices on the Mirage
platform by enabling the GPUs in addition to all available cores. The PASTIX run is
shown as a reference. STARPU executions are represented with empty bars, PARSEC
runs with 1 stream are shaded, and PARSEC runs with 3 streams are fully colored.
This experiment shows that we can efficiently use the additional computational power
provided by the GPUs using the generic runtime systems. In its current implementation,
STARPU has either GPU or CPU worker threads. A GPU worker will execute only
GPU tasks. Hence, when a GPU is used, a CPU worker is removed. With PARSEC, no
core is dedicated to a GPU, and CPUs might execute CPU tasks as well as driving GPU
ones. The first computational threads that submit a GPU task takes the management
of the GPU until no GPU work remains in the pipeline.

Both runtime systems manage to get similar performance and satisfying scalability
over the three GPUs. For example, on Pm1DF, using STARPU with 3 GPUs increases the
performance by 2.86 against PASTIX (without GPU). On the same case, using PARSEC
we could obtain an acceleration of 2.35 with 3 GPUs and 2.65 when using streams. In
only two cases, matr5 and PmlDF, STARPU outperforms PARSEC results with three
streams. This experimentation also reveals that, as it was expected, the computation
takes advantage of the multiple streams that are available through PARSEC. Indeed,
the tasks generated by a sparse factorization are rather small and will not use the
entire GPU. The size of the task is common to any sparse linear algebra solver and
using multiple streams could also be beneficial to previously cited studies about sparse
factorization on heterogeneous architectures. This PARSEC feature compensates for
the prefetch strategy of STARPU (data used by the GPUs are loaded into GPUs at the
beginning of the algorithm) that gave it the advantage when compared with the results
with one stream. One can notice the poor performance obtained on the af_shel110 test
case: in this case, the amount of Flop (0.12 TFlop) produced is too small to efficiently
benefit from the GPUs.

2.3.4 Memory study

Memory is a critical resource for direct solver, and using generic framework might lead
to memory overhead. Figure [2.12| compares the memory peaks obtained with the three
implementations of the solver. This information was obtained using the memory mod-
ule of the EZTRACEEI [trahay__eztrace:__2011 | library which overloads the memory
allocation routines to increment counters. The runs where obtained with 12 cores but
the results would not be much different with another setup.

The memory allocated can be separated in three categories :

e the coefficients of the factorized matrix, which are allocated at the beginning of
the computation and represent the largest part of the memory;

e Common data structures to the different implementations including;:

7 automatic execution trace generation tool (http://eztrace.gforge.inria.fr/)

http://eztrace.gforge.inria.fr/

Chapter 2. Sparse factorization on shared-memory heterogeneous machines

70

Native: 0o CPU only

STARPU: 0o cpUonly 0o 1c¢pu 0o 2c¢pu [0 3GPU
PARSEC: I cPUonly W§m 1GPU [r 2GPU 3 GPU
PARSEC 3 streams: U0 CPUonly 0m 1GpU UIm 2GPU 0§ 3GPU

260 -

240 |- N
220 |- N
200 |- N

180 - M

160 -

140 - f

120 -

Performance (GFlop/s)

100 |-

=
=
;==

Figure 2.11 — GPU scaling study: GFlop/s performance of the factorization step with the three schedulers on a set of 10
matrices. Experiments exploit twelve cpu cores and from zero to three additional GPUs.

2.4. Optimizations 71

— the structure of the factorized matrix describing the column blocks structure
and built before the factorization is performed;

— the user’s CSC(Compress Sparse Column) matrix which is the input given to
PASTIX that can be freed before factorization if user specifies it;

— the internal block distributed CSC, which corresponds to the input matrix
reordered and stored in a compressed block format. It is used to initialize
the coefficients of the factorized matrix, to compute relative error, and in the
matrix-vector products operation of the iterative refinement. It can be freed
if the user specifies it and does not want to refine the solution inside PASTIX;

e the last part of memory that includes the selected scheduler overhead.

As shown in the plot, a large part of memory corresponds to the first four categories
and is independent of the runtime used. The last part of the bars corresponds to the
overhead of the scheduler.

The values on top of the bars are the overhead ratio compared with memory overhead
obtained with PASTIX original scheduler. We can see that we obtained a small overhead
with PARSEC (half to three times the original scheduler overhead), whereas STARPU
allocates about 7% more memory than PASTIX (three to four and a half time the original
scheduler overhead). This runtime overhead is resulting from the DAG management,
and all the internal structure required for ensure the data coherency. STARP U uses more
memory than PARSEC because it has to store the whole graph whereas PARSEC only
keeps the active part of the graph in memory. Compared to the whole memory allocated
the task-based runtime overhead is affordable.

2.4 Optimizations

In this section, we present the different optimizations that led to the performance we
obtained and showed in this chapter. First, we had to adapt the granularity of our
blocks to the runtime systems to avoid generating too many small tasks and overload
the runtime system. Then, we explain how we modified our block splitting algorithm
which creates more parallel tasks but could decrease their computational intensity.

2.4.1 Task granularity adapted to the runtime

Another parameter to study in order to reduce the number of small tasks is the level of
amalgamation used during graph partitioning, when minimum degree algorithm is used.
During this phase, all column blocks smaller than a given size are amalgamated to their
parent, creating bigger column blocks. The bigger column blocks we have, the smaller is
the number of tasks to factorize the matrix but the more fill-in is created because of this
amalgamation. Thus, the number of operations and the memory consumption increase
with this amalgamation level while the efficiency of the blocked operations is increased.
Then, it is a matter of compromise and cost models to decide if the amalgamation in
beneficial or not.

Chapter 2. Sparse factorization on shared-memory heterogeneous machines

72

[Qoefficients] Common structures

35 B Native B STARPU B PARSEC
4.45
1.65
20 F-l
e e | 3.93
3.2 1 1.24
25 1 1 ww.ww I-l
o I I
.m [| | 4.01
S 20 ; -rﬁ
>y 3.45) I
: ~Hm |l
Mc 15 3.20 1 mlwqo.aq
] 1.33 | —
Iu.8 - 3, h.l (™
0 | i
1 E:
0
N N P P P AN
S A R Rt P DN
/O NG @) @) @ @) ;\{ @ ;\{
& ¥ 2 N & % N Si Q
5 & & & < W N > s
fwv /v@ﬁ Q7 Nvﬂm‘ Q7 ﬁO/\ @T @ﬁ@
A SO
&

Figure 2.12 — Memory consumption comparison, overhead ratio is written on top of bar chart.

2.4. Optimizations 73

In order to reduce the runtime overhead the amalgamation threshold is increased
to twenty which correspond to a good ratio for task-based runtime systems (see Figure
2.14)).

2.4.2 Block splitting algorithm

During preprocessing, in order to create more parallelism, large panels are split into
smaller ones that can be handled by different cores. Typically, the default behavior
splits column blocks composed of more than 64 columns into smaller same-sized panels.
This block column splitting also reduces the memory consumption, specifically with
Cholesky algorithm. Indeed, when allocating a column block, the unused triangular
upper part of the diagonal block is also allocated to simplify memory access as it is done
in dense linear algebra libraries kernels. The larger are the block columns, the larger
is the unused allocated area. Thus, splitting the column blocks reduces this memory
overhead while increasing the concurrency.

In our algorithm, blocks have to fit the diagonal block in their row (i.e. the first row
and last row of the block must be included in the first and last rows of the diagonal block).
Thus, splitting a column block induces splitting of the blocks facing the diagonal block,
and that can create tiny blocks (as shown in Figure[2.13(a)|), which leads to non-efficient
BLAS calls. On the given example, we have two blocks facing the diagonal block. It
appears that splitting on the border of one of the facing block leads to bigger facing
block splits than splitting using a constant split size. Also, fewer blocks are created and
thus fewer tasks will be involved in the factorization algorithm, lightening the load on
the scheduler.

In order to control the creation of flat blocks when splitting column blocks, we up-
dated the panel splitting algorithm (see algorithm [6|and Figure[2.13(b))). Using a variable
criterion also leads to more efficient computation during factorization.

The variable size algorithm introduces the creation of an array (line [1)), called
nbBlocksPer Line. nbBlocksPerLine[i| contains the number of blocks that would be
split if a split occurs between line 7 and 7 + 1.

Then, for each panel, an average block size is computed, and the actual split is made
in a given interval around the mean value to minimize the number of blocks affected by
the cut (line E[) This choice, of the splitting column/row, can follow several rules:

Constant split size: splits a block with averageSize (or maxSize if smaller than
averageSize);

Maximum width: chooses the largest block minimizing the cut (Alg. [7);

Medium width: chooses a block minimizing the cut. If several cuts are possible the
chosen one is either the closer larger than averageSize or, if not found before,
closer to and smaller than averageSize (Alg. .

The second one will create larger blocks although the third one will keep panels’
width closer to the computed average size. Once a panel has been split, the array

74 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

N
N
N N
. N
. N
N v Adaptive split
*v_Constant split size ——————————————:ifi*f*ﬂe**%
R I R D s ettt et R
N - - p— N R
N IR
\\ [N
. B BN __ o
N | N
N F------ i il Bl
L___|-__ [N D I | S
S | N
]\\ i ! N
| N I e | [l
r———--—"-"=——7-"-- | I
[|
| Il
[|
\ |
| |
1 I
| |
\ |
| |
+ t
[i
\ |
[i
\ |
[i
\ |
| i
[]
| |
\ |
l 1
(a) Classical equal splitting (b) Adaptive splitting

Figure 2.13 — Comparison of panel splitting.

2.4. Optimizations 75

nbBlocksPer Line is updated as the number of column blocks has increased (line (15[to
19).

Table shows a comparison of the different methods with several values of autho-
rized intervals in the choice of the splitting column. For this experiment, we used the
default minimal and maximal block splitting size parameters of respectively 60 and 120.
All experiments were conducted using 16 threads on one node of 16 cores from the Curie
cluster at the TGCC (Only the factorization time is machine dependant). They were
performed using the audikw_1 test case. One can expect similar results with the other
matrices as the algorithm used is identical. One can notice that the larger the interval
is, the smallest the number of column blocks (and also blocks) created is. The structure
contains fewer small blocks and, thus, the performance of the factorization is increased.
Even if the minimal and mean block height is not always maximal with larger width split
method, the factorization time is improved. This is resulting from more efficient BLAS
calls which lead to more Flop/s during factorization (see Figure . Using a 200%
authorized variation one can get a 20% improvement in timing that corresponds to a 30%
improvement in Flop/s. One can also notice that if the amalgamation level chosen for
graph partitioning and supernode detection has nearly no effect on PASTIX scheduler,
the runtime system is more sensitive to the size of the supernodes. Indeed, the larger is
the amalgamation, the more efficient are the BLAS operations, but the lightweight orig-
inal scheduler can compensate the less intensive operations with the fewer total number
of operations involved when cmin amalgamation parameter used in SCOTCH is low.

Because of the increase of diagonal blocks size and thus, the storage of more upper
(resp. lower) zero diagonal terms, the memory consumption also increases a little with
the blocks’ size. While increasing the liberty in the choice of the split, the obtained
results get away from user’s IPARM_MAX_BLOCKSIZE setup, changing this setup could
also affect performance.

Figure shows the distribution of the blocks. The blocks are gathered in 10
classes, each one representing 10% of the sizes and corresponding to a step in the curves.
Curves are cumulative (i.e. the first step corresponds to the first 10% sizes, second to
the first 20% and so on) . Most blocks are rather small in any case, but tend to decrease
when we give more liberty to the splitting decision. Specifically, while the number of
blocks larger than the maximum required size (120) increases, the number of blocks
under the minimal size of (60) decreases. Many block sizes are around 60 rows because
the default number of blocks during split is set to blockwidth/60.

Thus, using an intelligent block splitting algorithm can help improving the efficiency
of the BLLAS calls during factorization and, consequently, reducing factorization time.
Using larger blocks can also be beneficial in terms of efficiency. The main drawback of
this approach is a slight increase in memory consumption. A large percent, above 25%,
of authorized variation is required to get a good improvement in the performances. This
is even more relevant for task-based runtime systems implementations that are really
penalized by low-Flop tasks.

To obtain an efficient execution of the factorization on top of tasks based runtime
systems, one can set the cmin amalgamation parameter to 20 and an authorized variation

76 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Type of split Constant Median block first

Modulation percent - 5 25 50 \ 100 150
blocks number 523428 513277 500510 476937 396602 353541
column blocks number 12009 12020 12033 11913 10579 10284
Factorization time 52.5 52.9 51.6 50.2 45.9 43
Average block height 28.8 29.5 30.2 30.6 31.3 30.5
Minimal block height 1 3 3 3 3 3
Maximal block height 120 126 150 180 240 300
Average cblk width 78.6 78.5 78.4 79.2 89.2 91.8
Minimal cblk width 3 3 3 3 3 3
Maximal cblk width 120 126 150 180 240 300
Coeftab Size 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB
Type of split Larger blocks first

Modulation percent 5 25 50 \ 100 150
blocks number 509470 494586 467416 380287 337001
column blocks number 12006 12009 11869 10479 10161
Factorization time 52.3 51.1 49.7 45.1 42.3
Average block height 29.5 30.2 30.7 31 29.9
Minimal block height 1 1 1 1 3
Maximal block height 126 150 180 240 300
Average cblk width 78.6 78.6 79.5 90.1 92.9
Minimal cblk width 3 3 3 3 3
Maximal cblk width 126 150 180 240 300
Coeftab Size 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB | 9,3e-10 GB

Table 2.2 — Comparison of the different splitting methods, on audikw_1 test case, with

one node of 16 cores using PASTIX original scheduler. Minimal block size is set to 60,

Maximal to 120. Amalgamation level is set to 20.

2.4. Optimizations

7

Flop/s during factorization [GFlop/s]

—— PASTIX, cmin = 0 ->- STARPU, cmin = 0
—— PASTIX, cmin = 5 ->- STARPU, cmin = 5

PASTIX, cmin = 10 STARPU, cmin = 10
PASTIX, cmin = 15 STARPU, cmin = 15
PASTIX, cmin = 20 STARPU, cmin = 20

140

130

120

110

100

7 -
7 /X:/ |
0
L A 1
//>///
/- X
[-—/‘/‘//9‘/////// _
- X
w==
| | | | |
0 50 100 150 200

Authorized variation in splitting (percent)

Figure 2.14 — Flop/s during factorization depending on authorized variation in column
block splits on audikw_1 matrix using a median first block splitting algorithm with a
minimal block of 60 and a maximal value of 120.

78 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

—_— Constant plit - Larger width first (5%) --- Average width first (5%)
- -- Min/Max block size [60-120] -~ Larger width first (25%) --- Average width first (25%)
--- Larger width first (50%) - Average width first (50%)

--- Larger width first (100%) - Average width first (100%)
--- Larger width first (200%) Average width first (200%)

Number of blocks (cummulative)
38
ot
T

1 10 100

Block size (number of rows, log)

Figure 2.15 — Block’s size study on audikw_1 test case, with 8 cores. Plot of the number
of blocks in the matrix beneath a given size.

2.5. Discussion 79

Algorithm 6 Adapted splitting algorithm.

> Count the number of blocks facing each row
1: nbBlocksPerLine < computeNbBlocksPer Line()
2: For each panel P Do
3: feol < firstColumn(P)
4 maxSize < width(P)
5 nbCblk + 0

> First compute an average splitting size

6: nseq < compute NbSplit(candidate Nor(P), colNbr(P))
7: avgSize < width(P)/nseq
> Split column block P while all the panel has not been split
8: While feol < lastColumn(P) Do
9: lcol < computeBestSplit(nbBlocksPer Line,avgSize, maxSize, ratio)
10: addExtraCblk(fcol,lcol)
11: maxSize < maxSize — (lcol — fcol + 1)
12: feol =lcol +1
13: nbCblk < nbCblk + 1

14: End Wahile
> Update number of blocks per line

15: For each block bin P Do

16: For each row rin b Do

17: nbBlocksPerLine[r] <— nbBlocksPer Line[r] + nbCblk — 1
18: End For

19: End For

20: End For

of 200% in the column-block splitting algorithm. This will increase the performance of
each task at the cost of a small memory overhead.

2.5 Discussion

In this chapter, we presented the framework used during this thesis. Our developments
were integrated into PASTIX, a direct sparse linear solver library. To implement a het-
erogeneous aware algorithm, we used two different task-based runtime systems, STARPU
and PARSEC. We described how we adapted our algorithm to task-based runtime and
compared performance with the original PASTIX implementation. Once we had demon-
strated that the performances were comparable, we explained how we could efficiently
address the GP Us using these task-based runtime implementations and presented a scal-
ing study on heterogeneous nodes. Finally, we described the optimizations we had to
perform to achieve the speed-ups. One of the required optimizations was to statically
decide which updates will be performed on a GPU. We also had to rewrite the block
splitting algorithm to minimize the number of tiny blocks in the block structure of the

80 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Algorithm 7 Choice of the split: largest first.

1: COMPUTEBESTSPLIT _LARGER(nBlksPerLine, avgSize, mazSize,
ratio)

2: limit < ceil(step * percent/100);

3: step > max return mazx — 1
4:

5: lavg < step — 1

6: Imin < MAX (lavg — limit, 1)

7: Imax <— MIN (lavg + limit + 1, max)
8: lcolnum < Imin

9: nbSplit <— nbBlocksPer Line[lcolnum|
10: i € [lmin + 1,lmax — 1]
11: nbBlocksPerLine[i] < nbSplit
12: lcolnum <1
13: nbSplit < nbBlocksPer Lineli]
14:
15:

16:

factorized matrix. We still need to investigate which information could help the runtime
system to schedule efficiency tasks on the GPU dynamically. Now that we can efficiently
manage one heterogeneous node with those runtime systems, we can target clusters of
heterogeneous nodes. The next chapter explains how we can address distributed hetero-
geneous nodes over generic task-based runtime systems.

2.5. Discussion

81

Algorithm 8 Choice of the split: average first.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

1
2
3
4
5:
6
7
8
9

Function COMPUTEBESTSPLIT _AvG(nBlksPerLine,avgSize, maxSize, ratio)
limit < ceil(step * percent/100);
If step > max Then return max — 1
End If
lavg < step — 1
Imin < MAX (lavg — limit, 1)
Imax < MIN (lavg + limit + 1, max)
lcolnum < lavg
nbSplit <— nbBlocksPer Line[lcolnum]|
For i€ Jlavg+ 1,lmazx — 1] Do
If nbBlocksPerLine[i] < nbSplit Then
lcolnum <+ 1
nbSplit <— nbBlocksPer Line]i]
End If
End For
For i€ [lmin+ 1,lavg — 1] Do
If nbBlocksPerLineli] < nbSplit Then
lecolnum <1
nbSplit < nbBlocksPer Line]i]
End If
End For
End Function

82 Chapter 2. Sparse factorization on shared-memory heterogeneous machines

Chapter 3

Sparse factorization on
distributed heterogeneous
systems

Contents
[3.1 Solving distributed sparse linear system|. 84
[3.1.1 Fan-out implementation|o 84
[3.1.2 Fan-in implementation|.o 86
[3.1.3 Data mapping] 89
(3.2 Experiments| 92
[3.2.1 Distributed implementation on homogeneous nodes|. 92
[3.2.2 Distributed implementation on heterogeneous nodes| 97
B3 Discussionl v v v v v it e e e e 99

We have seen in the last chapter that we can implement a sparse linear solver on top of
a task-based runtime system with a rather good performance. Doing so, one can benefit
from the separation of concern between the algorithm and the architecture to target
heterogeneous shared memory environments. Now, we want to study the suitability of
this approach to distributed memory architectures.

In this chapter, we present the distributed version of the matrix decomposition algo-
rithm. The first section describes two versions of the distributed supernodal algorithm.
The first-one is the fan-out method, really close to the sequential task algorithm and
the second one, called fan-in, is the one implemented in the original version of PASTIX
and that has been adapted to task based runtime systems. We implemented these two
algorithms in PASTIX on top of STARPU. Then, we present the data distribution algo-
rithm used in PASTIX (for both task-based runtime and original implementations of the

83

84 Chapter 3. Sparse factorization on distributed heterogeneous systems

factorization algorithm) and the different versions of the original scheduler implemented
in PASTIX prior to this thesis. After these descriptions, we compare the performances
of the new STARPU distributed version of the factorization with the original scheduler
implementations. These experiments are performed on two distributed clusters, the first
one without accelerators, and the second one with GPU accelerators. We have only im-
plemented the STARPU version of the distributed algorithm yet, but the corresponding
algorithms using PARSEC JDF approach would be similar.

3.1 Solving distributed sparse linear system

As in shared memory, we still consider column-blocks as the elementary data for dis-
tributed algorithm. The difficulty here is to compute an efficient distribution of those
panels and the associated tasks, such that each node has an equivalent amount of work.
To solve this problem, it is necessary to understand the way communications are per-
formed in the distributed algorithm. Let’s consider that each column-block is owned by
an MPI process. This process will be in charge of computing the associated operations.
The panel factorization (i.e. POTRF and TRSM) task is de facto associated with the panel,
as in shared memory, and processed by the owner. The update operations (i.e. GEMM) are
involving two column-blocks which can be on two different processors. The operation
must be performed by the owner of one of them.

Figure [3.1] illustrates the distributed version of the algorithm. Here, we have four
column blocks distributed on two processors: P; in red, and P» in blue. The column
block owner logically executes the panel factorization on it. One can notice on Figure
that the update from Cj to Cs involves data from two processors and can be mapped
on any of them.

Two algorithms exist to implement the distributed version of a supernodal method.
The computations of the GEMM updates can be either shared by all the “senders” (fan-in),
or processed only by the “receiver”, here P, (fan-out). Both algorithms are detailed in
the next sections, as well as their implementation on top of the STARPU runtime.

3.1.1 Fan-out implementation

The fan-out algorithm consists in performing the GEMM updates on the processor that
owns the destination panel. It requires the panel that generated the update to be ex-
changed before that. Using task-based runtime systems, it is the straightforward method.
Indeed, one would just have to give the data distribution in addition to the sequential
tasks flow to implement this algorithm. In this case, GEMM updates are performed on the
node that possesses the target panel. To be able to perform the update, the updating
column block must be communicated before the GEMM is applied. This is automatically
performed by the runtime system.

In order to be able to perform communications, STARPU requires to know each piece
of data that will be used in computations and each task that will be executed, locally or
not, on local data. One can then submit the sequential algorithm on each MPI process,

3.1. Solving distributed sparse linear system 85

ps
] P

Figure 3.1 — Distributed example: four column blocks — Cy, C1, Co, and Cg — distributed
on two processors, P; and P».

and STARPU would discover the local tasks and the communications induced by the
data mapping information. In our case, we do not want to submit the whole graph on
all MPT process but only required tasks. Indeed, storing and inserting the whole graph
would create an unnecessary overload for the memory and the computation.

In the Cholesky decomposition algorithm, the scheduler has to be aware of not only
local data but also remote data that will be updated by local updates, and remote data
from which updates will be applied on local column-blocks. We will call these data the
halo. In our simple example, the halo corresponds to all the other processor’s columns
but, in a real case, it would represent a smaller part of the matrix.

In the fan-out version of the STARPU implementation, described by Algorithm [9] we
have to declare both the local data and the halo data. Then for each local column block,
incoming GEMM tasks, updating local data from distant column blocks, are submitted.
Those updates will be executed on the local node after reception of the input data from
the remote node. All communications from one incoming column block are submitted
at once and an array (seen) is used to remember when incoming updates have been
submitted to avoid doing it twice. After that, the incoming buffer can be flushed out
of the MPI cache as they will not be used again. Then, the local panel is factorized

86 Chapter 3. Sparse factorization on distributed heterogeneous systems

and updates from this panel are submitted. The targets of the updates are the column
blocks which diagonal blocks are in the same rows than the off-diagonal blocks (b) of
c. We call this column block the facing column block of the block b (facing _cblk(b)).
Those GEMM tasks can update either local or remote column blocks. If the column blocks
are remote, the runtime system sends the input data to the remote node and this node
will perform the update. The ¢ buffer can then be flushed out from the MPI cache.

To handle communication, STARPU detects remote data usage when a task is in-
serted. If the task will be executed locally, STARPU will allocate a buffer to receive
the required data and post the MPI reception. In the case of a remote task, STARPU
will send the local data involved whenever they are ready. A datum can be used several
times by a remote task, and STARPU will use a cache mechanism to avoid sending the
data multiple time. However, STARPU cannot discover if a datum will be reused or
not. Indeed, STARPU cannot know whether the user will insert a new task using an
already-received datum in the future. Thus, the user will have to indicate to the runtime
when it can flush the cache corresponding to some data to free some memory. This is
done using starpu_mpi_cache_flush(MPI_Comm, data_handle) routine. One can also
use starpu_mpi_cache_flush_all_data(MPI_comm) to flush all the caches when the
task insertion process is finished. The second one is easier to use for the user, but the
information given to the runtime system is less accurate, and cache flushing can occur
later.

This algorithm, applied on the four column-blocks illustration (Figure , leads
to the fan-out tasks graph described in Figure . In the given example, processor
P; sends column-blocks Cy and C7, once they are factorized, to processor P, before it
can compute Cy factorization. C7 is also required to compute updates on C3 before
it can be factorized. The runtime system automatically detects this, and performs the
communication when they are ready.

3.1.2 Fan-in implementation

The fan-in implementation is the solution used by the original PASTIX scheduler. In
the fan-in implementation, all updates from local column-blocks toward a same remote
column-block are first computed locally. Then, this buffer is sent to the remote node
for addition onto the targeted column-block. A new addition task has to be introduced
into the task-graph to handle the addition of the fan-in buffers onto the corresponding
panel. While in original PASTIX implementation the fan-in algorithm is implemented
using independent blocks, we have decided to describe fan-in buffers as column-blocks
in the runtime based implementation. This change may imply an overhead in the size of
fan-in data as the width of the fan-in column block is the maximum width of the fan-
in blocks that are used in original PASTIX implementation. The fan-in column-block
pattern always fits inside the remote column-block, it is a sub-part of the destination
panel.

Algorithm describes the fan-in implementation. First the data are registered
(lines [1| to @ Then, for each local column block ¢, the incoming fan-in addition tasks
are inserted to prepare the data reception. A new kernel is required to perform the

3.1. Solving distributed sparse linear system 87

Algorithm 9 Fan-out Cholesky implementation with STARPU.

> Register all local column blocks

1: For each local column block ¢ Do

2: starpu_mpi__data__register(c, myrank)

3: End For
> Register all local column block involved in local update or updated using local
column blocks

4: For each column block A in halo Do

5: starpu_mpi__data__register(h, owner(h))

6: End For
> Submission of the factorization tasks
7. For each local column block ¢ Do
> Submit all local updates from remote column blocks on ¢

8: For each column block A in halo updating local column blok ¢ Do

9: If not seen(h) Then

10: For each local update from A on a local column block £ Do

11: starpu__mpi__insert__task(gemm, h, k)

12: End For

13: starpu_mpi__data__flush(h) > h will not be used again
14: seenlh| < True

15: End If

16: End For
> Submit the panel factorization and updates

17: starpu_mpi_insert_task(panel__factorization, c)

18: For each block b € ¢ Do

19: fe = facing__cblk(b)

20: starpu_mpi__insert_task(gemm,c, fc) > This task is executed where fc is
located.

21: End For

22: starpu__mpi__data__flush(c) > ¢ will not be used again

23: End For

24: starpu__task_wait__for_all()

addition on the local column-block after the fan-in column block has been received (line
E[). Afterward, local column-blocks factorizations, and GEMM updates are inserted (lines
to . As for local column-block, the fan-in buffer will receive GEMM updates and
thus will share the same “sparse GEMM” kernel. When all the contributions have been
received the addition tasks can be submitted (line to trigger the communication. In
the fan-in case, we describe both fan-in buffer that will be received and that will be
send. We do not need anymore to describe others processors column blocks because all
communications will only use fan-in buffers. When we know that we will send a fan-in
buffer we just have to use a void handle (named here fake_cblk) indicating the rank of

88 Chapter 3. Sparse factorization on distributed heterogeneous systems

FACT(C)) FACT(C})

FACT(C)) FACT(C}) GEMM(Co, F3) GEMM(CY, le)\(}l:“.MM(Cl, F3)
SEND(Co, P1) SEND(Ci, Pi) \SEND(FQI, P;) SEND(Fj3, Pi)
GEMM(Co, C2) GEMM(C4, CQ)\GEMM(CH, Cs) ADD(Fy, Cb) ADD(F3, Cs)

\FACT(CQ) FACT(C?)
GEMM(C2, Cs3) GEMM(C2, Cs3)
FACT(C3) FACT(C3)
(a) fan-out algorithm’s tasks graph. (b) fan-in algorithm’s tasks graph.

Figure 3.2 — Task graph corresponding to the example presented in Figure Red tasks
are executed by processor Py and blue ones by P,. F? is the fan-in buffer associated to
C; on processor P.

the owner of the column block (owner(fc)).

Figure represents the communications required to apply updates on a column-
block from the previous example. Updates from Cy and C are gathered in the fan-in
buffer F}, which corresponds to all updates from P; on Cy. Afterward, F) is sent to
P, which adds it to Cs. It corresponds to the original PASTIX communication scheme
(Fig. [3.3(a)]) except that, in PASTIX original implementation, fan-in buffers are split
into blocks (F2170 and Fy ;) which are treated separately and correspond to the minimal
contribution area. This can reduce a little bit more the memory consumption. Indeed,
as it is shown in the example, a fan-in block in the block column can comprise fewer
columns than the diagonal block. However, a quick study of the communication volume
shows that the increase in the data exchanged is not that large. Table present
the comparative size of all fan-in buffers, with PASTIX original implementation and
STARPU one. The overhead column presents the overhead of STARPU implementation,
which uses column-blocks fan-in buffers, versus PASTIX ones, which use blocks. The
Table present results for both 4 and 16 nodes from Avakas cluster (see page .
In practice, on all the presented test cases, the overhead is less than 1% of the original
PASTIX implementation fan-in buffers size.

The fan-in tasks graph corresponding to the fan-in implementation in STARPU is
presented in Figure One can notice the new addition tasks added to the graph.
GEMM updates are also moved from P; in red to P, in blue when going from fan-out
algorithm to fan-in algorithm. On the given example, the fan-out version implies the

3.1. Solving distributed sparse linear system 89

Algorithm 10 Fan-in Cholesky implementation with STARPU.

> Register all local column blocks
1: For each local column blocks ¢ Do

2: starpu_mpi__data__register(c, myrank)
3: End For
> Register all fan-in column blocks
4: For each fan-in column blocks f Do
5: starpu__mpi__data__register(f, owner(f))

6: End For
> Submission of the factorization tasks
7. For each local column block ¢ Do
> Submit all local updates from remote fan-in column blocks on c.
For each received fan-in column blocks f updating ¢ Do

9: starpu_mpi__insert__task(add, f,c)

10: starpu_mpi__data__flush(f) > ¢ will not be used again

11: End For

12: starpu__mpi__insert__task(panel__factorization, c)

13: For each block b € ¢ Do

14: fe = facing__cblk(b)

15: starpu_mpi__insert__task(gemm, ¢, fc)

16: If fcis a fan-in column block and

all local updates on fc have been submitted Then

17: starpu_mpi_insert_task(add, fc, fake__cblk[owner(fc)])

18: starpu_mpi__data__flush(fc) > fc will not be used again
> Will be performed on remote node.

19: End If

20: End For

21: End For
22: starpu_ task_wait_ for_all()

exchange of Cy and C; while the fan-in version exchange only smaller fan-in buffers Fi
and FJ that represent sub-part of Cy and C3. Here, as in most real cases, the fan-in
version is more efficient as it reduces the communication volume.

3.1.3 Data mapping

STARPU requires the user to provide a data distribution to be able to decide when
communications are required. In our case, the data distribution used with the STARPU
implementation of the factorization algorithm is the one developed for PASTIX original
scheduler. It is performed once, during the graph analysis. As PASTIX original sched-
uler uses a fan-in algorithm, the cost models used in the analysis step to compute the
data distribution and the static task scheduling takes this property into account. The
distribution of the column-blocks follows a proportional mapping of the elimination tree

90 Chapter 3. Sparse factorization on distributed heterogeneous systems

4 MPI nodes 16 MPI nodes
Matrix fan-in buffer size (Mo) | overhead | fan-in buffer size (Mo) | overhead
PASTIX | STARPU PASTIX | STARPU
af shell10 38.09 37.99 0.25% 194.8 194.6 0.10%
dielFilterV2clx 33.32 33.32 0% 148.5 148.2 0.25%
Flan_ 1565 128.1 128.1 0% 666.7 666.5 0.03%
audikw_1 284.4 284.4 0% 1287 1287 0%
matrd 3314 3314 0% 1988 1988 0%
Geo__ 1438 1017 1017 0% 4484 4484 0%
PmlDF 485.7 485.7 0% 2313 2313 0%
Hook_ 1498 485.1 485.1 0% 2406 2406 0%
Serena 1375 1375 0% 6384 6384 0%

Table 3.1 — Comparison of the fan-in memory overhead. Total memory used by fan-in
buffer on whole cluster.

Co - Co o
— - on [On
[

or Lo or
N I

o Do o

NN [S 3
LR S

! | send and add Cy ! | send and add Cy

L |F

(a) with PASTIX (b) with STARPU

Figure 3.3 — Fan-In distributed example : four column blocks — Cy, C1, Co, and C3 —
distributed on two processors, P; and Ps.

computed at the graph processing step. First, each node of the tree is associated with the
cost of the corresponding panel factorization. This cost includes the panel factorization,
the matrix products for the different updates from the panel, and the addition of these
contributions on either the target column-block or fan-in buffer. The main bias of this
model is that, the addition is always associated with the source column-block. This asso-
ciation is correct in shared memory, but in a distributed context the additions of updates
on a remote panel are computed by the target supernode’s owner. This cannot be taken
into account during the cost evaluation because we do not know yet if a column-block
will be local or remote. We consider this bias negligible for the proportional mapping
step which attributes only a set of candidates to each sub-tree. The simulation of the
factorization that actually assigns a process to each panel corrects this default. In fan-
out, the products should also be attached to the receiving column-blocks but, for the

3.1. Solving distributed sparse linear system 91

- { Candidates: P; to Py, Sub-Tree cost: 100% } ~

P1 to P3, 60%

P; to P, 35

P\to Ps3, 19%

®
Py, 8%
‘®

| N —
. J
. J

Figure 3.4 — Elimination tree with proportional mapping information.

same reason, it is attached to the source supernode. Thus, the cost estimation of each
node corresponds to a shared memory execution and can lead to load unbalances.

Then, the processors are mapped onto each node depending on the cost of the as-
sociated sub-tree. The root is associated with all the processors. For each level of the
elimination tree, the independent sub-trees are recursively associated with subsets of
the current branch candidates following the relative computational cost of each sub-tree.
Figure [3.4] presents the elimination tree with the proportional mapping information.

Finally, the static scheduling step associates each of the column-blocks with one
of its candidates following the load of the candidates. This algorithm simulates the
factorization using a computational and communication costs model. Each processor P;
is associated with a time ¢;, corresponding to the amount of work it has been assigned
to, and with a list of ready tasks it is associated with. The couple of processor and
task that can be executed first is scheduled. If several couples can be scheduled, the
task associated with the deepest node in the elimination tree is scheduled first because
it is more likely to be critical to the release of other tasks. Figure illustrates the
simulation corresponding to Figure Here, the task T3 is chosen among the ready
tasks and associated with the process P, because it can be executed first. This will
unlock the task Ty that will be added to the ready tasks lists of candidate processors P;
and Ps.

In PASTIX, before the coupling with task-based runtime systems, multiple modes
have been developed to target clusters of shared memory nodes. The first one is

92 Chapter 3. Sparse factorization on distributed heterogeneous systems

Simulated task scheduling Ready tasks lists

~

o
=
o
&
=

Py T) R ()
P, T >< T7 > Ry

Figure 3.5 — Static scheduling computation via a simulated factorization.

the thread multiple implementation were all threads are communicating over the net-
work without restriction. This version requires the MPI library to provide an MPI
thread multiple implementation of the API which is, unfortunately, not always the
case even as of today. To be able to run PASTIX with nearly all MPI implemen-
tations, a funneled version of the algorithm has been developed. In this version, all
communications are funneled through one communication thread. Besides handling
the MPI communication, this thread is also in charge of the addition of the received
fan-in buffers. The last version, developed by Mathieu Faverge during his PHD the-
sis [faverge__ordonnancement_ 2009 | to improve the scaling on clusters of NUMA
nodes, is the dynamic scheduling implementation. As for the funneled version, it uses
a dedicated thread to perform communications, but also allows for communication re-
ordering to answer the requirement of dynamic scheduling. This implementation also
authorizes job stealing between threads to correct the possible errors in the precomputed
static scheduling.

3.2 Experiments

In previous section, we presented the two different implementations of the task-based
distributed decomposition algorithm we implemented in PASTIX on top of STARPU.
We also explained how data are mapped onto MPI processes and quickly described the
different distributed versions of the original scheduler available in PASTIX. This section
presents a performance comparison of the two task-based runtime system algorithm
implementations with the different versions of the static and dynamic original schedulers.
The first part of the study has been performed on a CPU only cluster. In the second
part, this study extends to distributed heterogeneous experiments.

3.2.1 Distributed implementation on homogeneous nodes

Experiments were performed on the Avakas cluster from the University of Bordeaux.
This cluster is composed of 264 nodes with 48 GB memory and two hexa-core Intel®

3.2. Experiments 93

Xeon® x5675 @Q 3,06 GHz each. All experiments use the full nodes with 12 threads and
MPI between nodes.

Figure presents different implementations of the original scheduler, all of them
using fan-in algorithm:

e the funneled version, with crosshatch dots patterns;
e the thread multiple version, with white filling;
e the dynamic scheduling option, with diagonal lines.

One can observe that while the time scaling of the funneled version is the worst one when
the size of the problem is rather small (e.g. af_shell10, dieFielterV2clx, Flan_1565,
audi_kwl), it outperforms the thread multiple one when the number of operations grows
(e.g. PmlDF, Serena). The dynamic scheduler option provides the best performances
on all cases. Indeed, the static scheduler gets less efficient when the number of cores
increases, and the dynamic scheduler algorithm tends to absorb this unbalancing. The
differences between the thread multiple and the thread funneled versions mostly come
from the additions of fan-in buffers that are moved to the communication thread.

Figure compares the original thread multiple implementation (white bars), with
the two STARPU implementations: fan-in (light colored) and fan-out (dotted and col-
ored). We chose to compare our task-based implementation with the thread multiple on
first because the algorithm remains the same in the two cases, the additions are per-
formed by the computing threads (which are also communicating). On the contrary, in
the two others versions of PASTIX original scheduler, the additions are moved to an ad-
ditional communication thread. This scaling study shows that, surprisingly, the fan-out
case gets better performance on the matrices involving the largest number of operations.
With this method, updates are performed as soon as possible, and no extra-temporary
buffers are required. The separation of the updates may allow more communication over-
lapping which could explain the performance growth in some cases. Using the generic
task-based scheduler, one can achieve comparable performance to the static scheduler. It
can even be faster on some cases, such as audi_kw2, matr5, or pm1DF, when the fan-out
implementation is more efficient.

Using the dynamic scheduling option, on figure [3.8] we can obtain a better scaling
and outperform the task-based runtime implementations in any case. On can see that
largest problems exhibit the limited scaling of the task-based implementation when the
number of tasks increases. We will have to interact with the runtime developers team
to identify and overcome the sources of this limited scaling.

The 10 Millions unknowns test case is a larger matrix with 10423 737 unknowns and
89072871 non zeros in A. The matrix is in complex double precision, and its factorization
is done using the LDL” algorithm. The L matrix contains 6 739 610 079 non-zeros, and
the factorization involves 1.72e+14 operations. The factorization of this matrix on four
nodes of twelve cores involves 10681 100 tasks, from which 331866 are column block
factorization and the rest are sparse GEMM updates, which can create a large overhead
for the scheduler. The results with this test case are presented in Figure [3.9 and shows

Chapter 3. Sparse factorization on distributed heterogeneous systems

funnelled multiple dynamic scheduling
e 1 node 0o 1 node 13} 1 node
e 2 nodes 00 2nodes H@ 2 nodes
B8 4 nodes 00 4nodes BB 4 nodes
i8 8 nodes 0 8nodes 5 8 nodes
8 16 nodes [0 16 nodes HB 16 nodes
1,000 g 32nodes [0 32nodes H& 32 nodes]
900 y
800 |
700 |
=z |
g 600 5
B |
o |
g 500 |
g |
& |
m |
£ 400 B
o} |
& |
300 B
200 i
100 i
0 |
O Al
o
RES

94

Figure 3.6 — Comparison of distributed implementations of PASTIX original scheduler. All these experiments have been
executed on 12-cores nodes from Avakas cluster from the University of Bordeaux, using 12 threads per node.

95

3.2. Experiments

‘opou 1od speaIy) gl Suisn ‘Xneaplog Jo AJSISAIU()) IR
I9)SN[D SeYRAY O} WOIJ SOPOU SOI0D-g] UO PIJNINXD U9(9ARY SIUSWLIOAX0 9S9Y) [[Y SOPOW Jno-unf pue u-unf ur () JUV.LS
puR IS[NPayds [RUISLIO 9} JO UOISIoA o[dijnuur praly) Susn suorejusto[dwl ponqrLiysip oY) jo uosuredwo)) — 2°¢ 9IN3Iq

©
105 4008 o d -9 v w3 oA <1°
‘@) R Q@7 x) a @ R mﬁ&ﬁ @) v A @ REAS J%Q/v OA//%»
101 1@ 101 11 1@ 11 1T al 1@
I W % ¢ W ¢ ¢ W o
i 7
I 7 7
I 7 7 _ |
= - 00T
i | 00z
| | g
1 1 ¢
[-1 00¢ MJ
I 1 8
. | I
=]
I 1 3
- Hoor B
| 1=
=]
. 1 k=]
. 1 =
- - 00¢
- -1 009
- - 004
r sopou gg T sepou gg sopou zg [[] 1
sopou 91 T sepou 91 sopou 91 [[]
sopou § B sepou § sopou g]
sopou] sopou sopou [
sopou g T sopou g sopou g [
opou T T opou T epou T
mo-wey) JUVLS ur-uey) JUVLS ordymum

Chapter 3. Sparse factorization on distributed heterogeneous systems

96

dynamic scheduling STARPU fan-in STARPU fan-out
o 1 node 1 node i 1 node
o 2 nodes 2 nodes Ee 2 nodes
Ao 4 nodes 4 nodes In 4 nodes
fa 8 nodes 8 nodes LE 8 nodes
Bo 16 nodes 16 nodes i 16 nodes
1,000 [fo 32 nodes 32 nodes ie 32 nodes B
900 |- .
800 | y
700 |- y
z i]
i) 600 |- o
E g i
@\ . -
g 500 - u
=i S B
3 i |
g | |
g
S 00| |
= | |
a, L i
300 - -
N _ Il _ :_ 1 _ _ MR
RELE A W | AT A
) 0) 0)
rO,r G&r Lpb) rOJr Db)
WO QA @ A0 ®-
o550 & @mw?omé Flen- @oozr\w mvmao,v@
X

Figure 3.8 — Comparison of distributed implementations dynamic scheduling version of the original scheduler and STARPU
in fan-in and fan-out modes. All these experiments have been executed on 12-cores nodes from Avakas cluster from the

University of Bordeaux, using 12 threads per node.

3.2. Experiments 97

a better scalability of the PASTIX original implementations over the task-based runtime
ones. This Figure does not present results beneath 4 nodes because the matrix would not
fit into the memory, the matrix requires 31.2 GB per node when distributed on 4 nodes.
The task-based runtime system implementations are managing a too large problem, with
too many small tasks to obtain good performances. The fan-out implementation did not
even run on less than 16 nodes because of a lack of memory. Then, it scales better
than the fan-in one. Indeed, in STARPU, the communications buffers are allocated as
soon as the receiving tasks are inserted which creates a large memory overhead. If these
buffers fit in memory, the fan-out version can be more efficient because communications
are performed earlier and additions can be applied whenever the thread is idle. Several
solutions are currently studied to reduce the memory overhead:

e One could use a submission window that would limit the number of submitted
tasks. After a certain number of tasks are given to the runtime the inserting
function would become synchronous and wait until tasks are consumed. Doing
so, the number of inserted communicating tasks would be limited and the size
of the communication buffers would be reduced. In that case, we would have to
move our receiving task insertion before the insertion of each panel factorization.
The submission window is not yet implemented in STARPU but this feature is
used in some runtime systems as Quark. In our case, we could also submit only
ready tasks, this would limit the number of submitted tasks but would give less
information to the runtime.

e The task-based runtime system could use a rendezvous communication scheme
to allocate the data only once the sender has the data ready to send. The data
would be available slightly later, decreasing the performances, but the amount of
required memory would be reduced. This option can only be implemented inside
the task-based runtime system and is not developed yet inside STARPU.

These results are encouraging but we still have to exchange with the runtime system
developers team to improve the task-based implementation. We also need to investigate
the possibility to dynamically choose between fan-in or fan-out algorithm, for each
column block, to obtain the best performances from these two approaches.

3.2.2 Distributed implementation on heterogeneous nodes

Once the distributed version has been implemented using task-based runtime systems,
we can benefit from cluster of heterogeneous node. Experiments mixing MPI and het-
erogeneous feature obtained with STARPU in PASTIX were conducted on the Curie
cluster from the TGCCﬂ The hybrid partition of this cluster contains 144 nodes, each
one composed of 2 quad-cores Westmere-EP at 2.67 GHz associated with 2 NVIDIA
M2090 GPUs. Each node is equipped with 24 GB of memory and each GPU with 6
GB.

8TGCC: Trés grand centre de calul http://www-hpc.cea.fr/fr/complexe/tgcc. htm

http://www-hpc.cea.fr/fr/complexe/tgcc.htm

98 Chapter 3. Sparse factorization on distributed heterogeneous systems

funneled multiple dynamic scheduling STARPU fan-in STARPU fan-out
00 4nodes HE 4nodes U@ 4 nodes 4 nodes [1] 4 nodes
[0 8nodes EE 8mnodes %7 8 nodes 8 nodes [I} 8 nodes
00 16 nodes HE 16 nodes 0@ 16 nodes 16 nodes (]] 16 nodes
00 32nodes HB 32nodes U8 32 nodes 32 nodes ie 32 nodes
1,200 |- .
1,000 |- .
= i :)
~ L M7 ; i
o 7 7
S 800 Z : i
F L 7 7 i
o | g z i
© 2 2
g i = / 5 :
s 600 Com a
g L ’ ’ |
B = i’ 7
L + =7 =7 7 1
- | - 7
(5] I =7 =i 2 B
i 7 |8 | =
400 - Y =7 =% I n
200 |- éﬂ = B JE I i

Figure 3.9 — Comparison of distributed implementations on the 10 Millions test case.

3.3. Discussion 99

Figure and present results with respectively 4 nodes and 16 nodes from
the Curie cluster. In blue we have results with 8 CPU cores only for comparison. Red
bars are representing results with one GPU, while green ones are experiments with 2
accelerators. The comparison is done with the funneled implementation of PASTIX
original scheduler as multiple communication threads are not supported by the provided
MPI library. On four nodes, on Geo_1438, the fan-in algorithm and two GPUs the
factorization can be accelerated by 1.46 against the original PASTIX scheduler (without
GPU). The fan-out with two GPUs accelerates the factorization of Pm1DF matrix by 1.39
against the original version (without GPU). On some cases, particularly with 16 nodes,
using a GPU is worthless (e.g. on audikw_1). This is due to our distribution algorithm
which tries to fill the GPU as much as it can whereas there are not enough tasks for
every worker. We should adapt our algorithm by taking into account the number of
workers and the number of tasks to schedule. This reveals that the scheduler does not
consume immediately the received data that fill the memory of the node. We tried
setting very high priority to tasks involving communications but without success. This
can also explain the good performance obtained with the fan-out implementation that
should be less efficient than the fan-in one. A tradeoff between memory and performance
could be found by consuming received buffers when the memory is getting low. One can
conclude from these experiments that, with the current implementation of the solver
and the runtime system, the replacement of a classical core with a GPU can accelerate
the computation but we still have some work to do with the runtime team to obtain
a significant acceleration. It would be also interesting to study the distribution of the
large blocks and adapt the distribution algorithm the to obtain blocks large enough to
obtain good performances on the GPU.

3.3 Discussion

In this chapter, we have detailed how our task-based heterogeneous shared memory
implementation of the matrix decomposition algorithms can be adapted to distributed
nodes. We have presented two different implementations, fan-in and fan-out. We com-
pared the results with different versions of the original scheduler, and the results are
comparable to the performance of the original static scheduler but we still have to catch
up with the state of the art dynamic scheduler. The advantage of this new solution
compared to the dynamic scheduler is that all the complexity of the dynamic handling
has been deported to the runtime and separated from the algorithm, making it easier to
modify. The other advantage is the possibility to use accelerators which is not supported
by the original dynamic scheduler. This feature is only relevant with a small number
of nodes, when all nodes are fed with large blocks and can benefit from the accelera-
tors. The distribution algorithm will have to be adapted to generate a distribution more
adapted to heterogeneous systems.

Another feature brought by task-based runtime systems that could be worth trying
in a direct sparse linear solver context is out-of-core computing. An attempt of out-
of-core implementation of PASTIX had been done manually earlier but it was quite

Chapter 3. Sparse factorization on distributed heterogeneous systems

100

Native: 00 CPU only
STARPU fan-in: 00 CPUonly 00 1GPU [0 2GPU
I STARPU fan-out: E@ CPUonly B 1GPU ## 2GPU

MWOW]
260 |- " m—]
240 |- 1 i __ B]
| “m | |
= 200 1 _ e . _]
= - R BRI .
= 180 |- m _ . g i - - |
ol | i W I 0 1 |
| “_ | : | m_ n__ ___ oL
£ . I i 1
o | _n_ B ___ |
120 | .
ol | P e e e e e
AL P L R
R R R e R R
ERIRIN | I I | I | | I | I | | I B
o, il @ i L L o, il A e) O,ch Db)
0 A% ®: ®- 5 O ®: T 2 .
W NS 560 A ot A3 S 49 \Y
o one o dw/aoa = a0y %w&?é - f (30 A 43/0 @oozr\ wono?@
'\

Figure 3.10 — Distributed heterogeneous scaling study on 4 nodes comparing the thread multiple original implementation
and the two task-based ones. All these experiments have been executed on 8-cores nodes from Curie cluster from the French
TGCC, using 8 threads per node. Each thread controlling either a CPU or a GPU

101

3.3. Discussion

Nd5 © 10 NJD © IOY)e JUI[[OIU0D PedIY) Yory "opou Jod spealy) | Suisn ‘HNHNH) T,
[OUDI] o1} WOIJ I9)SN[D 9LIN) WOIJ SOPOU S9I09-Q U0 PIINIIXD UA(dARY SHUOWILIDAXD 989Y) [[Y 'SOUO POseQ-}se) 0Mmj} o1} PUR
uorjejuowordwir [eursrio ofdiynur peoIy) oy} surredwod sopou 9] U0 Apnjis JUI[RIS SNOSUOSOIIOY POINALIISI(] — [T°¢ oINS

®
95 _400% ad -9 we 3 yﬁmfo». <1°
@ RO o) 3 L e o™ @ A \ st AN e
107 @ 1a7 ¢ @ a1 ¢ a1 ¢ D) 1O
(s 7! (s (1 n? (r (r n? i

m ___ —“— —“— —“— ——— ——— —“— —“— ——“ : I

m ___ ___ ___ ___ __— : ___ ___ ___ _.— "

m __— __— ___ ___ __— ___ ___ __— [— |

- - / [- U | (14

[))
B I -10sg 8
- 4 = - &
oy ; . ‘ 008 2
L 1 5
] _ — — __— _— — _ i | 0se W
- -.— . - oor

i - ogr

i 00g

B AdD T B NdDT B A0 NdD mf HNo-uvy) JUVLS -] 084

Ndoe 0] NdHT @§f 4wondd @O curue 0 JUvVLg
Ao ndD O PA1eN

102 Chapter 3. Sparse factorization on distributed heterogeneous systems

complex and has not been maintained. The usage of task-based runtime systems brings
that feature with nearly no cost and a study of this possibility would be interesting and
would help saving memory during the factorization. Other key features (e.g. energy
efficient computation) could be brought “freely” through the runtime system and one
can see here the benefits of separating the algorithm from the runtime system using
task-based runtime systems.

Chapter 4

Integration in a controlled plasma
fusion simulation code: JOREK

Contents
[4.1 Description of the framework| 104
[4.1.1 Set of equations| 105
[4.1.2 Spatial discretization|.o 105
[4.1.3 Time integration scheme|. 106
[4.1.4 Equilibrium| 106
[4.1.5 Sparse solver and preconditioningl. 107
[4.2 Assembly step in JOREK| 108
[4.3 Optimized distributed matrix assembly| 112
[4.3.1 Generic distributed finite element assembly oriented API| . . . 113
[4.3.2 Comparison with PE'TSc 00000000000 115
[4.4 Imtegration into JOREK| 118
[4.4.1 TImplementation|. oL 118
[4.4.2 Timing and memory scaling study| 119
[4.5 Discussionl. o ottt e e e e e e e 121

In the context of the ANRH ANEMOS project, which interests into controlled
plasma fusion inside simulation, we worked on the integration of PASTIX direct
solver in JOREK simulation code [huysmans__mhd_ 2007; czarny__bezier_ 2008
]. JOREK is a magnetohydrodynamic (MHD) simulation code that modelizes burn-
ing plasma inside tokamakﬂ (see Figure . JOREK simulation requires an efficient

9 Agence National pour la Recherche, a agency french that provides funding for project-based research
10A tokamak is a device using magnetic fields to confine plasma in the shape of a torus

103

104 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

toroidal direction

banana
trajectory

SEpammK7

banana-shaped |
trajectones of
trapped ions

X-point
: ion gyro motion
divertor targets

Figure 4.1 — A tokamak.

sparse solver to solve a linear system at each time step, and a large amount of mem-
ory to store simulation data. Thus, it is mandatory to provide a solver with the lower
memory footprint as possible. The way the system is provided to the solver might also
be of large impact. Generally, the input problem is gathered before calling the sparse
linear solver library. This chapter presents JOREK and the integration of PASTIX as
a part of the linear system solving process used to solve the problem resulting from the
simulation. Then, we study the effect of providing an interface adapted to finite element
simulations in order to exploit the distributed interface of the solver. This interface is
first studied independently, then the effect inside JOREK simulation code is analyzed.
The interface needs to provide functionalities to assemble the matrix in a distributed
way. We explain its integration inside the JOREK numerical simulation code. One can
notice that while this work takes place in the context of PASTIX and JOREK, this
interface API is generic, and the study on the matrix assembly is applicable to many
numerical simulations that require assembling a distributed matrix.

4.1 Description of the framework

MHD stability and the avoidance of plasma disruption — rapid loss of plasma energy and
abrupt termination of the plasma current caused by global MHD instability growth —
are key considerations to the attainment of burning plasma conditions in ITER (a large
fusion reactor E[) Realization of adequate MHD stability and careful control of the
plasma operation will be critical ITER operation issues: MHD instabilities can damage
components of the tokamak walls.

Numerical simulations play an important role in the investigation of the non-linear

http://www.iter.org

http://www.iter.org

4.1. Description of the framework 105

behavior of these instabilities and can help for interpreting experimental observations
and make predictions. In the framework of non-linear MHD codes, targeting realistic
simulation requires:

e to model a complex geometry,
e to handle a large gap between the different time scales relevant to plasmas,
e to address full 3D simulation.

Computational time needed to run 3D MHD code named JOREK requires parallel
computing in order to get reduced restitution time for the user [czarny__bezier__2008;
huysmans__mhd_ 2007 |.

In this section we present the equations involved in JOREK simulation, the dis-
cretization that is used to represent the tokamak, and the integration scheme. Then, we
describe the linear solver that has been implemented to solve them.

4.1.1 Set of equations

JOREK is an MHD three dimensional fluid code that takes into account realistic toka-
mak geometry. Some of the variables modelled in JOREK code are: the poloidal flux
W, the electric potential u, the toroidal current density j, the toroidal vorticity w, the
density p, the temperature 7', and the velocity along magnetic field lines vpqrqier. De-
pending on the chosen model, the number of unknowns and the equations allowing the
problem closure are setup. At every time-step, this set of reduced MHD equations is
solved in weak form as a large sparse implicit system. The fully implicit method leads
to very large sparse matrices. There are some benefits to this approach: there is no a
priori limit on the time step, the numerical core adapts easily on the physics modelled
(compared to semi-implicit methods that rely on additional hypothesis). There are also
some disadvantages: high computational costs and high memory consumption for the
parallel direct sparse solver (PASTIX or others).

4.1.2 Spatial discretization

High spatial resolution in the poloidal plane is needed to resolve the MHD instabilities
at high Reynolds and/or Lundquist numbers. Bezier patches (2D cubic Bezier finite
elements, see Figure are used to discretize variables in this plane. Hence, several
physical variables and their derivatives have a continuous representation over a poloidal
cross section. The periodic toroidal direction is treated via a Fourier sine/cosine expan-
sion.

The weak formulation of the MHD problem writes:

a%(t“) — D(i), whereu(t = tg) = g (4.1)

106 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

Figure 4.2 — Bezier 2D representation of a tokamak’s plan.

4.1.3 Time integration scheme

We note u,, the set of variables. Applying a fully implicit second-order linearized Crank-
Nicholson scheme for temporal discretization leads to solve the following system of equa-
tions:

— 26

<8C(u}) 1. 90D(up,
ou 2 ou

)) 5t = D(i) 6t (4.2)

Where d4 = upt1 — ty, is the vector of unknowns. In the following, we will refer to
A as the sparse matrix that should be solved, and b the right hand side of the problem.

9C (uy,) 1. 9D(up) I
T 55,5 0 b = D(uy) dt, then (4.3)

Agii=1b (4.4)

Let us denote A =

4.1.4 Equilibrium

Each JOREK simulation begins with the solving of the static magnetic equilibrium
equation (so-called Grad-Shafranov equation) in the two dimensions of the cross section
plane. A key-point is the ability to handle magnetic equilibria which include an X-point.
High accuracy is needed to have a correct representation of this equilibrium and avoid
spurious instabilities whenever the whole 3D time stepping simulation is launched.
JOREK is able to build a Bezier finite elements grid aligned with the flux surfaces
both inside and outside the separatrixEl (i.e. the flux surface containing the X-point).

12 Also named divertor, a separatrix is a mechanism for magnetically limiting a plasma, and hence for
controlling the nuclear fusion in a tokamak

4.1. Description of the framework 107

This strategy allows one to improve the accuracy of the equilibrium representation. The
flux surfaces are represented by sets of 1D Bezier curves determined from the numerical
solution of the equilibrium. The Grad-Shafranov solver is based on a Picard’s iteration
scheme.

After the Grad-Shafranov solving step, a supplementary phase is required: the time-
evolution equations are solved only for the n=0 mode (the first toroidal harmonic, i.e.
purely axisymmetric harmonic) over a short duration. First, very small time-steps are
taken, then they are gradually increased. This process allows the plasma equilibrium
flows to establish safely in simulations involving a X-point.

4.1.5 Sparse solver and preconditioning

JOREK simulation requires solving large problem and also needs a very high accuracy
to represent precisely the instabilities that occur in the tokamaks. In order to minimize
the memory requirement of the fully implicit solver and to access larger domain sizes,
a preconditioner 7?7 coupled with a GMRES iterative solver, with the implementation
provided by CERFACS [fraysse__algorithm_ 2005 |, have been included a few years
ago. Preconditioning transforms the original linear system Az =b into an equivalent
problem which is easier to solve by an iterative technique. A good preconditioner P is an
approximation for A which can be efficiently inverted, chosen in a way that using P~! A
or A P71 instead of A leads to a better convergence behaviour and more accurate solu-
tion. Usually, GMRES iterative solver is applied in collaboration with a preconditioner.
The preconditioner typically incorporates information about the specific problem under
consideration.

The JOREK physics-based preconditioner has been constructed by using the diago-
nal block for each of the n, Fourier modes (or toroidal planes) in the toroidal direction
of the matrix A (see Equation . The preconditioner represents the linear part of each
harmonic but neglects the interaction between harmonics (similar to a block-Jacobi pre-
conditioning on a reordered matrix). So, in order to get a block-diagonal matrix with
m independent submatrices on the diagonal, we set to zero the coefficients from the
off-diagonal blocks of the original matrix A. The preconditioner P consists in the com-
position of m independent linear systems (Pi*)ie[l,m]’ with m = %ﬂ Considering
interactions between the harmonics as nil, we can obtain a good preconditioner. Indeed,
as the instabilities are small, the interactions between harmonics are small.

Practically, the set of processes is split in m independent MPI communicators, each
of them treats only one single linear system P with a parallel sparse matrix direct
solver (PASTIX or others). This preconditioned parallel approach avoids large costs
in terms of memory consumption compared to the first approach that considers the
whole linear system to solve (it saves the memory needed by the sparse solver to store
the decomposition of the whole matrix A - e.g. L, U factors). However, the whole
linear system A has also to be built (in parallel) in order to perform the matrix-vector
multiplication needed by the GMRES. But, the cost in terms of memory and in terms
of computation is far less than invoking the parallel sparse solver on the large linear
system A.

108 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

This strategy improves the scalability (m independent systems), and the paralleliza-
tion performance of the code. The bad point is that, in some specific circumstances, the
iterative scheme may not converge.

Figure presents the solver’s steps. First, the non-zero pattern of the matrix is
built in a compressed form. Indeed, several (nio, X Nyqr) degrees of freedom are present
for each mesh node and we need only one entry to represent all of them in the graph.
Thus, the graph is smaller and the graph partitioning and symbolic factorization steps
are faster to compute. Moreover, the graph is identical for each harmonic (as well as
for the global matrix), and each call, on each of the m sub-communicators gives the
same results. After that, one can assembly the global matrix, and if the factorization
is required, the centralized harmonic matrix is gathered and factorized. Finally, the
preconditioned GMRES algorithm can be run to obtain the solution.

4.2 Assembly step in JOREK

JOREK simulation uses 2D Bezier finite element to represent the sparse linear system.
From these finite elements, one can build elementary matrices that are used to construct
several matrices. First, the global problem, which is solved using a GMRES . Secondly,
the harmonics matrices which are sub-part of the problem and the harmonic problems,
which are solved using a sparse direct solver. The assembly algorithm, presented in
Algorithm (in Annex, builds the global distributed matrix from which the harmonic
matrices are deduced. As parallel domain decomposition, each process owns a list of local
elements corresponding to the local rows of the matrix. The rows are distributed in a
balanced way such that a row is owned by one and only one process. An element is local
if one of its vertices corresponds to a local row. For each of the local elements, the MPI
process builds the element matrix and inserts it into the assembled matrix. The built
matrix is composed of blocks of 74y * 14 unknowns that can become rather large when
the number of toroidal planes increases. Thus, we can compress the graph and consider
only one entry per block to reduce significantly the preprocessing time.

Figure describes a part of an element matrix (only two vertices are represented
here for more readability). Each elementary matrix is composed of four vertices. For
each vertex, there are ngy.qer + 1 blocks of n,,- = 6 variables, and each variable leads
to one unknown per toroidal plane. The first toroidal plane corresponds to the first
harmonic (in red in the elementary matrix), and each other harmonic is composed of
two toroidal planes (second harmonic is in blue on the figure). Coupling variables,
in yellow, will only be considered for the global matrix, used by the GMRES. Each
harmonic is handled by one sub-communicator. Thus, the elementary matrices must be
computed on each communicator, or communicated across communicators. The second
option is chosen because of the heavy cost of computing an elementary matrix compared
to its communication.

When solving the system, each harmonic is factorized to build a good preconditioner
and inter-harmonic coupling is only taken into in the global GMRES algorithm. On
Figure we can see a mesh of elements (Figure , describing the connectivity,

4.2. Assembly step in JOREK

109

Beginning
[Graph Assembly]
Performed with com-
pressed graph
[Preprocessing]

[Matrix Assembly]

J

Factorization
required?

no

J yes

[Harmonic matrix centralization J

J

centralized input harmonic

- Solve per Harmonic

GMRES
- Product on global matrix

conditioner

Finished time
stepping?

J yes

End

(a) Original steps with centralized calls to the (b) Steps with new the distributed assembly

direct solver

[Factorization with] } One sub-communicator per

On global system, using
solve on per harmonic pre-

Beginning

J

Graph Assembly]

Performed with distributed
compressed graph

Preprocessing]

J

Get new elements dis-
tribution from solver’s

unknowns distribution

Matrix Assembly]

no

J

Factorization
required?

J ves

Factorization with] }()u(‘, sub-communicator per

distributed input harmonic

On global system, using
solve on per harmonic pre-
conditioner

- Solve per Harmonic

GMRES
- Product on global matrix

Finished time
stepping?

End

Figure 4.3 — JOREK main steps diagram. The global system is solved for each step
of the time stepping using the preconditionned GMRES algorithm. Factorization is
required only if the preconditioner is not accurate enough (ie. if the GMRES algorithm

did not converge fast enough).

110 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

B First harmonic (Communicator 0)
B Second harmonic (Communicator 1)
Inter-harmonic coupling
wn] g
varsg
vars
ordery
vary
vars
varﬁl
vertexy
orders
ordery
vertexs
orders

Figure 4.4 — Part of JOREK’s elementary matrix, with 4 vertices, 3 toroidal planes, 6
variables and order 1.

and the corresponding global matrix on Figure One can distinguish the harmonic
matrices: in red the part of the matrix corresponding to the first harmonic (Figure
, and in blue the second one (Figure . Of course, there could be more
harmonics (14, = 3 up to 33 in typical simulations) but only two are represented in this
graph for simplification. Furthermore, one can notice, on the harmonic figures (Figure
and Figure , that only one entry per block of size nyqr X Ny is represented
for simplification. This two matrices are used to compute a preconditioner of the global
system which also includes the coupling terms represented in yellow. The element {1,
2, 4, 5} is highlighted on all the figures comprised in Figure The four highlighted
blocks in Figure correspond to the elementary matrix presented in Figur
Once the red (respectively blue) coefficients have been extracted they correspond to the
highlighted part in Figure (respectively Figure .

The assembly of the matrix results in a distributed matrix representing the system
to solve. Locally, each process owns a set of rows of the full matrix. The rows are evenly

4.2. Assembly step in JOREK 111

1 2 3 4) 6 7 8 9

(a) Global matrix with all harmonics.

1 2 3

4><5 ><6
7)<8><9 ﬂ

(b) Mesh of four elements and (¢) First harmonic. (d) Second harmonic.
nine vertices.

Figure 4.5 — JOREK’s assembled matrix. On the two harmonic matrices we only show
one entry for each block of six-by-six variables for more readability. First element, with
vertices {1,2,4,5} is highlighted.

112 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

distributed among the MPI processes, and an elementary matrix is considered local and,
thus, computed locally if at least one of its column is local.

This matrix, representing the whole problem, is used to compute the matrix-vector
product operation of the GMRES algorithm. Once this global matrix has been com-
puted, data are exchanged, using MPI_Alltoallv to obtain a centralized matrix per
harmonic on each sub-communicator. These matrices are only built when the factor-
ization is required, they are then transformed in the format required by the solver if
necessary. In the case of the PASTIX solver, the Compress Sparse Column (CSC) for-
mat is used (see Annex [DJ).

The fact that those matrices are centralized can create a bottleneck in term of mem-
ory usage for the simulation. This grows with the problem size, and is not reduced when
the number of process increases. One goal in this study is to reduce this bottleneck by
avoiding the centralization of the harmonic matrices.

4.3 Optimized distributed matrix assembly

Implementing an efficient distributed element matrices assembly is often a burden in
simulation codes. Indeed, it is a memory bound operation that might require many data
exchanges. However, it might reduce the memory peak by a large factor and potentially
reduce the computational time.

Further more, the assembly step is present in numerous finite elements simulations,
and the assembly functions are very similar. Thus, this step could be factorized to obtain
a generic and optimized API for distributed assembly that minimizes the burden of the
programmer. This is what we are addressing in this section. Specifically, in JOREK,
this would allow one to use the distributed interface of the sparse direct solver without
having to write a complex assembly routine.

Investigations about building a distributed matrix have already been performed in
the context of PETSc linear algebra packaging tool [aspnas2007efficient |. PETSc
is a suite of data structures and routines to solve differential equations. This meta-
package provides access to a large number of solvers including sparse direct solvers such
as PASTIX. Using a hash-table based matrix where each coordinate (z,y) is associated
to a key k = x x c+y (where ¢ is the number of column), PETSc’s developers can provide
an efficient matrix assembly library. The main drawback of PETSc method is that, in
order to be able to address multiple linear algebra tools, it stores its own version of the
matrix that might be different from the structure used in the solver and thus, adds some
computational overhead. The advantage is that it gives the possibility to test a large
panel of solving techniques and libraries without modifying the code..

In JOREK code, using an external library to perform the parallel assembly, one
can reduce the amount of code dedicated to the assembly part and focus on the specific
algorithms and physics involved in the simulation.

4.3. Optimized distributed matrix assembly 113

4.3.1 Generic distributed finite element assembly oriented API

To help the user building efficiently the distributed matrix for the solver (here PASTIX),
we proposed a new generic API: MURGHE We designed this API to be able to couple
any simulation code with any linear algebra solver. It proposes to suppress the PETSc
structure overhead and to interact with the solver via several steps (as described in listing
from annex. A quick performance comparison with the PETSc parallel linear system
solving toolkit is presented in subsection [£.3.2]

To use a distributed sparse solver, MURGE API proposes to follow the following
steps:

a) Initialization: allocates the required data structures for the linear algebra library
and set the solver parameters;

b) Graph setting: assembles the graph of the matrix (ie. the matrix without the
values). Once it has been performed, the linear algebra solver preprocessing steps
(ordering, symbolic factorization, and data distribution in the case of PASTIX)
can be triggered;

¢) Remapping: retrieves the matrix distribution adapted to the solver and compute
a new corresponding mesh distribution;

d) Matrix and right-hand-side setting: fills the matrix and right-hand-side with coef-
ficients to solve the system,;

e) Getting the solution: queries the solution vector;
f) Clean: deallocates all internal data structures;

The classical way to get the matrix (resp. graph) assembly is to set a block of
values (resp. entries) corresponding to an elementary matrix at once. One can also use
multiple degrees of freedom (DOF) per unknown and thus obtain a compressed graph,
reducing memory cost, and preprocessing time. The advantage of using this API is that
the communications and transformations required to obtain a distributed matrix in the
format expected by the sparse linear solver library are optimized and hidden to the user.

Two options are proposed to the user:

e the first option is to ignore the solver’s distribution and directly provide the ma-
trix using the original element distribution. The user code is then simple at the
cost of some extra communications to redistribute the matrix and fit the solver’s
requirement;

e the second option is to use an element mapping corresponding to the needs of
the solver. We proposed a solution, simplifying the user’s code while obtaining
an element distribution corresponding to the solver’s one. The user can use the
MURGE_GetLocalElementList () function that will perform the graph construction

Bhttp://murge.gforge.inria.fr

http://murge.gforge.inria.fr

114 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

and compute the new elements distribution for the user. This function requires
the number of elements in the graph, a function to retrieve the list of vertices of
each element following its index, and a distribution strategy. It provides to the
user a new list of local elements.

One can either use one of the following strategy:

MURGE_DUPLICATE_ELEMENTS: considers one element is local if at least one of its vertex
is local;

MURGE_DISTRIBUTE_ELEMENTS: provides an even elements distribution. Elements are
first distributed such that the process owning the largest number of vertices of each
element owns it. Then, the list is balanced by moving the least “local” elements
of overloaded processes to processes with less elements that own the largest part
of the element.

e First, we have the PETSc solution presented in Figure The user provides
the matrix that will be assembled in PETSc framework and then converted into
the solver format. After that conversion the solver’s library can be called and
will perform the preprocessing steps (ordering, symbolic factorization, and data
distribution in the case of PASTIX). Then the matrix is redistributed to fit the
solver’s requirements, and the factorization and solving steps are called.

e Secondly, Figure |4.6(b)| present the MURGE API, which aims at building di-
rectly the matrix in the format required by the solver’s library. In that case, the
conversion steps are not required anymore.

e Finally, Figure present the possibility to build separately the graph in
MURGE to be able to obtain the solver distribution before building the matrix us-
ing a domain decomposition of the mesh corresponding to the solver’s matrix one.
In that case, the matrix redistribution can be suppressed. This is automatically
the case when one uses the MURGE_GetLocalElementList ().

In all those situation, if another factorization is required, new values would be inserted
via a second assembly. In the case of PETSc, it would also require the conversion to
be performed on the newly assembled matrix, and the factorization, and solve would be
called again. Only the solution presented in Figure permit to avoid the redistri-
bution step.

During the matrix assembly phase multiple use cases also exist:

e one can provide entries one by one, which is convenient to insert the boundary
conditions;

e one can supply entries as a block element by element. That version is well suited
to the finite element matrix assembly;

4.3. Optimized distributed matrix assembly 115

Matrix Assembly
Graph assembly

Conversion
PETSc to CSCdyser Matrix Assembly
1 Preprocessing
j
Compute new
elements distribution

Redistribution o Conversion Redistribution § Matrix Assembl
CSCdyser 10 CSCAyotver) PETSC to CSCdyser CSCdyser 10 CSCAgorer i Values assembly

|

Factorization 5[Matrix Assembly Factorization Factorization
and solve and solve and solve

(a) Assembly in PETSc. (b) Assembly in MURGE. (¢) Assembly in
MURGE in the
solver’s distribu-
tion.

Figure 4.6 — Different assembly methods.

e one can enter a block of entries corresponding to several elements at once. This
possibility can reduce the overhead due to the function call.

In important remark is that the API also provides a sparse matrix-vector product
such that one can build an iterative solver, possibly using the linear solver as a precon-
ditioner, without storing the distributed matrix in its own structures.

In next subsection, we will evaluate the performance of the different assembly meth-
ods and compare it with PETSc implementation.

4.3.2 Comparison with PETSc

This subsection presents a comparison of the computational costs of the PETSc assembly
routines versus the PASTIX implementation of MURGE. Those two implementations
of the matrix assembly step are compared using a similar testing example that builds
and solves the matrix associated to a 3D Laplacian problem discretized with linear finite
elements. The Laplacian is computed on a cubic 3D grid with M3 elements with and
one degree of freedom per vertex. This gives a matrix of size (M + 1)3 with nnz entries,
where:

nnz =3 % (M+1)2— (35— 1) % (M +1)3— (M —-1)3)
. Several implementations of the 3D Laplacian test case API have been evaluated:
e simple uses MURGE API and enters all the local entries one by one;

e blocked enters the local entries by block of values, called elementary matrices,
associated to each local element;

116 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

o getELementList uses MURGE_GetLocalElementList () function to obtain a local,
evenly distributed, local elements list that is used for the elementary matrices
insertion;

e PETSc is similar to the blocked one where entries are entered by elementary ma-
trices, but using PETSc API.

The getElementList is the only version that uses an element distribution correspond-
ing to the solver and can then avoid the redistribution as shown earlier in Figure
In all cases, the distributed implementation of PASTIX is called in a similar way for a
fair comparison

Figure [£.7] presents timings during the execution of the presented test cases. We
present results for 1, 2, 4, 8, 16, and 32 nodes with one process per 12-core node.
These experiments have been performed on nodes from Avakas cluster at University of
Bordeaux (see page , and uses M = 50 elements on each edge of the cube.
Several timings are shown in the figure (the colors correspond to the ones in Figure :

e the blue part corresponds to the assembly of the matrix,
e the red part represents the matrix conversion inside PETSc,

e the yellow part is the time constructing the new elements list (with getElementList
test case),

e the grey part represents the rest of the overhead of the function used to obtain the
solution.

One can notice that all different MURGE implementations obtain similar timing.
PETSc implementation seems to be penalized by its generecity that allows it to ad-
dress a large number of solvers within one packager. Indeed, both the assembly and
the overhead of the API are larger. Moreover the conversion time, which is, hopefully,
not too long, is only present on the PETSc case. However, when the number of MPI
nodes increases, PETSc library can catch up with MURGE API implementation. In all
cases, if the assembly scales whereas the redistribution time increases with the number
of nodes. The time to obtain the solution, in PETSc case, is longer with one node. This
may be due to the particular treatment it receives in the PETSc wrapper. One has to
notice that, with the getElementList method, the time getting solution part is paid
only once for a given matrix structure (i.e. a given graph), which can save time com-
pared to the redistribution time, which is paid before each factorization, if the number
of nodes increases or if the matrix is factorized several times.

Thus, we have shown here the benefits in term of development cost and performance
that one can expect from a generic API to build a distributed matrix and call a sparse
linear solver. This has been applied to the case of PASTIX direct solver but could be
extended to any sparse linear solver that uses a distributed sparse matrix as input.

1We had to modify the PASTIX wrapper in PETSc to be able to call the distributed version of PASTIX
and obtain a more fair comparison. This patch will be proposed to the PETSc developer team.

4.3. Optimized distributed matrix assembly 117

B Assembly
Matrix conversion (PETSc)
New element list computation (getElementList)
Remapping of the matrix

o Getting solution overhead
10 H
8,
N
[}
E
H =1
4,
| N
0 HHH ’_H_H_‘H !—H—H—\ﬂ =1=I=10|
NProcs 1 2 4 8 16 32
STE8 STE8 SIS STE8 SIE8 SIis
£995 925 ET2n ET2n ET2R £T2.m
S OFEmM Eo0EM =oEmM ESEM =2oEMm =E3ERm
PECAN PR RO PRCK PEoA UE oM
g g g g g =
g g g IS S S
& & & = & &
= = = = = =
1) 1) 1) 1) 5] 5]
&0) 0 0 0 0

Figure 4.7 — Timing scaling study comparing PETSc and MURGE assembly.

118 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

4.4 Integration into JOREK

The previous section validated the MURGE API using a simple 3D Laplacian example.
This section describes the integration of this API in the parallel MHD simulation code:
JOREK. Memory consumption is the main bottleneck in JOREK. In order to reduce
the memory peak when the system is solved, and improve the memory scaling, we replace
the existing centralized interface by the API presented in previous section. Indeed, the
actual interface gathers the entire harmonic sub-matrices (in blue and red on Figure
on each sub-process involved in its factorization. With the new API, the centralized
harmonic matrices do not have to be stored, but can be distributed among all nodes of
a single harmonic communicator. The next subsection describes the modification on the
global steps of the simulation, and the new assembly, using MURGE API. A second
subsection presents timing and memory studies inside the JOREK simulation code.

4.4.1 Implementation

At the beginning of this thesis, JOREK was centralizing the harmonics matrices before
calling a sparse linear algebra library (either MUMPS or PASTIX) to solve the system.
This leads to a bottleneck as the centralized storage of the matrix cannot scale. Thus,
a distributed interface to the solver has to be used to obtain memory scaling. In this
case, two approaches can be foreseen:

e The simplest solution uses the original mesh distribution and let the sparse linear
algebra solver remap the matrix to obtain the distribution it requires factorizing
the matrix;

e A more efficient method consists in using the solver’s distribution to remap the
mesh as seen previously in Figure This solution is designed to avoid com-
munications as the computation of contribution from any cell of the mesh can be
computed by any MPI process indifferently.

Figure presents the new solving steps in JOREK with the integration
of the distributed interface to the PASTIX solver. It uses MURGE with the
MURGE_GetLocalElementsList () function, presented in Figure adopting a new
elements list adapted to the solver’s distribution. Thus, the centralization of the har-
monics matrix step is removed, and the calls to PASTIX use a distributed interface,
reducing the memory footprint. The data distribution can be either chosen evenly bal-
anced, with MURGE_DISTRIBUTE_ELEMENTS, or the element can be duplicated, when one
use MURGE_DUPLICATE_ELEMENTS.

The complex part when using distributed calls to the solver in JOREK, even using
MURGE API, resides in the assembly of the matrices (see Algorithm |[15[in Annex |C)).
Indeed, in JOREK, we have to assemble multiple matrices in one assembly. Each elemen-
tary matrix (as shown in Figure corresponds to entries that have to be accumulated
into the global problem matrix, but also to the harmonics. These harmonics are either
local, or belong to another communicator. Thus, for each computed elementary matrix,

4.4. Integration into JOREK 119

the computing process has to insert it into the global problem, but also to extract the
part belonging to each harmonic. These parts either correspond to the local harmonic
(and can be inserted using MURGE API), or to another harmonic. In that case, the
computing process will have to send it to a process of the other harmonic communicator.

To simplify the matrix assembly, we have to obtain the same elements distribution
on each harmonic sub-communicator. Indeed, if the processes with the same rank in
each harmonic sub-communicator own the same list of local elements, we can divide the
local elements list among these processes (see Algorithm [15|in Annex .

If we consider Figure [4.5] with a global communicator with four process, we have
two processes per harmonic: P and P} on harmonic one and P? and P# for harmonic
two. Let us suppose that process one from each sub-communicator (P} and P?) owns
columns one to four and process two (P} and P§) owns columns five to nine. Then, the
element composed of vertices one, two, four, and five, highlighted in Figure is shared
between the two processes on each sub-communicator with three columns on process one
and one on process two. Then, the element belongs to processes Pll and P12. Indeed, P}
and P? will share exactly the same list of local elements. We will arbitrary decide that
one of the two processes will compute the elementary matrix and communicate it to the
other process. Each process will compute half of the elements and communicate it to the
other processes of same rank in other harmonic communicators. All the communications
required for the assembly of the harmonics matrices are performed, if factorization is
required, during the assembly step.

The element distribution depends on the graph preprocessing steps that determine
the distribution of the factorized matrix. The result of the preprocessing steps depends
on the pattern of the graph, which is identical for each harmonic (as one can see on
Figure , but also on the number of degree of freedom. This number of degree of
freedom is smaller for the first harmonic that corresponds to only one toroidal plane
(whereas other harmonics correspond to a pair of toroidal planes). We have to ensure
to obtain the same matrix distribution for each harmonic.

This procedure allows to remove the Harmonic matrix centralization step. Thus,
using the new assembly, one can expect a better memory scaling from the distributed
calls to the solver’s library.

4.4.2 Timing and memory scaling study

This section presents some experiments on the integration of MURGE inside JOREK.
All the experiments have been performed on the hybrid partition from the Curie cluster
at TGCC in France. One MPI process is executed on each node of eight cores. Inside the
nodes, the parallelism is handled with one thread per core using OPENMP in JOREK
and POSIX Threads in PASTIX.

Figure presents the amount of time spent in each time step iterations during
an execution of JOREK on a medium size problem: model 302. The original PASTIX
integration, modified to use blocks of nsr X Nyer degrees of freedoms, is compared with
MURGE integration. Two implementations, using the MURGE API, are presented
here. They both use the MURGE_GetLocalElementsList() from MURGE to retrieve

120 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

the elements list. The first one, in red, duplicates elements when their columns are spread
onto multiple processes from the harmonic communicator. For example, on model 302,
501 elementary matrices out of 4074 are computed twice on different processes). The
second one, in brown, attributes each element only once on each sub-communicator.
Thus, the elementary matrices need to be exchanged. The figure does not present the
“Grad-Shafranov“ equilibrium which uses a different code which is not considered here.
The second phase of the simulation, in green, uses only one toroidal plane whereas the
second phase uses three toroidal planes. During the second phase, the GMRES solver
is disabled and the matrix is solved using a direct method. This phase is used when a
X-point is involved, it requires the high precision of the direct method combined with
small increasing time steps to find a dynamic equilibrium. MURGE interface is not
used in this phase, this is why the results remain identical.

During the second phase, we can distinguish two types of iterations: the short ones, when
no factorization is performed (i.e. the iterative solver is used with preconditioning); and
the longer ones, when the iterative solver cannot converge to a satisfying solution. Then,
a factorization of the harmonic matrices is required to improve the convergence.

As expected, one can notice that when a factorization occurs, the MURGE APIT acceler-
ates the computations, thanks to the improved assembly of the matrix. Communications
are minimized inside the API compared to the MPI_Alltoallv that is used when using
original PASTIX interface.

Shorter iterations are comparable with MURGE. In the duplicated elements case, the
larger number of elementary matrices computed and the imbalance in the elements dis-
tribution explain the additional time. With the second option, the global iteration time
is competitive with the PASTIX centralized one. MURGE API cannot improve the
communication avoided distributed assembly of the global matrix but improvement in
the multi-threaded matrix-product could be investigated to improve the speed of these
iterations.

Figure presents the memory consumption of the three implementations on the
same test case. About 15% to 30% of the memory can be saved during the simulation
when n_ tor = 3. The peak memory, at the end of the simulation, is then reduced by
20%. The duplicated elements version consumes about the same amount of memory
than the one with no replication.

Figure[f.9]and Figure[£.10|present results of the same experiment on a larger test case:
model 303. Here the initialization phase with one toroidal plane last for 120 iterations,
then they use respectively three and seven toroidal planes in a second phase. With three
toroidal planes (Figure , one can make similar observations on this model as on the
model 302: iterations without factorization are taking the same time with the centralized
API and with MURGE, while the iterations with a factorization are improved. We can
save 25% of the memory during the second phase but as the peak was reached during the
first phase it is not reduced. With seven toroidal planes (Figure , the GMRES only
iterations are longer. A longer time is spent in the assembly loop that is more complex
than with the centralized harmonics because of the differences in the elementary matrices
distribution. We need to identify which step of the assembly loop is not optimal and

4.5. Discussion 121

—_ PASTIX Cnger =1

) o —_ PasTiX C ey =1
—— MURGE, balanced elements distribution 740, = 3 —— MURGE, balanced elements distribution T 1740, = 3
S0 MURGE, duplicated elements — —— MURGE, duplicated elements —

22
0 1

H i
60 A sl
50 F 1 5|

40 - b

Tteration time [s]

30 B

| s o VWMWMF

Memory consumption [GB]

| | i I | | | 04k I I I I | | 4
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Iteration number Tteration number
(a) Iteration time. (b) Memory consumption.

Figure 4.8 — Comparison of iteration time and memory consumption for each time step
of the simulation on model 302. On eight nodes of eight cores, on Curie cluster hy-
brid partition. Model 302 was run with default parameters, in particular n,, = 3 (2
harmonics).

correct it. However, the memory consumption is also reduced and the peak memory
can be reduced by 30%. Thus, using MURGE this execution can be run with a lower
memory requirement and executed on smaller configuration. Thus, users can execute
the simulation with a larger number of toroidal planes.

4.5 Discussion

In this chapter, we explained how we could improve the memory and time scaling of a nu-
merical simulation using a generic matrix assembly API developed above the PASTIX
solver. Using an implementation specific to the solver one can reach higher perfor-
mance. This finite elements oriented API also simplify the development of a distributed
matrix assembly for the numerical simulation developer. In a large scale simulation
code, JOREK, we could achieve both good performance and less memory consumption
through this API. All this study is related to PASTIX integration inside JOREK but
the same API could be used to produce a distributed assembly for another solver or/and
another finite elements based simulation code.

122 Chapter 4. Integration in a controlled plasma fusion simulation code: JOREK

— PASTIX Cnger =1
—— MURGE, balanced element distribution T nse, = 3 PASTIX Cnger =1
[j —— MURGE, balanced elements distribution T4, = 3

60 - 8 A
35

70

= w |
20l “”F L'M”H LMW““ Wyt bk Y Y T

L | o

o
T
I

T
—
I
Memory consumption [GB]

N O Y Y Y Y T O N I O Y A
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Tteration number Iteration number
(a) Iteration time. (b) Memory consumption.

Figure 4.9 — Comparison of iteration time and memory consumption during for each time
step of the simulation on model 303. On eight nodes of eight cores, on Curie cluster

hybrid partition. Model 303 was run with default parameters, in particular ny, = 3 (2
harmonics).

—_— PaSTIX Cnger =1
—— MURGE, balanced elements distribution T n,, = 7

PaSTIX
80 3 —— MURGE, balanced elements distribution 17,
10 | -
70 | o
| | = s .
<l
| - LT L
a
E oof .
o1 J g
L U N,w'"" L‘ 54l /J]
f WJ’ e jj TS Y J E
=1
20| u e T /
2/ i
v sk M
10 7 S
I | I I I I I I I I I | I I I I I | I I
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Iteration number Iteration number
(a) Iteration time. (b) Memory consumption.

Figure 4.10 — Comparison of iteration time and memory consumption for each time
step of the simulation on model 303. On eight nodes of eight cores, on Curie cluster
hybrid partition. Model 303 was run with default parameters, except that ny, = 7 (4
harmonics).

Conclusion and perspectives

To compensate for the limited clock frequency and the high consumption of basic cores,
manufacturers proposed more specialized, highly parallel, accelerators. Nowadays, half
of the first ten machines in the top500 ranking [meuer__top__2014 | are heterogeneous
clusters. If dense linear algebra community already addressed efficiently these new het-
erogeneous architectures this was not the case of sparse linear algebra. We investigated
the possibility to solve efficiently a sparse system, using direct methods, on a distributed
cluster of heterogeneous nodes.

The main objective of this thesis was to evaluate the feasibility of an efficient sparse
direct method on top of generic task-based runtime systems to target distributed hetero-
geneous nodes. These works were integrated in the PASTIX sparse linear solver library
developed in Bordeaux. To implement such a heterogeneous algorithm, we decided to
use the task-based runtime systems that were widely used in the context of dense linear
algebra.

In Chapter [2] we described the implementation of a shared-memory sparse factoriza-
tion algorithm using two task-based runtime systems; namely, STARPU and PARSEC.
We estimated the efficiency of those new implementation. We have shown that using
task-based runtime systems in a shared memory context, one could reach similar perfor-
mance to the finely tuned original PASTIX scheduler. Then, we added GPU support to
our algorithm. To achieve that, we modified an existing matrix-matrix product GPU
kernel to fit the sparse structures used in the sparse direct linear solver. We provided
this new kernel to the runtime system and developed a scheduling strategy to help the
runtime system mapping the operation on either CPU or GPU. Doing so, we could
achieve a speedup of up to 2.86 on one heterogeneous node.

Chapter [3] extended this study to the distributed case. We implemented two ver-
sions of the distributed algorithm, fan-in and fan-out, using task-based runtime sys-
tems and compared it to the original PASTIX static and dynamic scheduler imple-
mentations. The task-based runtime systems implementation can outperform, under
certain conditions, the default static scheduler. We obtained a speedup of up to 1.4
on 4 nodes of 12 cores and 2 GPU. However, the dynamic scheduler implemented
in [faverge__ordonnancement_ 2009 | is still beyond on a large number of nodes.
Indeed, the communication management by the generic runtime system creates an over-
head that has to be reduced.

Chapter [considered the distributed matrix assembly step of a simulation code.

123

124 Conclusion and perspectives

To address this issue, we proposed a new generic API that can be implemented on
top of most of the sparse solvers. We implemented it on top of the PASTIX solver
and estimated its performance in comparison with the PETSc linear algebra assembly
functionality. Using this API, we could replace the centralized matrix assembly in
JOREK by a distributed one and save up to 30% of the memory. Once this memory
bottleneck has been removed, JOREK is now able to target larger problem sizes.

The outcomes of this thesis are opening toward the usage and optimization of task-
based runtime systems for sparse linear algebra. Optimizations regarding the graph
partitioning step are currently investigated. The goal is to reorder the unknowns to
gather the small blocks into larger ones that will lead to more efficient BLAS calls. This
will improve the performance of the decomposition in the general case and particularly
reduce the relative overhead of task-based runtime systems, and generate tasks more
suited to accelerators. In Chapter [2, we showed that the static placement of tasks on
GPUs is well tuned for shared memory execution on the test cases presented in this
thesis. However, the placement would have to be modified when the size of the matrices
differs in order or when it is distributed on multiple nodes. By enforcing the locality
decision following arbitrary criteria, we limit the control of the algorithm. A finer API
to control the placement of computation would provide better performance.

We could also separate the panel factorization into two kernels: the diagonal block
factorization and the triangular system solving on the off-diagonal blocks. Doing so
we could decide to execute the solution of the off-diagonal triangular system on the
accelerators. For this operation, on GPU, the CcUBLAS routine already exists, we only
would have to provide it to the runtime system so that it could use the accelerator to
perform these new kernels. This is also possible for the diagonal block factorization
kernel although this one is usually less efficient on GPU, especially with the block sizes
encountered in sparse direct solvers.

In this thesis, we only considered GP Us, but we should also address Intel Xeon Phi
accelerators. Two approaches can be investigated: one could execute the whole sparse
factorization on the Intel Xeon Phi, or this last one could be used to offload part of the
computation through specialized kernels. The first approach is limited by the size of the
memory available on the board. One could investigate the second by providing a new
specialized kernel to the runtime system implementation of the solver.

In a distributed context, the task-based implementation of the factorization is also a
good framework to experiment a mixed fan-in/fan-out [ashcraft__comparison__1990
| implementation of the factorization. It could be used, particularly, for a Schur com-
plement computation exploited in modern hybrid solvers [giraud__parallel 2009;
rajamanickam__shylu:__2012 |. Finally, using a window to limit the number of sub-
mitted tasks to the runtime system might improve the scaling of the MPI implemen-
tation on larger problems by reducing the number of communication buffers handled
simultaneously.

Considering JOREK and the matrix assembly interface, we have to investigate the
use of the generic runtime for this step as well as for the matrix-vector product in
order to be able to exploit accelerators. Also, a tighter integration with PASTIX could

125

insert values directly inside the factorized matrix structure, avoiding the usage of all the
intermediate structures at the cost of a more complex code for the interface. Increasing
the integration of finite elements could improve the scaling of the simulation. Indeed, a
tighter integration with the mesh structure could allow one to find a data mapping that
will fit the solver’s computation, the matrix mapping, and give a balanced distribution
of the elements of the mesh adapted to the simulation. We could also investigate the
possibility to use two dedicated communicators for the solver and for the assembly that
would simplify the user assembly code in simulations using a complex solving method
with multiple independent problems such as JOREK.

Thus, in this thesis, we showed that one can obtain an efficient parallel sparse direct
solver on heterogeneous clusters using task-based runtime systems with an adapted task
granularity. We also provided an easy to use API to perform an optimized distributed
assembly for a sparse direct solver. Both have been integrated in a production code to
improve its performance.

126 Conclusion and perspectives

Appendix A

Publications

127

128 Appendix A. Publications

Appendix B

Integration in Algo’Tech software

During my PHD, I interacted with Algo’Tech, a SME from Bidart in the south west of
France. This company is developing a CAD software to design electric diagram. The
team also developed an electric solver to validate the diagrams and is extending this
solution to electromagnetic problems. Including electromagnetic into their simulation
tool increases the problem size considerably. Thus, they decided to move from their
homemade direct solver to an HPC solution via the HPC-PMHEP| program. In this
context, we worked together to find a high performance solution to their problems.

B.1 Algo’Tech software simulation tool

Algo’Tech software company developed a simulation tool to validate the electric diagrams
that have been designed via their CAD tool. Their simulation program performs a direct
factorization for each electric frequency in a given range and with a given step. Among
the different systems to solve, the pattern of the matrix remains constant and the values
of the matrix are numerically close. The solving of the linear systems are also totally
independent of each other.

The main drawback of the initial LU solver implemented in Algo’Tech’s simulation
was its lack of symbolic factorization. The structure of the factorized matrix was discov-
ered during the factorization, and the insertion of new value into the structure during
factorization had a prohibitive cost. Some investigation had been done on reordering,
giving a decent improvement. Compared to our solution the solver did not propose
parallelism, but this is not a real requirement as the frequency loop is highly parallel.
PASTIX solver also benefits from BLAS 3 operations that were not available in the
homemade solver.

Yhttp://www.initiative-hpc-pme.org/

129

http://www.initiative-hpc-pme.org/

130 Appendix B. Integration in Algo’Tech software

B.2 Optimizations

The first step of our work with Algo’Tech was to replace their home made direct solver
with our high performance library. Then, we could investigate the parallel execution
of these independent linear systems solving in a multi-threaded context. The third
optimization investigated was the offload of the linear systems solving loop on a high
performance platform. An other possibility that was proposed but not yet developed
was a numerical optimization of the solving loop.

B.2.1 PaStiX integration

The first logical step for us was to integrate our highly optimized library into their code in
Delphi. To achieve this goal we had to finalize the windows port of PASTIX library and
to develop a Delphi interface to PASTIX. As the pattern of the matrix is constant, using
PASTIX, we could perform the preprocessing step only once for the whole frequencies
loop.

B.2.2 Parallelization

In the simulation tool, we could investigate the possibility of parallelization using multi-
threading. Three solutions were possible:

e use multi-threaded BLAS;
e use threads in PASTIX;
e use threads in the frequencies loop.

As the blocks built by PASTIX are very small, using thread in the BLAS library is
worthless and we’d rather use threads inside PASTIX. We can obtain more parallelism
using threads in the frequencies loop because frequencies loop iterations are totally
independent. Thus, we deactivated the multi-threading both in the BLAS library and
in PASTIX library and use a parallel for model on the frequencies loop (Alg. [11]).

B.2.3 Cloud computing

The second approach we investigated was the offload of the whole frequencies loop on a
high performance cluster. This was done on the Bull ExtremeFactory machine. We send
the three matrices A B and C via SSH and then a program executing the factorization
loop is executed with a given range of values for w. The resulting solution vectors are
then copied back and analyzed by the simulation software. To reduce the cost of data
transfer, the result vectors are packed into an archive before the transfer is performed.

With this approach, we can obtain a highly parallel solution but in our investigation
the problems were still too small to benefit from the power of the machine. Moreover,
the ratio of data transfers compared to computation was too high. We think that
we should offload more computations, such as the matrix building from the electric

B.3. Conclusion 131

Algorithm 11 Frequencies loop using a classical direct solver.

> Build pattern of the matrix using any non nil value of w
1: S—>A+iw1B—|—§
2: Preprocess(S)
> Can be executed in parallel

each w in [Wmin; Wmaz]

S =+ A+ iwB + iwC

LU — Fact(S)

x — Solve(LU, b,,)
> Post process the solution to plot results

Postprocess(zx)

® =

diagram, to reach better reactivity. However, with more complex diagrams this solution
can accelerate the computation.

B.2.4 Numerical optimization

Another possible optimization we proposed but did not investigate yet was a numerical
optimization. Indeed, we have seen that the different solved problems are close to each
other numerically. Thus, one could perform the factorization for a given frequency and
reuse it as a preconditioner to solve iteratively next frequencies’ problems (Alg. .
The factorization would be performed only when the iterative solver does not converge
quick enough. This would reduce the complexity of this algorithm as the complexity of
an iterative step of the solver is only the complexity of a matrix vector product (O(nnz))
compared to the complexity of a matrix decomposition (O(nz))

B.3 Conclusion

In this section we have shown that PASTIX library is not only restricted to the research
community but our experience can also address smaller problems efficiently and be prof-
itable to SMEs.

As we have seen in this section, some investigations still need to be done in the solv-
ing method and improvements could still be obtained by offloading a larger part of the
simulation to the cluster, increasing the computation/communication ratio and thus the
scalability.

132 Appendix B. Integration in Algo’Tech software

Algorithm 12 Frequencies loop with direct preconditionned iterative solver.

> Build pattern of the matrix using any non nil value of w
1: S—>A-|-z‘wlB+§
2: Preprocess(S)
> Can be executed in parallel
For each w in [wmin; Wmaz] Do
S — A+iwB+ <
LU — Fact(S)
niter — 0
While niter < maxlter Do
S'— A+iwB+ <
(z,niter) — IterativeSolve(LU, S’ b,,)
10: End Wahile
> Post process the solution to plot results
11: Postprocess(x)
12: End For

N SO W N

Appendix C

Murge and Jorek code samples

In this annex, we present algorithms that illustrate the chapter @l First, we detail
a MURGE API classical use case. Then, we present the original matrix assembly

algori
Li
using

1.

thm in JOREK and, finally, the new version using MURGE.
sting [5] presents the different steps one has to follow to call a sparse linear solver
MURGE API:

Initialization: allocates the required data structures for the linear algebra library
and set the solver parameters (lines|[1] to ;

. Graph setting: assembles the graph of the matrix (ie. the matrix without the

values). Once it has been performed, the linear algebra solver preprocessing steps
(ordering, symbolic factorization, and data distribution in the case of PASTIX)

can be triggered (lines (13| to ;

. Remapping: retrieves the matrix distribution adapted to the solver and compute

a new corresponding mesh distribution (lines [23| to ;

Matrix and right-hand-side setting: fills the matrix and right-hand-side with coef-
ficients to perform the solving steps (lines 30| to ;

. Getting the solution: queries the solution vector (line ;

. Clean: deallocates all internal data structures (lines 49 and [50))).

Listin

g 5 MURGE simple test case.

MURGE Initialize(1); /* Initialize for 1 instance */

id

/ *

= 0; /* id of the linear system */

Initialize Default solver options * /

MURGE_SetDefaultOptions (id, 0);

/ *

Set options */

133

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

134 Appendix C. Murge and Jorek code samples

MURGE_SetCommunicator (id, MPI_COMM_WORLD) ;
MURGE_SetOptionINT (id, MURGE_IPARAM_BASEVAL, 1);
MURGE_SetOptionINT (id, MURGE_IPARAM_SYM, sym);

/* Set the graph =/
MURGE_GraphBegin (id, localn, lnnz);
for (i = 0; i < nLocalElements; i++) {
e = localElements[i];
/* get the list of vertices of e in idx array x*/
GetVertices (e, idx);
MURGE_GraphBlockEdge (id, idx, idx);
}
MURGE_GraphEnd (id) ;

/* Get solver distribution */

MURGE _GetLocalUnknowsNumber (id, &n);

localUnknowns=malloc (n*sizeof (INTS)) ;

MURGE_GetLocalUnknowsList (id, localUnknowns) ;

reBuildlLocalElements(n, localUnknowns,
&localElements, &lnnz);

/* Assemble the matrix and right-hand-side */
MURGE_AssemblyBegin(id, n, lnnz,
MURGE_ASSEMBLY_0VW,
MURGE _ASSEMBLY OVW,
MURGE_ASSEMBLY_FOOL, sym);
for (i = 0; i < nLocalElements; i++) {
e = localElement[i];
GetVertices (e, idx);
m=GetMatrix (e) ;
MURGE_AssemblySetBlockValues (is, idx, idx, m);
b=GetRhs (e) ;
for (j 0; j < nidx; j++)
rhs[idx[j1] = b[j];
}
MURGE_AssemblyEnd (id) ;
MURGE_SetGlobalRHS (id, rhs, 0, MURGE_ASSEMBLY_OQOVW) ;
/* Get the solution */
MURGE_GetGlobalSolution(id, xx));

/* Free Solver internal structures for problem id
MURGE_CALL (MURGE_Clean (id));
MURGE_CALL (MURGE_Finalize ());

*/

135

Algorithm [I3] presents the matrix assembly in JOREK before the introduction of
MURGE API. The distributed matrix corresponding to the global problem is simply
assembled using the local matrix assembly. Then, the boundary conditions can be in-
serted. After the global matrix is complete, the harmonic matrices are gathered on each
sub-communicator and transformed so that the direct solver can use it.

Algorithm and Algorithm present the matrix assembly in JOREK using
MURGE API. Here, the global and harmonic matrices are both built in a distributed
way. After the assembly loop, entries corresponding to non local harmonics are sent and
conversely entries are received from other harmonics. After that, the direct solver is
called in a distributed way, without conversion of the matrix.

136 Appendix C. Murge and Jorek code samples

Algorithm 13 Assembly algorithm using original PASTIX interface.

1: For each local element e Do

2: EltMatriz < buildElementMatrix(e)

3: For each vertex., € [1,vertexNbr] Do

4: For orderey € [1,order Nbr + 1] Do

5: index .y < getIndex(vertex o, order.y)

6: If indexy is a local column Then

7 For each vertex, o, € [1,vertexNbr] Do

8: For each orderyoy € [1..order Nbr + 1] Do

9: indet,oy < getIndex(verter oy, orderyoy)
10: For each dofrow € [1, Ntor * Nyar] Do
11: For each dofeo € [1,Mtor * Nyar] Do
12: value < getValue(Elt M atriz, order; oy, do frow,
13: order o, dofeor)
14: Global Distributed M atriz.Insert(index oy, do frow,
15: index o, dofeor,
16: value)
17: End For
18: End For
19: End For
20: End For
21: End If
22: End For
23: End For
24: End For

> Set boundary conditions
25: BoundaryCounditions(Distributed)
> Redistribute values accross harmonic communicator
26: For each (row, col,value) in DistributedMatrix Do
27: torrow < getTor(row)
28: toreo < getTor(col)
> If we are on a diagonal block it correspond to an harmonic

29: If toryew = tore, Then

30: DistHarmonicM atriz[tor.q].Insert(row, col, value)
31: End If

32: End For

33: HarmonicMatrix <= M PIGather Matriz(Dist HarmonicM atrix)

137

Algorithm 14 Assembly algorithm using MURGE API (1/2).
> Initiate assembly phase

1. MURGE _AssemblyBegin(murge_idpyoq,n, nnz)

2: MURGE_AssemblyBegin(murge_idpgrm,n, nnz)

3: For each local element e Do

4: EltMatriz < buildElement M atrixz(e)

5 For each vertex., € [1,vertexNbr] Do
6: For ordery € [1,order Nbr + 1] Do
7
8
9

indexq, < getIndex(vertex oy, orderey)
If index,y is a local column Then
: For each vertex,oy € [1,vertexNbr] Do
10: For each orderyg, € [1..orderNbr +1] Do

11: index,oy < getIndex(vertex, oy, order,oy)
> Register the global problem elementary matrix
12: value < getValue(Elt M atriz, order oy, do frow, order o, dofeor)
13: MURGE __AssemblySet NodeV alues(
14: murge_idprod, iNdet o, indet o, EltMatriz)
15: For each harmonic h Do
16: EltMatrizHarm <
17: getHarmonicElementaryM atriz(EltM atrix, index oy,
indexcol, h)
18: If h == myHarm Then
> Register the local harmonic elementary matrix
19: MURGE __AssemblySetNodeV alues(
20: murge_idparm, iNAeTyoy, index o, EltMatriz Harm)
21: Else
> Prepare to send data to other harmonics
22: ToSend[h].append(indexy, oy, index o, Elt M atrizHarm)
23: End If
24: End For
25: End For
26: End For
27: End If
28: End For
29: End For
30: End For

> Communicate constructed matrices accross harmonics ... (see Algorithm [L5))

138 Appendix C. Murge and Jorek code samples

Algorithm 15 Assembly algorithm using MURGE API (2/2).
> Finite element assembly loop ... (see Algorithm
> Communicate constructed matrices accross harmonics
31: For each harmonic h Do
> Send data to harmonic h
32: Send(ToSend[h],h, MPI _COMM _ACCROSS_HARM)
> Receive data from harmonic h
33: Recv(ToAdd,h, MPI_COMM __ACCROSS_HARM)
34: For i € [1,Size(ToAdd)] Do

> Register the local harmonic elementary matrix

35: MURGE_AssemblySetNodeV alues(

36: murge__idpgrm, ToAdd[i].row, ToAdd[i].col, ToAdd[i].values)
37 End For

38: End For

> End of the assembly step
39: MURGE __AssemblyEnd(murge_idyoq)
40: MURGE _AssemblyEnd(murge_idpgrm)

Appendix D

Sparse matrix storage formats

In this annex, we describe the different format involved in our sparse solver. First the
Compressed Sparse Column (CSC) format is the one used as an input in the centralized
PASTIX library API. Then, an extension to distributed matrices is presented. Finally
the dynamic CSC is used in MURGE API to obtain a more efficient structure for the
assembly. Figure [D.J] presents the CSC sparse matrix format:

n: number of column in the matrix;

colptr : starting index of each column in rows and walues (column i goes from
rows[colptr[i| — colptr[0]] to rows[colptr]i + 1] — colptr|0]]);

rows row indexes, sorted by column;
values corresponding values, sorted by column.

Our implementation of MURGE API aims at building a distributed Compressed
Sparse Column matrix (called CSCD, see Figure and uses this one to call PASTIX.
This approach is particular to solvers using a CSCD as input, but the API is generic
and could also be implemented to build any kind of matrix.

Figure D.1 — An example of CSC matrix.

1 2 3 45

colptr : | 1 4 6 8 9 [10

TOWS : 1 3 4 2 4 3 5 4 5

T W N =

values : | 1.0 1 2.0]3.0|4.0(50(6.0]7.0]80]9.0

139

140 Appendix D. Sparse matrix storage formats

Figure D.2 — An example of CSCD matrix. The matrix is distributed on two processes,
represented in blue and red.

@ n: 2 n: 3

colptr : 1 4 6 colptr : 1 3 4 5
TOWS : 1 3 4 2 5 TOWS : 3 5 4 5
1
2 values : | 1.0 | 2.0 [3.0 4.0 5.0 values : | 6.0 7.0 8.0 9.0
3
4 loc2glob : | 1 2 loc2glob : | 3 4 5
5

The CSCD format is an extension of the CSC format in which local elements are
stored in a CSC format. A loc2glob array extends the information to match the local
columns into the global problem (local column ¢ has a global number loc2glob[i]). To
fit PASTIX needs, a column can only belongs to one MPI process. However, access in
a CSCD structure is quite fast as we just have to pass through the non-zeros of one
column to read or overwrite one entry (O(nnz/n) comparisons). On the other hand,
inserting a new entry in this structure is not very efficient as all entries after the new
one as to be moved. Indeed in a CSC matrix, all the rows (and also the values) are
stored in the same array, one column after the other. In the worst case, when an entry
is inserted in the first column, the whole rows and values entries have to move (O(nnz)).
For an efficient assembly in MURGE, we need to use a more dynamic structure to store
our matrix.

For more efficiency during the matrix assembly, we introduced a new dynamic CSC
(listing [6]) data structure.

This structure contains:

e the number of columns in the matrix (n),

e the number of expected non zeros in the matrix (nz),

e the number of degrees of freedom per unknown (dof),

e the number of entries in each column (colsizes),

e and one vector per column to store rows and values of the matrix.

This way, adding an entry in one column only alter the corresponding column of the
matrix.

Once the assembly of the matrix is finished, we can convert it easily to a CSCD
matrix that is used with the PASTIX original distributed interface. Building such a
distributed matrix removes the memory bottleneck but requires performing communica-
tions. The MURGE API proposes to hide all this communication process to the user
and implements them efficiently.

0 S T W N

141

Listing 6 Dynamic CSC structure.

typdef struct dynamic_csc_s {

int n;

long int nz;

int dof ;

int *colsizes;
int *kTOWS ;

double **values;
} dynamic_csc_t;

In PASTIX implementation of MURGE, entries are stored in a dynamic CSC. Then,
when the end of assembly is reached, non local columns are sent to their owners. This
way we obtain a dynamic CSC that contains only the local columns, and we can build
a CSCD suited to PASTIX. If the preprocessing has been performed PASTIX internal
column distribution gives the column locality of the CSCD. Else, the local columns are
chosen following the entered (i,7) couples. If multiple processes own a same column,
the one with more rows entries, or with the lower rank is they store the same number,
is elected. Thus, if the user distribution is not evenly distributed our CSCd will also be
badly balanced. We have tried a balancing algorithm to correct this problem but the
cost of such an algorithm is too heavy compared to the assembly cost. Thus, we assume
that the original assembly is well balanced. This is usually the case due to the graph
partitioning of the problem.

	Contents
	Introduction
	Linear algebra on modern architectures
	Parallel architectures
	Multi-core machines
	Accelerators

	Addressing parallel machines
	Parallel programming
	Addressing accelerators
	Task-based runtime systems

	Sparse linear algebra methods
	Prerequisite: Basic Linear Algebra Subroutines
	Solving a sparse linear system
	Description of the direct methods
	Linear algebra on homogeneous clusters
	Linear algebra on heterogeneous clusters

	Discussion

	Sparse factorization on shared-memory heterogeneous machines
	Framework
	PaStiX original algorithm description
	Elected runtime systems

	Implementation on top of generic runtime systems
	PaRSEC implementation
	StarPU implementation
	Multi-core Architecture experimentation

	Heterogeneous systems
	Implementation of a specific GEMM kernel
	Data mapping over multiple GPUs
	Heterogeneous experiments
	Memory study

	Optimizations
	Task granularity adapted to the runtime
	Block splitting algorithm

	Discussion

	Sparse factorization on distributed heterogeneous systems
	Solving distributed sparse linear system
	Fan-out implementation
	Fan-in implementation
	Data mapping

	Experiments
	Distributed implementation on homogeneous nodes
	Distributed implementation on heterogeneous nodes

	Discussion

	Integration in a controlled plasma fusion simulation code: JOREK
	Description of the framework
	Set of equations
	Spatial discretization
	Time integration scheme
	Equilibrium
	Sparse solver and preconditioning

	Assembly step in JOREK
	Optimized distributed matrix assembly
	Generic distributed finite element assembly oriented API
	Comparison with PETSc

	Integration into JOREK
	Implementation
	Timing and memory scaling study

	Discussion

	Conclusion and perspectives
	Appendixs
	Publications
	Integration in Algo'Tech software
	Algo'Tech software simulation tool
	Optimizations
	PaStiX integration
	Parallelization
	Cloud computing
	Numerical optimization

	Conclusion

	Murge and Jorek code samples
	Sparse matrix storage formats

