
Tunable parallel experiments in a GridRPC framework:
application to linear solvers

Y. Caniou1†‡, J.-S. Gay2† ‡,and P. Ramet3†¶

1 L IP-ÉNS de Lyon, Université Claude Bernard de Lyon (yves.caniou@ens-lyon.fr)
2 L IP-ÉNS de Lyon (Jean-Sebastien.Gay@ens-lyon.fr)

3 LABRI, Université Bordeaux 1 (ramet@labri.fr)

Abstract. The use of scientific computing centers becomes more and moredif-
ficult on modern parallel architectures. Users must face a large variety of batch
systems (with their own specific syntax) and have to set many parameters to tune
their applications (e.g., processors and/or threads mapping, memory resource
constraints). Moreover, finding the optimal performance isnot the only criteria
when a pool of jobs is submitted on the Grid (for numerical parametric analysis
for instance) and one must focus on the wall-time completion. In this work we
tackle the problem by using the DIET Grid middleware that integrates an adapt-
able PASTIX service to solve a set of experiments issued from the simulations of
the ASTERproject.
Key words: Grid computing, Sparse linear solver, Performance prediction, Ap-
plication specific plug-in scheduling

1 Introduction

Parallel computing and the design of high-performance codes to be executed on today’s
computing platforms are one of the major research activities in computer science. Such
architectures are now parallel computers organized as a large network of SMP nodes
and/or Grid platforms. On an other hand, solving large sparse systems of linear equa-
tions is a crucial and time-consuming step, arising in many scientific and engineering
applications. Consequently, many parallel techniques forsparse matrix factorization
have been studied and implemented.

In the context of the ASTERproject (Adaptive MHD Simulation of Tokamak ELMs
for ITER), we develop and implement methods to improve the simulation of MHD insta-
bilities that are needed to evaluate mechanisms to control the energy losses observed in
the standard tokamak operating scenario (ITER). To resolve a wide range of timescales,
a fully implicit time evolution scheme is used; this leads toa large sparse matrix system
to be solved at every time step. To reduce the large memory requirements of the sparse
matrix solve, the PASTIX library [7] is being extended to support preconditioners using
incomplete factorization.

† This work is supported by the REDIMPSproject JST-CNRS
‡ This work is supported by the LEGOproject ANR-05-CIGC-11
¶ This work is supported by the ASTERproject ANR-06-CIS-1 and SOLSTICEproject ANR-06-

CIS-10



One of the aim of the ASTERproject is to define the choice of optimal parameters of
the solver on a collection of test cases and to analyze the efficiency and convergence for
both parallel and sequential implementations [4]. Then, wemust perform an exhaustive
set of experiments, whose objective is to collect the benchmark results induced by this
parametric analysis.

We address the efficiency problem with a Grid architecture relying on the DIET [3]
Grid middleware. The proposed solution integrates the development of a DIET clien-
t/server which gives access to the PASTIX service over the Grid, a transparent batch
parallel job submission mechanism to address batch systemsheterogeneity as well as
mechanisms to obtain staticanddynamic information on the resources of a site, a par-
allel job tuning to address the moldability of PASTIX (the possibility to set the number
of processors to use at launch time), and a distributed application-specific scheduler.

2 Related Work

The TLSE project1 (Test for Large Systems of Equations) aims to provide an expert
Grid system, particularly to evaluate sparse direct solvers. TLSE relies on the DIET

Grid middleware to submit the computing analysis on the Grid. The context of work is
different than the one in this paper, because submission of parallel jobs was not avail-
able within the DIET API and such had to be done case by case (forks or batch scripts
had to be hard coded if used), and iterative solvers functionalities (incomplete factoriza-
tion for instance) cannot be taken into account. In any case,the platform will not allow
performance predictions and approximate wall-time. Furthermore, we want to take ad-
vantage of the moldability of PASTIX parallel jobs, which can be tuned accordingly,
for example to benefit of the maximum idle resources on a site.

3 Presentation of PASTIX

PASTIX 2 is a scientific library that provides a high performance parallel solver for very
large sparse linear systems based on block direct and block ILU(k) iterative methods.

The PASTIX library uses the graph partitioning and sparse matrix block ordering
packageScotch [8]. PASTIX is based on an efficient static scheduling and memory
manager by taking into account very precisely the computational costs of the BLAS
primitives, the communication costs and the cost of local aggregations.

In the context of SMP node architectures, we fully exploit shared memory advan-
tages. A relevant approach is then to use an hybrid MPI-thread implementation. This
not yet explored approach in the framework of direct solver aims at efficiently solving
3D problems with much more than 10 millions of unknowns. We have shown that this
approach allows a great reduction of the memory required forcommunications [6]. Hy-
brid MPI-thread batch scheduling is then crucial to solve large problems even if those
requirements are often difficult to set on scientific computing center.

1 http://gridtlse.org/
2 http://pastix.gforge.inria.fr



4 Presentation of DIET

DIET is a GridRPC middleware relying on the client/agent/serverparadigm. Aclient is
an application which needs a computing service. Theagent, which can be extended as
a hierarchy of agents, has the knowledge of several servers.The distributed scheduler
embedded in each agent chooses the best computing resource for the execution of a
given request considering a given metric. Theserver is a daemon running on the com-
puting resource. The server gives performance estimationsto its agent and launches a
service each time requested by the client.

The mechanism to execute a request is shown in Figure 5: when an agent is con-
tacted by a client who wants to solve a problem (a), the request follows down the hierar-
chy of agents to servers (b and c). They answer back performance information (c and b)
which is used up in the hierarchy to determine which one suitsthe best the resolution of
the service (b). The identity of the server is given to the client, who contacts the server
and sends its data (f). Once the computation is finished, results are transfered back to
the client.

5 Architecture of the proposed solution

The architecture of the solution is schemed in Figure 5. There are four main parts.
In the reverse order of the process of a request: a script parameterized with correct
values concerning the number of processors used in regard toboth PASTIX and to the
batch scheduler has to be created. This means that the servercan access the number of
available idle resources on the site through the batch scheduler (d); integrate a correct
knowledge to decide how many of them the PASTIX service will use (d); create and
transparently submit the batch script ((d) and (e)); higherin the hierarchy, the request is
processed by the hierarchical scheduler, which is specifically designed for the PASTIX
service (b). All this steps are described in this section.

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

a

b

c

f

Diet

Hierarchy

MA

Client

Client

Client

SeDbatchParallel resource
Access Point de

Pastix

Pastix

Pastix

Fig. 1. Architecture of the proposed solution



5.1 Improvements realized in the DIET Grid middleware

Re-designing the implementation of DIET servers.

A server is now either aSERIAL, a PARALLEL or aBATCH server. ASERIAL
server is the previous and unique kind of server available inDIET. It launches the
resolution of a service by forking the function which realizes the solve. It is still the
default behavior if none are given in the server code. APARALLEL server reads in a
file the name of the resources that it manages, and knows consequently their number.
It launches a script provided by the SED programmer (generally a MPI script) where
the resources and their number can be used with the help of meta-variables. It implied
additional developments because the script is forked but its execution has still to be
controlled for asynchronous mode, to advertise the client when the job is terminated, or
simply to know when transferring back the results. ABATCH server reads the name of
the batch system in the server configuration file, and can submit consequently adaptable
batch scripts provided by the SED programmer. In that case, the SED requests the batch
system every 30 seconds to control the state of the job. For the moment, OARv1.6 and
Loadlever batch systems are supported.

A service is now declared and registered assequentialor parallel. This has three
main purposes: 1) APARALLEL or BATCH server can provide two different imple-
mentations, one sequential and the other parallel, with thesame name. Hence, the client
can request explicitly for one kind of service to explore some speed-up study, or the
DIET server can dynamically choose which one to execute depending on system perfor-
mances. The client does not even now the nature of the resolution nor the machine that
has performed the resolution but only gets the results when the job is finished. 2) The
service is registered in all the components from the server to the root agent (the Master
Agent) in the hierarchy. By default, if no constraint is specified by the user, DIET tries
to answer to the request with the best server (according to some metrics) specifying
which type of service to execute. But if the client specifies the type of the service he
wants, then the request is only forwarded down in the hierarchy to components that are
aware of the service, making the scheduling process lighterand the latency smaller. 3)
When arriving at the last local agent, if there is no constraint on the request and if the
server can solve both kind of services, the request is duplicated when submitted to the
server. Hence, one can achieve Round-Robin between services on all the platform as a
default scheduling policy.

An extended API to address batch systems performance estimations.

DIET has a performance module called CoRI (Collector of ResourceInformation).
CoRI proposes a generic API which lets the user get some giveninformation on the
system by transparently transferring the request to a software or a built-in tool. It is also
used to set information that are transferred back to the agent, for application specific
scheduling.

We have integrated a submodule which can get information through batch sched-
ulers. For now, only the necessary information for the work of this paper can be ob-



tained, namely the number of processors and the number of idle processor available in
the system.

A new API to interface DIET and batch schedulers.

We have extended the DIET API in order to provide means to submit a draft script
constructed by the SED programmer that DIET completes and submits to the system
(if PARALLEL orBATCH). Hence, DIET transparently manages batch and parallel sub-
missions. DIET also proposes a set of meta-variables that the SED programmer can use
in the draft script. They describe the system and are replaced by the SED at launch time,
The script is then submitted with the additional corresponding batch syntax. Hence, the
submission is conducted transparently for the client/server programmer. This gives a
higher level and much ease to the server programmer to designa single generic server
working on different batch systems.

5.2 Interfacing PASTIX and DIET

Interfacing PASTIX and DIET occurs at three very different levels: first, we need to
use DIET functionalities to question the batch system about its load. We need as well
a PASTIX performance prediction to decide how many threads per reserved processors
will be used, in order to fully benefit from the moldability ofPASTIX jobs; second,
a DIET client/server has to be designed with the DIET batch API, in order to propose
the PASTIX service to Grid users; third, due to the nature of the analysis, we focus on
cycle stealing. Then the scheduling metric is based on idle resources and an application
specific plug-in scheduler has to be defined.

Performance predictions.

Since the ordering step and the block symbolic factorization can be pre-calculated
for each problem, PASTIX is able to quickly estimate the execution time in function
of the number of processors (threads) before factorizing and solving the system. We
can notice that the size of the block symbolic matrix, used tocompute the prediction,
is small. Moreover, at the same time, the exact memory requirement for each processor
can be computed. The script can then be built by DIET to fit the best PASTIX require-
ments and accordingly to system performances (e.g.,number of processors, walltime).

Designing the DIET client/server to provide the PASTIX service.

We have used the new DIET batch API to write the PASTIX client/server, in order
to be able to submit transparently to clusters managed with OAR and to an AIX parallel
machine managed with Loadleveler. Nonetheless, writing the DIET client/server is very
similar to the work in [1], except that meta-variables are used in a draft script and it is
launched with a special call, which completes the batch script and launches the script
in place of both the client and server programmer to the batchscheduler. The draft
script built by the DIET server takes into account the values given by the performance
prediction to reserve the correct number of processors (threads) for the correct duration.



Scheduling PASTIX requests in DIET.

Because we plan an extensive analysis, we need the maximum available resources.
In this paper, we consider a scheduling based on the availability of resources. The work
is performed using the new CoRI batch submodule to get the corresponding information
on the system and the plug-in scheduler functionality of DIET [2]. At each step in
the hierarchy, the aggregation method sorts the servers by the maximum available idle
resources.

6 Conclusion

Concerning PASTIX, all the results and data will be collected in order to select the
parameters of the solver that best fit the simulations of MHD instabilities. Some im-
provements are currently developed into the solver to take care of NUMA (Non-Uniform
Memory Access) effects. This will induce some new constraints regarding the mapping
of resources during batch reservations on such architectures.

Concerning DIET, we will extend the number of recognized batch with OpenPBS
and SGE batch reservation systems. Furthermore, we will provide more functionalities
regarding batch integration: an improved performance prediction for given batch sys-
tems (collecting informationandpredicting system behaviors for example with the help
of Simbatch [5]), as well as better autoconfiguration tools on the server side, to auto-
matically discover batch queues and their respective information. These will lead to a
better information quality, which will be used in the DIET scheduling.

We plan to use these improvements in a future work concerningthe resolution of
a set of experiments where the memory has to be taken into account in the scheduling
process as well as when solving the problem. Furthermore, the schema of this set of
experiments can be represented as a workflow whose branches can be pruned depending
on temporary results. Scheduling algorithms have then to bestudied and tested.

The DIET extensions developed in this work will be integrated in the LEGOdemon-
strator for the evaluation of the project. Furthermore, it will be adapted when possible
into the next evolutions of TLSE.

References

1. Yves Caniou, Eddy Caron, Hélène Courtois, Benjamin Depardon, and Romain Teyssier. Cos-
mological simulations using grid middleware. InFourth High-Performance Grid Computing
Workshop. HPGC’07., Long Beach, California, USA., March 26 2007. IEEE.

2. Eddy Caron, Andréea Chis, Frédéric Desprez, and Alan Su. Design of plug-in schedulers for
a gridrpc environment.Future Generation Computer Systems, 24(1):46–57, January 2008.

3. Eddy Caron and Frédéric Desprez. DIET: A scalable toolbox to build network enabled servers
on the grid.International Journal of High Performance Computing Applications, 20(3):335–
352, 2006.

4. O. Czarny, G. Huysmans, P. Hénon, and P. Ramet. Improvement of existing solvers for the
simulation of mhd instabilities. InNumerical flow models for controlled fusion, Porquerolles,
France, April 2007.



5. Jean-Sébastien Gay and Yves Caniou. Étude de la précisionde Simbatch, une API pour la
simulation de systèmes batch.RSTI - Techniques et Sciences Informatiques, 27:373–394,
2008.

6. P. Hénon, P. Ramet, and J. Roman. On using an hybrid mpi-thread programming for the
implementation of a parallel sparse direct solver on a network of smp nodes. InProceedings
of Sixth International Conference on Parallel Processing and Applied Mathematics, Workshop
HPC Linear Algebra, Poznan, Pologne, LNCS 3911, pages 1050–1057, September 2005.

7. P. Hénon, P. Ramet, and J. Roman. On finding approximate supernodes for an efficient ilu(k)
factorization.accepted to Parallel Computing, 2007.

8. F. Pellegrini. SCOTCH4.0 User’s guide. Technical report, INRIA Futurs, April 2005.


