Deciding the Sequentiality of a Finitely Ambiguous Max-Plus automaton

Ines Klimann, Sylvain Lombardy, Jean Mairesse \& Christophe Prieur

> LIAFA, CNRS (UMR 7089) - Université Paris 7 Paris - France

Max-Plus automata

- Automata in which every transition requires some time \longrightarrow weight.

Max-Plus automata

- Automata in which every transition requires some time \longrightarrow weight.
- The weight of a path is the sum of weights of its transitions.

Max-Plus automata

- Automata in which every transition requires some time \longrightarrow weight.
- The weight of a path is the sum of weights of its transitions.
- The time required to read a word u is the maximal time among all the successful paths labeled by u.

Max-Plus automata

- Automata in which every transition requires some time \longrightarrow weight.
- The weight of a path is the sum of weights of its transitions.
- The time required to read a word u is the maximal time among all the successful paths labeled by u.
- \longrightarrow Max-plus rational series: $S=\oplus\langle S, u\rangle u$

Max-Plus automata

- Automata in which every transition requires some time \longrightarrow weight.
- The weight of a path is the sum of weights of its transitions.
- The time required to read a word u is the maximal time among all the successful paths labeled by u.
- \longrightarrow Max-plus rational series: $S=\oplus\langle S, u\rangle u$
- The "zero" element is $-\infty$

Example

Some bad news

- The equivalence of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)

Some bad news

- The equivalence of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)
- The positivity of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)

Sub-classes of Max-plus automata and series

- Sequential (deterministic): Seq

Sub-classes of Max-plus automata and series

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb

Sub-classes of Max-plus automata and series

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq

Sub-classes of Max-plus automata and series

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq
- Finite union of unambiguous: FAmb \Leftrightarrow

Finitely ambiguous: bounded number of successful paths for each word
Def: Series $S \in$ class Cls iff \exists automaton $\mathcal{A} \in$ Cls such that \mathcal{A} realizes S.

$$
\left\langle S, a^{n}\right\rangle= \begin{cases}n & \text { if } n \text { even } \\ 0 & \text { otherwise }\end{cases}
$$

Example: FSeq $\cap \overline{\text { NAmb }}$

$$
\langle S, u\rangle=\max \left(|u|_{a},|u|_{b}\right) .
$$

Example: NAmb $\cap \overline{\mathrm{FSeq}}$

$$
\left\langle S, a^{n_{1}} b^{m_{1}} a^{n_{2}} b^{m_{2}} \ldots\right\rangle=\sum_{n_{i} \text { even }} n_{i}
$$

Example: FAmb $\cap \overline{\text { FSeq } \cup \text { NAmb }}$

$$
\left\langle S, a^{n_{1}} b^{m_{1}} a^{n_{2}} b^{m_{2}} \ldots\right\rangle=\max \left(\sum_{n_{i} \text { even }} n_{i}, \sum_{m_{j} \text { even }} m_{j}\right)
$$

Hierarchy

FAmb
 Seq
 NAmb

Rat

Some good news

- If $S \in$ NAmb, it is decidable whether $S \in$ Seq. (Mohri 97, Choffrut 77)

Some good news

- If $S \in$ NAmb, it is decidable whether $S \in$ Seq. (Mohri 97, Choffrut 77)
- NEW: If $S \in \mathrm{FAmb}$, it is decidable whether $S \in$ NAmb (and therefore, whether $S \in \mathrm{Seq})$.

Hierarchy

FAmb

FAmb $\longmapsto \cup$ NAmb (Weber, 94)

New method:

FAmb $\longmapsto \cup$ NAmb (Weber, 94)

New method:

FAmb $\longmapsto \cup$ NAmb (Weber, 94)

New method:

FAmb $\longmapsto \cup$ NAmb (Weber, 94)

New method:

Dominance property

Finite union of unambiguous automata:

$$
\mathcal{A}=\bigcup_{i=1}^{n} \mathcal{A}_{i}
$$

Let \mathcal{P} be the product of all \mathcal{A}_{i} (with coefficients in \mathbb{Z}^{n}).

Dominance property

Finite union of unambiguous automata:

$$
\mathcal{A}=\bigcup_{i=1}^{n} \mathcal{A}_{i}
$$

Let \mathcal{P} be the product of all \mathcal{A}_{i} (with coefficients in \mathbb{Z}^{n}).

- i is a victorious coordinate of a circuit θ iff it has a maximal weight on θ.

Dominance property

Finite union of unambiguous automata:

$$
\mathcal{A}=\bigcup_{i=1}^{n} \mathcal{A}_{i}
$$

Let \mathcal{P} be the product of all \mathcal{A}_{i} (with coefficients in \mathbb{Z}^{n}).

- i is a victorious coordinate of a circuit θ iff it has a maximal weight on θ.
- i is a victorious on a path π iff i is victorious on every sub-circuit of π.

Dominance property

Finite union of unambiguous automata:

$$
\mathcal{A}=\bigcup_{i=1}^{n} \mathcal{A}_{i}
$$

Let \mathcal{P} be the product of all \mathcal{A}_{i} (with coefficients in \mathbb{Z}^{n}).

- i is a victorious coordinate of a circuit θ iff it has a maximal weight on θ.
- i is a victorious on a path π iff i is victorious on every sub-circuit of π.
- $\cup \mathcal{A}_{i}$ verifies the dominance property iff $\forall \pi$ of $\mathcal{P}, \operatorname{Vict}(\pi) \neq \emptyset$.

Dominance property: Example

Characterization

Theorem: Let S realized by $\cup \mathcal{A}_{i}$.

 $S \in$ NAmb iff dominance property holds on $\cup \mathcal{A}_{i}$.Then, an equivalent unambiguous automaton can effectively be computed.

Construction of the unambiguous automaton

$$
\begin{gathered}
p|i, j \xrightarrow{a \mid k} q| i+x-k, j+y-k \\
k=\min (i+x, j+y)
\end{gathered}
$$

Construction of the unambiguous automaton

$p|i, j \xrightarrow{a \mid k} q| i+x-k, j+y-k$

$$
k=\min (i+x, j+y)
$$

Construction of the unambiguous automaton

$$
k=\min (i+x, j+y)
$$

Construction of the unambiguous automaton

$$
k=\min (i+x, j+y)
$$

Conclusion

Results:

- Classification of rational series

Conclusion

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata

Conclusion

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

Conclusion

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

Open questions:

- Sequentialization on any rational max-plus series
- Decidability of NAmb
- etc...

