Deciding the Sequentiality of a Finitely Ambiguous Max-Plus automaton

Ines Klimann, Sylvain Lombardy, Jean Mairesse & Christophe Prieur

LIAFA, CNRS (UMR 7089) - Université Paris 7 Paris - France

- Automata in which every transition requires some time weight.
- The weight of a path is the sum of weights of its transitions.
- ullet The time required to read a word u is the maximal time among all the successful paths labeled by u.
- ullet Max-plus rational series: $S = \bigoplus \langle S, u \rangle u$
- The "zero" element is -∞

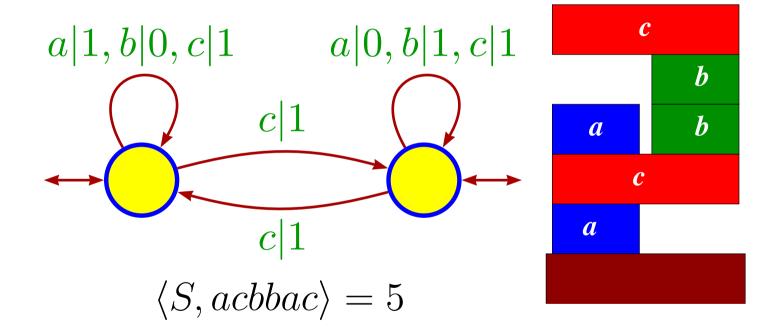
- Automata in which every transition requires some time weight.
- The weight of a path is the sum of weights of its transitions.
- ullet The time required to read a word u is the maximal time among all the successful paths labeled by u.
- ullet Max-plus rational series: $S = \bigoplus \langle S, u \rangle u$
- The "zero" element is -∞

- Automata in which every transition requires some time weight.
- The weight of a path is the sum of weights of its transitions.
- ullet The time required to read a word u is the maximal time among all the successful paths labeled by u.
- ullet Max-plus rational series: $S = \bigoplus \langle S, u \rangle u$
- The "zero" element is -∞

- Automata in which every transition requires some time weight.
- The weight of a path is the sum of weights of its transitions.
- ullet The time required to read a word u is the maximal time among all the successful paths labeled by u.
- ullet Max-plus rational series: $S = \bigoplus \langle S, u \rangle u$
- The "zero" element is -∞

- Automata in which every transition requires some time weight.
- The weight of a path is the sum of weights of its transitions.
- ullet The time required to read a word u is the maximal time among all the successful paths labeled by u.
- ullet Max-plus rational series: $S = \bigoplus \langle S, u \rangle u$
- The "zero" element is -∞

Example



Some bad news

- ▶ The equivalence of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)
- ullet The positivity of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)

Some bad news

- ▶ The equivalence of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)
- ullet The positivity of Max-plus automata over \mathbb{Z} is undecidable (Krob, 94)

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq
- Finite union of unambiguous: FAmb ⇔
 Finitely ambiguous: bounded number of successful paths for each word

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq
- Finite union of unambiguous: FAmb ⇔
 Finitely ambiguous: bounded number of successful paths for each word

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq
- Finite union of unambiguous: FAmb ⇔
 Finitely ambiguous: bounded number of successful paths for each word

- Sequential (deterministic): Seq
- Unambiguous: at most one successful path for each word: NAmb
- Finite union of sequentials: FSeq
- Finite union of unambiguous: FAmb ⇔
 Finitely ambiguous: bounded number of successful paths for each word

Example: NAmb \cap FSeq \cap Seq



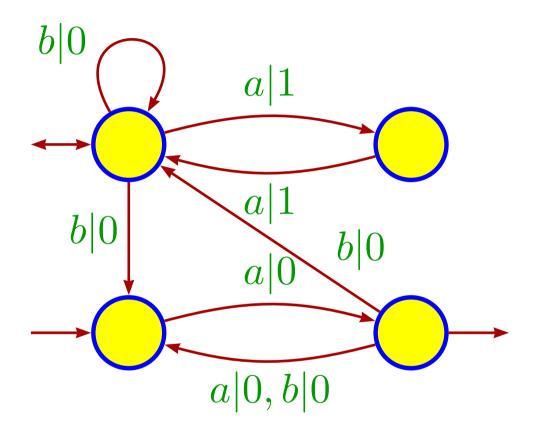
$$\langle S, a^n \rangle = \begin{cases} n & \text{if } n \text{ even} \\ 0 & \text{otherwise} \end{cases}$$

Example: $FSeq \cap \overline{NAmb}$

$$a|1,b|0 \qquad a|0,b|1$$

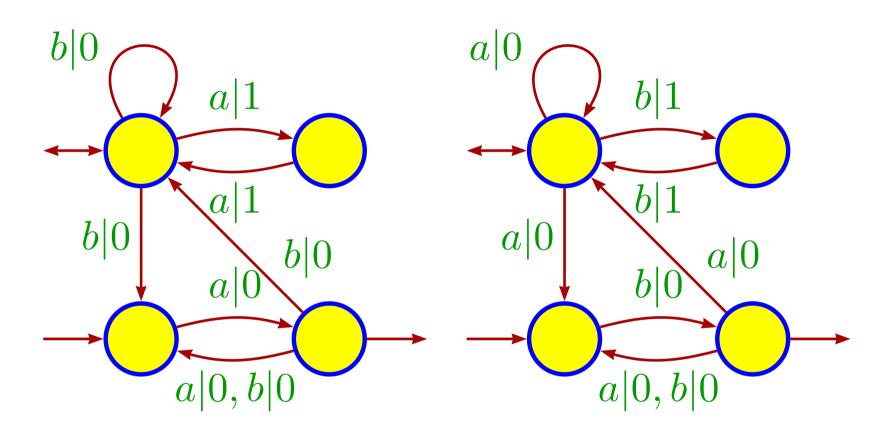
$$\langle S, u \rangle = \max(|u|_a, |u|_b).$$

Example: NAmb \cap FSeq



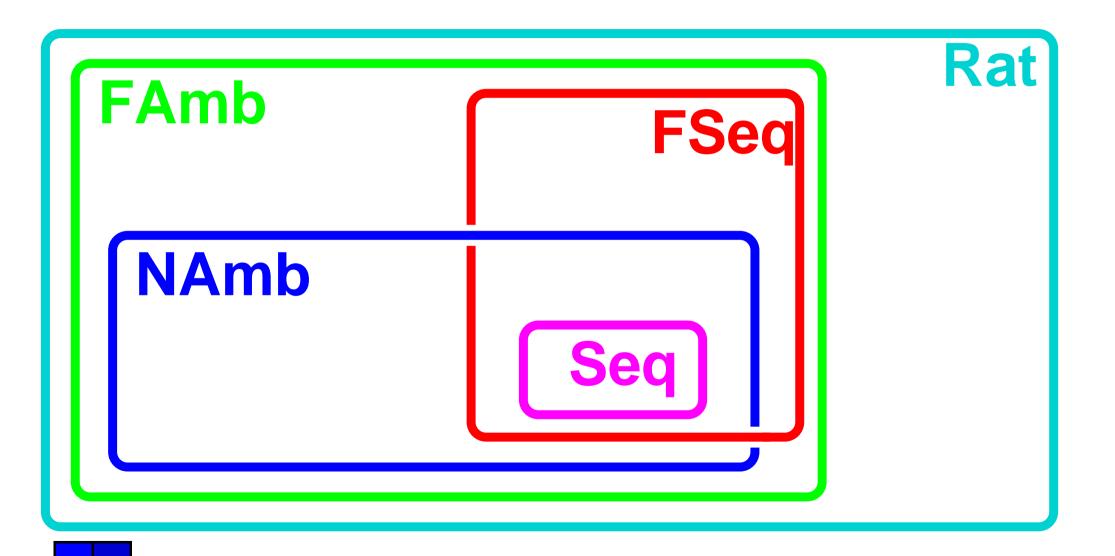
$$\langle S, a^{n_1}b^{m_1}a^{n_2}b^{m_2}...\rangle = \sum_{n_i \text{ even}} n_i$$

Example: FAmb \cap FSeq \cup NAmb



$$\langle S, a^{n_1}b^{m_1}a^{n_2}b^{m_2}...\rangle = \max(\sum_{n_i \text{ even}} n_i, \sum_{m_j \text{ even}} m_j)$$

Hierarchy



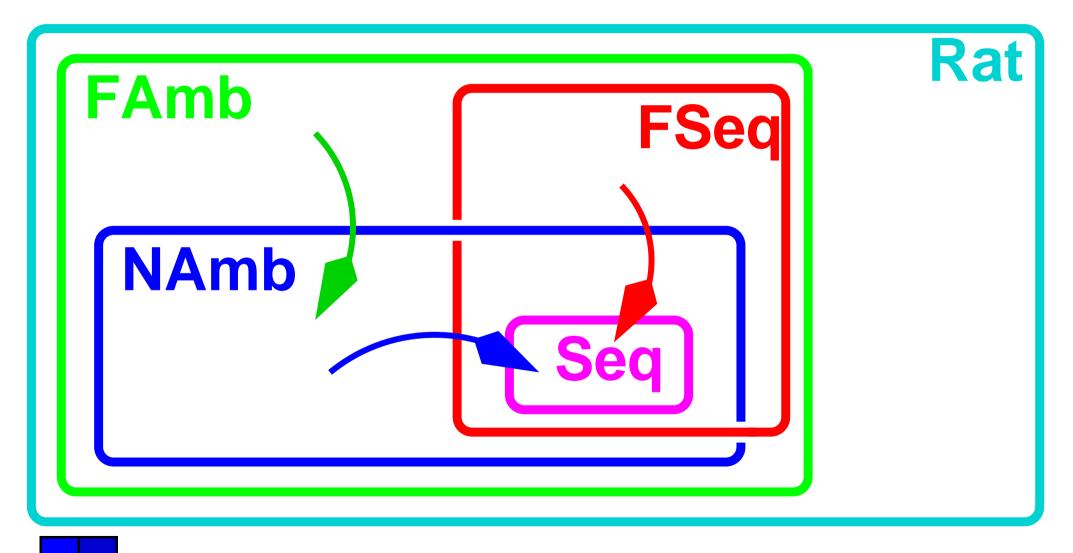
Some good news

- **●** If $S \in NAmb$, it is decidable whether $S \in Seq$. (Mohri 97, Choffrut 77)
- NEW: If $S \in \mathsf{FAmb}$, it is decidable whether $S \in \mathsf{NAmb}$ (and therefore, whether $S \in \mathsf{Seq}$).

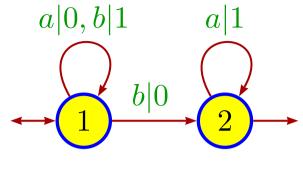
Some good news

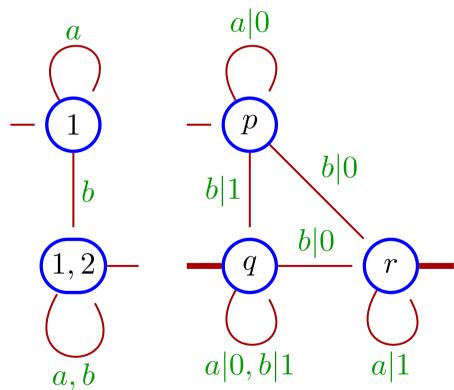
- **●** If $S \in NAmb$, it is decidable whether $S \in Seq$. (Mohri 97, Choffrut 77)
- NEW: If $S \in \mathsf{FAmb}$, it is decidable whether $S \in \mathsf{NAmb}$ (and therefore, whether $S \in \mathsf{Seq}$).

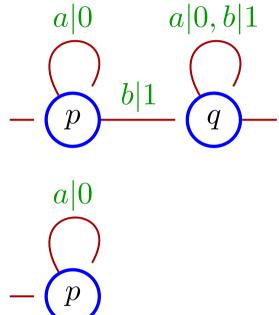
Hierarchy

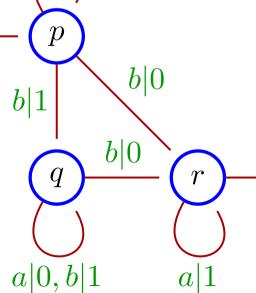


FAmb $\longrightarrow \bigcup$ **NAmb** (Weber, 94)

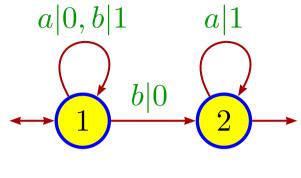


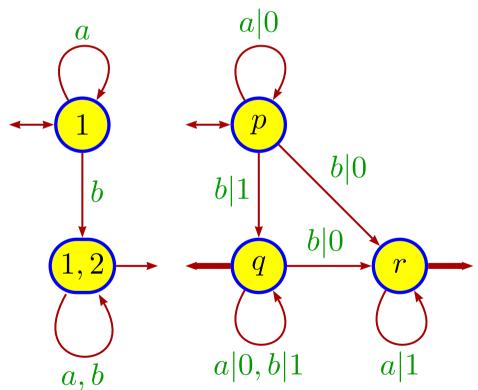


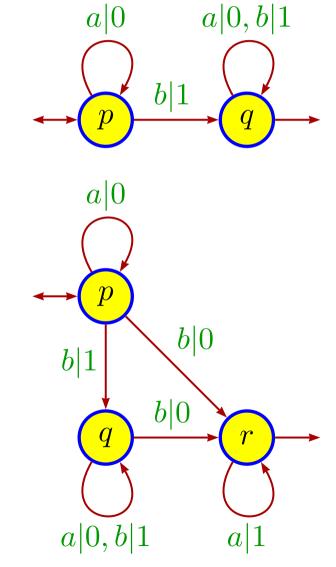




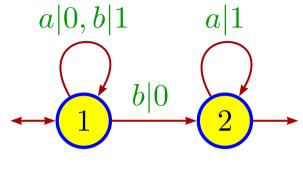
FAmb $\longmapsto \bigcup$ **NAmb** (Weber, 94)

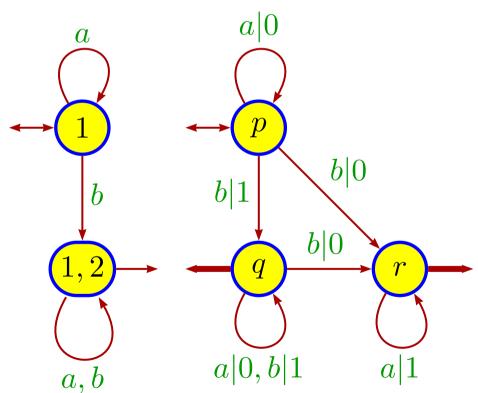


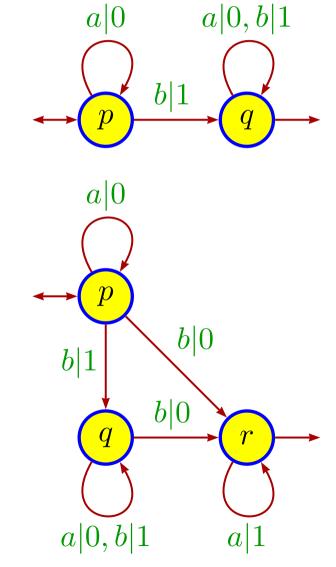




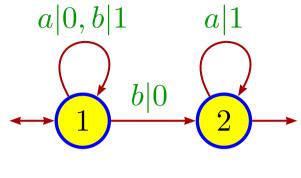
FAmb $\longmapsto \bigcup$ **NAmb** (Weber, 94)

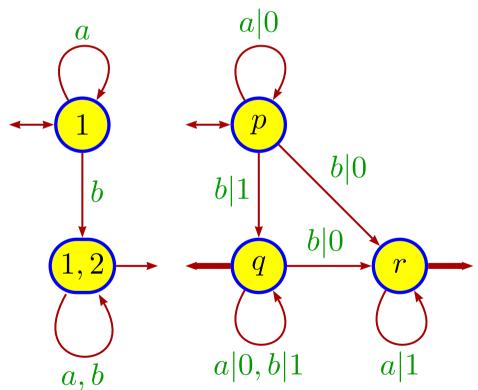


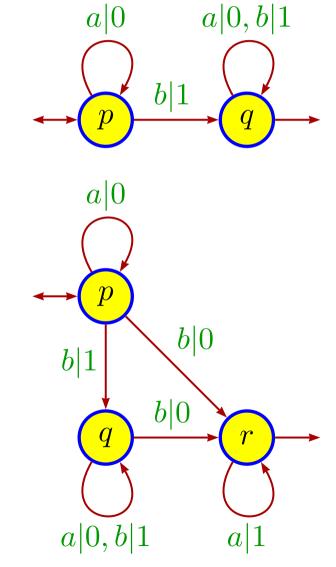




FAmb $\longmapsto \bigcup$ **NAmb** (Weber, 94)







Finite union of unambiguous automata:

$$\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_i$$

- is a victorious coordinate of a circuit θ iff it has a maximal weight on θ .
- is a victorious on a path π iff i is victorious on every sub-circuit of π .
- **●** $\bigcup A_i$ verifies the dominance property iff $\forall \pi$ of \mathcal{P} , $\text{Vict}(\pi) \neq \emptyset$.

Finite union of unambiguous automata:

$$\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_i$$

- is a victorious coordinate of a circuit θ iff it has a maximal weight on θ .
- is a victorious on a path π iff i is victorious on every sub-circuit of π .
- **●** $\bigcup A_i$ verifies the dominance property iff $\forall \pi$ of \mathcal{P} , $\text{Vict}(\pi) \neq \emptyset$.

Finite union of unambiguous automata:

$$\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_i$$

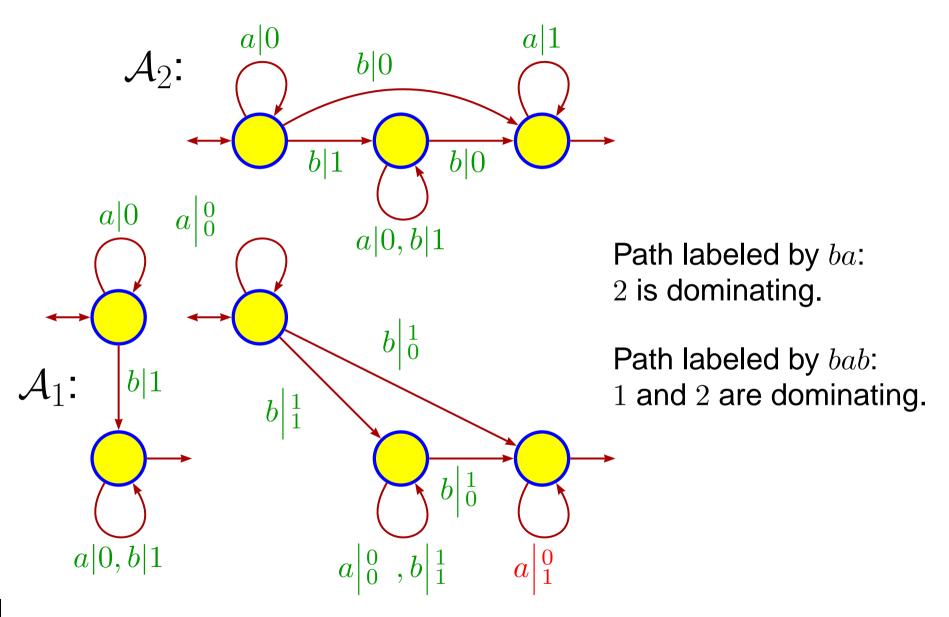
- is a victorious coordinate of a circuit θ iff it has a maximal weight on θ .
- is a victorious on a path π iff i is victorious on every sub-circuit of π .
- **●** $\bigcup A_i$ verifies the dominance property iff $\forall \pi$ of \mathcal{P} , $\text{Vict}(\pi) \neq \emptyset$.

Finite union of unambiguous automata:

$$\mathcal{A} = \bigcup_{i=1}^{n} \mathcal{A}_i$$

- is a victorious coordinate of a circuit θ iff it has a maximal weight on θ .
- is a victorious on a path π iff i is victorious on every sub-circuit of π .
- **●** $\bigcup A_i$ verifies the dominance property iff $\forall \pi$ of \mathcal{P} , $\text{Vict}(\pi) \neq \emptyset$.

Dominance property: Example

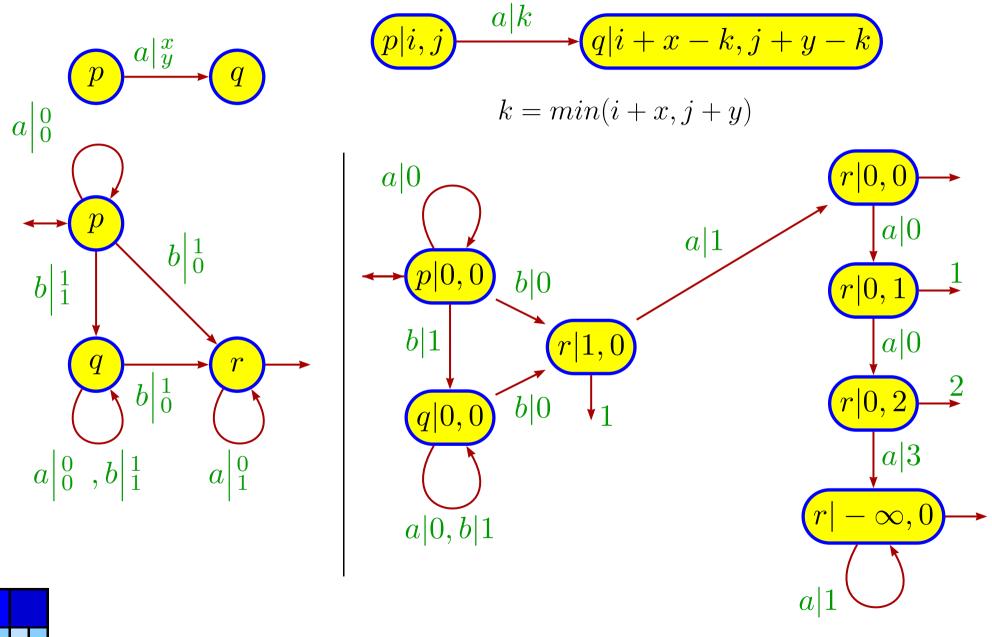


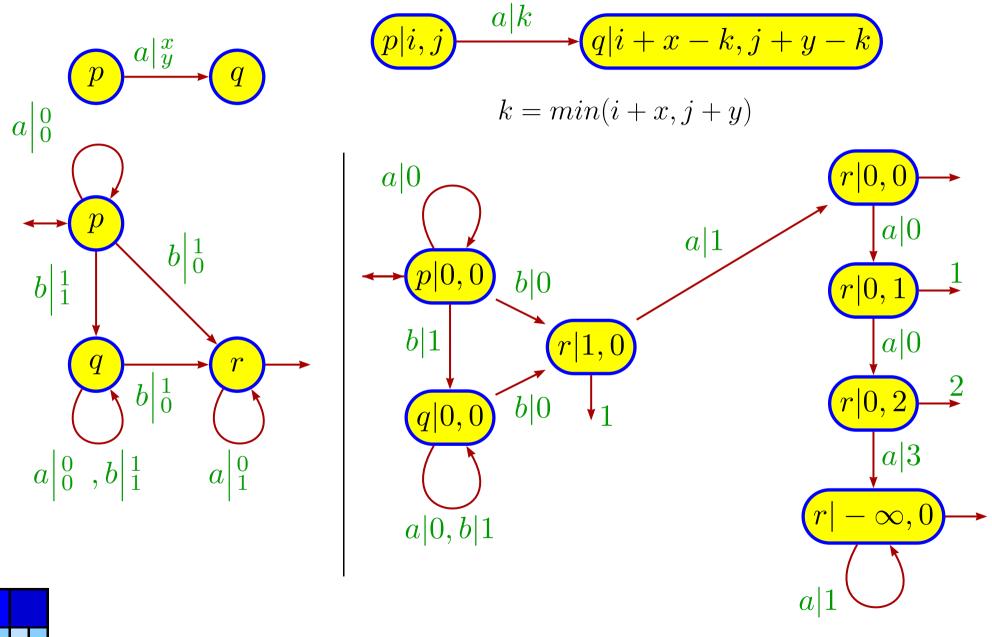
Characterization

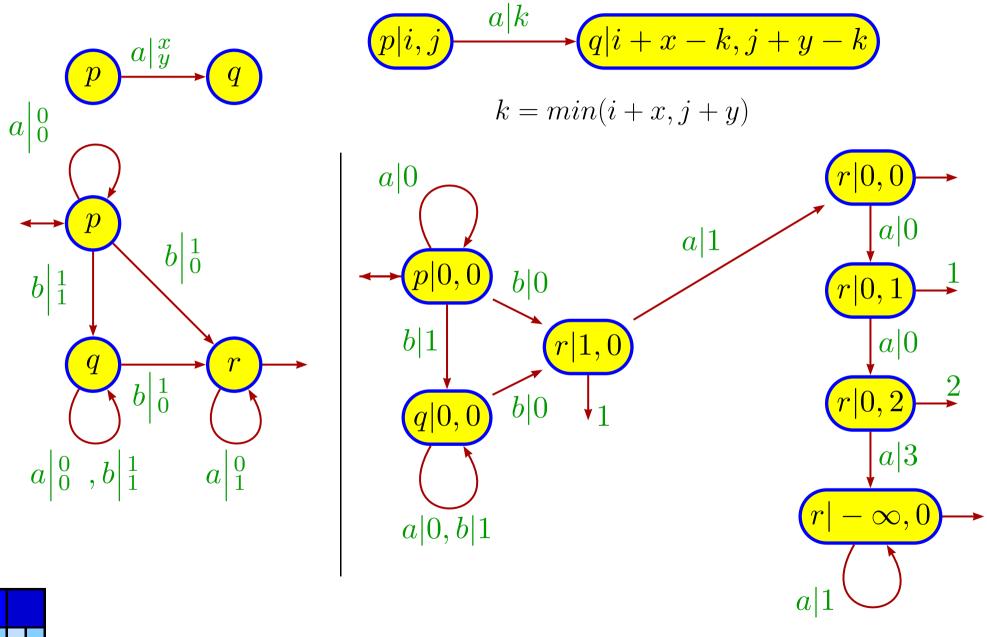
Theorem: Let S realized by $\bigcup A_i$.

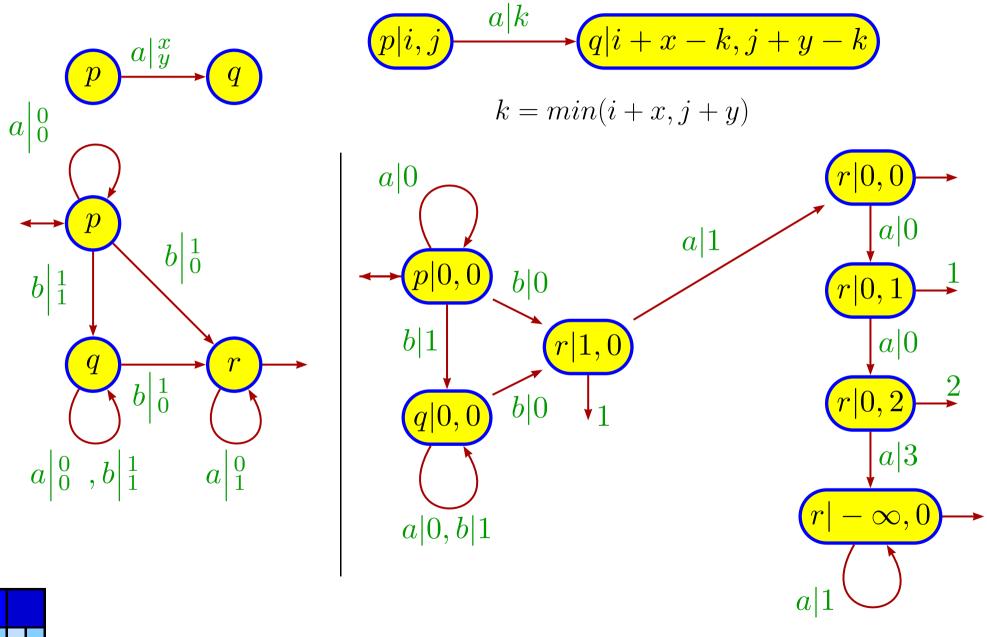
 $S \in NAmb$ iff dominance property holds on $\bigcup A_i$.

Then, an equivalent unambiguous automaton can effectively be computed.









Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

- Sequentialization on any rational max-plus series
- Decidability of NAmb
- *■* etc...

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

- Sequentialization on any rational max-plus series
- Decidability of NAmb
- *■* etc...

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

- Sequentialization on any rational max-plus series
- Decidability of NAmb
- *■* etc...

Results:

- Classification of rational series
- New proof of the decomposition of finitely ambiguous automata
- Sequentialization on a larger family of series

- Sequentialization on any rational max-plus series
- Decidability of NAmb
- *■* etc...

