
Accelerated Data-flow Analysis

Jérôme Leroux and Grégoire Sutre

LaBRI, Université de Bordeaux, CNRS, France

LSV Seminar, Laboratoire Spécification et Vérification, Cachan
May 27, 2008

Leroux & Sutre. Accelerated Data-flow Analysis. SAS’07.
Leroux & Sutre. Acceleration in Convex Data-Flow Analysis. FSTTCS’07.

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 1 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems

4 Acceleration-Based Interval Constraint Solving

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 2 / 76

Motivating Example

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Question
Does the program leave the while loop ?

Answer
No iff the value of variable x at line 2 remains not greater than 100

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 4 / 76

Motivating Example

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Question
Does the program leave the while loop ?

Answer
No iff the value of variable x at line 2 remains not greater than 100

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 4 / 76

Motivating Example (Reachability Set)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Reachability Set
Values of x at lines 1, 2, 3, 6:

1 7→ Z
2 7→ {1, 3, . . . , 51} ∪ {48, 50}
3 7→ {1, 3, . . . , 51} ∪ {48, 50}
6 7→ {3, 5, . . . , 51} ∪ {48, 50}

Features and Drawbacks
The reachability set is the most precise invariant

The computation of the reachability set may not terminate

Its precision is often unnecessary to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 6 / 76

Motivating Example (Reachability Set)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Reachability Set
Values of x at lines 1, 2, 3, 6:

1 7→ Z
2 7→ {1, 3, . . . , 51} ∪ {48, 50}
3 7→ {1, 3, . . . , 51} ∪ {48, 50}
6 7→ {3, 5, . . . , 51} ∪ {48, 50}

Features and Drawbacks
The reachability set is the most precise invariant

The computation of the reachability set may not terminate

Its precision is often unnecessary to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 6 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ {1}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ {1}
3 7→ {1}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ {1}
3 7→ {1}
6 7→ {3}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ {1} ⊔ {3} = [1, 3]
3 7→ {1}
6 7→ {3}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 3]
3 7→ {1}
6 7→ {3}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 3]
3 7→ [1, 3]
6 7→ {3}

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 3]
3 7→ [1, 3]
6 7→ [3, 5]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 3]∇ [3, 5]
3 7→ [1, 3]
6 7→ [3, 5]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1,+∞[
3 7→ [1, 3]
6 7→ [3, 5]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1,+∞[
3 7→ [1, 100]
6 7→ [3, 5]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1,+∞[
3 7→ [1, 100]
6 7→ [3, 105]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1,+∞[∆ [3, 105]
3 7→ [1, 100]
6 7→ [3, 105]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 105]
3 7→ [1, 100]
6 7→ [3, 105]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Interval Analysis with ∇ and ∆)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Interval Analysis with ∇ & ∆

Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 105]
3 7→ [1, 100]
6 7→ [3, 105]

Features and Drawbacks
The use of widening (∇) ensures termination of the analysis

The use of narrowing (∆) improves precision

The invariant may be too coarse to prove the property of interest

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8 / 76

Motivating Example (Exact Interval Analysis)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Exact Interval Analysis
Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 51]
3 7→ [1, 51]
6 7→ [3, 51]

Observations
Intervals are actually sufficient to prove the property of interest,
i.e. that this program never leaves the while loop

Imprecision in the previous analysis came from widening

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 10 / 76

Motivating Example (Exact Interval Analysis)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }

Exact Interval Analysis
Bounds of x at lines 1, 2, 3, 6:

1 7→]−∞,+∞[
2 7→ [1, 51]
3 7→ [1, 51]
6 7→ [3, 51]

Observations
Intervals are actually sufficient to prove the property of interest,
i.e. that this program never leaves the while loop

Imprecision in the previous analysis came from widening

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 10 / 76

Problematics

Invariants for Verification of Safety Properties
Efficient computation of precise enough invariants

Data-flow analysis, abstract interpretation

Widenings / narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems

Meet Over all Paths

Minimum Fix Point

Challenge
When and how can exact analysis be algorithmically performed ?

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 11 / 76

Problematics

Invariants for Verification of Safety Properties
Efficient computation of precise enough invariants

Data-flow analysis, abstract interpretation

Widenings / narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems

Meet Over all Paths

Minimum Fix Point

Challenge
When and how can exact analysis be algorithmically performed ?

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 11 / 76

Problematics

Invariants for Verification of Safety Properties
Efficient computation of precise enough invariants

Data-flow analysis, abstract interpretation

Widenings / narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems

Meet Over all Paths

Minimum Fix Point

Challenge
When and how can exact analysis be algorithmically performed ?

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 11 / 76

Our Approach

Acceleration in Symbolic Verification
Symbolically compute the effect of iterating a given cycle

Speed up Kleene fix-point iteration in concrete data-flow analysis

Developped for several data types: integer variables, continuous
variables, fifo queues, . . .

Implemented in tools (LASH, FAST, TREX)

No theoretical termination guarantee, but good results in practice

This Work
Extend acceleration to abstract data-flow analysis

Apply the framework to convex / intervals data-flow analysis

Investigate completeness of the approach

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 12 / 76

Our Approach

Acceleration in Symbolic Verification
Symbolically compute the effect of iterating a given cycle

Speed up Kleene fix-point iteration in concrete data-flow analysis

Developped for several data types: integer variables, continuous
variables, fifo queues, . . .

Implemented in tools (LASH, FAST, TREX)

No theoretical termination guarantee, but good results in practice

This Work
Extend acceleration to abstract data-flow analysis

Apply the framework to convex / intervals data-flow analysis

Investigate completeness of the approach

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 12 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems

4 Acceleration-Based Interval Constraint Solving

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 13 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems

4 Acceleration-Based Interval Constraint Solving

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 14 / 76

Data-Flow Programs (Syntax)

Consider a complete lattice (A,⊑) and a finite set X of variables

Definition
A transition on X is any tuple 〈X1, . . . , Xn; f ; X 〉 where :

X1, . . . , Xn ∈ X are pairwise disjoint input variables

f ∈ An → A is a monotonic transfer function

X ∈ X is an output variable

Notation : 〈X1, . . . , Xn; f ; X 〉 is also written X := f (X1, . . . , Xn)

Definition
A data-flow program over (A,⊑) is any pair S = (X , T) where:

X is a finite set of variables

T is a finite set of transitions on X

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 15 / 76

Data-Flow Programs (Syntax)

Consider a complete lattice (A,⊑) and a finite set X of variables

Definition
A transition on X is any tuple 〈X1, . . . , Xn; f ; X 〉 where :

X1, . . . , Xn ∈ X are pairwise disjoint input variables

f ∈ An → A is a monotonic transfer function

X ∈ X is an output variable

Notation : 〈X1, . . . , Xn; f ; X 〉 is also written X := f (X1, . . . , Xn)

Definition
A data-flow program over (A,⊑) is any pair S = (X , T) where:

X is a finite set of variables

T is a finite set of transitions on X

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 15 / 76

Motivating Example (Intervals)

Example (Code Snippet)

1 x = 1;
2 while (x ≤ 100) {
3 if (x ≥ 75) x = x+5;
4 else if (x ≥ 50) x = x−3;
5 else x = x+2;
6 }
7

Data-Flow Program

(t0) X1 := ⊤
(t1) X2 := ({0} . X1) + {1}
(t2) X3 := X2 ⊓]−∞, 100]
(t3) X7 := X2 ⊓ [101, +∞[
(t4) X6 := (X3 ⊓ [75, +∞[) + {5}
(t5) X6 := (X3 ⊓ [50, 74])− {3}
(t6) X6 := (X3 ⊓]−∞, 49]) + {2}
(t7) X2 := X6

1 2 3

6

7

0 1 2

3 4 5 67

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 17 / 76

Example with Multiple Inputs (Intervals)

Example

1 for (;;) { x = y + z;
2 y = x∗z − y; }
3

Data-Flow Program

X1 := ⊤
Y1 := ⊤
Z1 := ⊤

(t1) X2 := Y1 + Z1

(t2) Y1 := (X2 ∗ Z2)− Y2

X3 := X1 ⊓⊥
Y3 := Y1 ⊓⊥
Z3 := Z1 ⊓ ⊥

X Y Z

1 1 1

2 2 2

⊤ ⊤ ⊤

1 = =

= 2 =

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 19 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

Example

1 while (x ≥ 0 ∧ y ≥ 0) { x = x−1; y = y+1; }

Data-Flow Program

Lattice: closed convex subsets of R2

X = {X}
T = {t}
(t) X := (G ∩ X) + ~d

with
{

G = R2
+

~d = (−1, 1)

Xt

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 21 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

Example

1 while (x ≥ 0 ∧ y ≥ 0) { x = x−1; y = y+1; }

Data-Flow Program

Lattice: closed convex subsets of R2

X = {X}
T = {t}
(t) X := (G ∩ X) + ~d

with
{

G = R2
+

~d = (−1, 1)

XG, ~d

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 21 / 76

Data-Flow Programs (Semantics)

Definition (Recall)
A data-flow program over (A,⊑) is any pair S = (X , T) where:

X is a finite set of variables

T is a finite set of transitions on X

(A,⊑) is extended to the complete lattice of valuations (X → A,⊑)

Definition
The data-flow semantics JtK of any transition t = X := f (X1, . . . , Xn) is
the monotonic function in (X → A)→ (X → A) defined by:

JtK(ρ)(X) = f (ρ(X1), . . . , ρ(Xn))

JtK(ρ)(Y) = ρ(Y) for all Y 6= X

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 22 / 76

Initialized Data-Flow Programs

Definition
An initialized data-flow program over (A,⊑) is any pair (S, ρ0) where:

S = (X , T) is a data-flow program over (A,⊑)

ρ0 : X → A is an initial valuation

We identify (S, ρ0) with the data-flow program:

S
′ = (X , T ∪ {X := ρ0(X) | X ∈ X})

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 23 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program

XG, ~d

X = {X}
T = {t}
(t) X := (G ∩ X) + ~d

with
{

G = R2
+

~d = (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Semantics

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 24 / 76

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) =

d {ρ ∈ X → A | JtK(ρ) ⊑ ρ for all t ∈ T}

MFP(S) is the least fix-point of JT K =
⊔

t∈T

JtK

Meet Over all Paths (MOP) Solution

MOP(S) =
⊔ {JtkK ◦ · · · ◦ Jt1K (⊥) | t1 · · · tk ∈ T ∗}

Can be viewed as the “abstraction” of the reachability set

Kleene Fix-Point Iteration

MOP(S) ⊑ ⊔

i∈N JT Ki (⊥) ⊑ MFP(S)

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 25 / 76

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) =

d {ρ ∈ X → A | JtK(ρ) ⊑ ρ for all t ∈ T}

MFP(S) is the least fix-point of JT K =
⊔

t∈T

JtK

Meet Over all Paths (MOP) Solution

MOP(S) =
⊔ {JtkK ◦ · · · ◦ Jt1K (⊥) | t1 · · · tk ∈ T ∗}

Can be viewed as the “abstraction” of the reachability set

Kleene Fix-Point Iteration

MOP(S) ⊑ ⊔

i∈N JT Ki (⊥) ⊑ MFP(S)

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 25 / 76

Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) =

d {ρ ∈ X → A | JtK(ρ) ⊑ ρ for all t ∈ T}

MFP(S) is the least fix-point of JT K =
⊔

t∈T

JtK

Meet Over all Paths (MOP) Solution

MOP(S) =
⊔ {JtkK ◦ · · · ◦ Jt1K (⊥) | t1 · · · tk ∈ T ∗}

Can be viewed as the “abstraction” of the reachability set

Kleene Fix-Point Iteration

MOP(S) ⊑ ⊔

i∈N JT Ki (⊥) ⊑ MFP(S)

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 25 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

τ1(⊥) = ρ0

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

τ1(⊥) = ρ0

τ2(⊥) = ρ0 ⊔ JtK(τ1(⊥))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

τ1(⊥) = ρ0

τ2(⊥) = ρ0 ⊔ JtK(τ1(⊥))

τ i(⊥) = ρ0 ⊔ JtK(τ i−1(⊥))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

τ1(⊥) = ρ0

τ2(⊥) = ρ0 ⊔ JtK(τ1(⊥))

τ i(⊥) = ρ0 ⊔ JtK(τ i−1(⊥))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

τ1(⊥) = ρ0

τ2(⊥) = ρ0 ⊔ JtK(τ1(⊥))

τ i(⊥) = ρ0 ⊔ JtK(τ i−1(⊥))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

MFP Solution

-2 -1 0 1 2
-1

0

1

2

3

Remark
Kleene fix-point iteration
does not stabilize

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 26 / 76

Acceleration of Cyclic Sub-Programs

Goal
Speed up Kleene fix-point iteration, without loosing precision

Idea : extract a cyclic sub-program and accelerate it!

1 2 3

6

7

0 1 2

3 4 5 67

Copies are allowed in the sub-program

Renaming κ : X ′ → X
κ−1(ρ′)(X) =

⊔

κ(X ′)=X

ρ′(X ′) (with κ−1(ρ′)(X) = ⊥ if X 6∈ κ(X ′))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 27 / 76

Acceleration of Cyclic Sub-Programs

Goal
Speed up Kleene fix-point iteration, without loosing precision

Idea : extract a cyclic sub-program and accelerate it!

1 2 3

6

7

0 1 2

3 4 5 67

2 2 3 4

6

7

2′2′3′6′

6′

7′

Copies are allowed in the sub-program

Renaming κ : X ′ → X
κ−1(ρ′)(X) =

⊔

κ(X ′)=X

ρ′(X ′) (with κ−1(ρ′)(X) = ⊥ if X 6∈ κ(X ′))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 27 / 76

Accelerated Computation of the MFP Solution (1)

1 AcceleratedMFP(S = (X , T) : data-flow program over (A,⊑))
2 ρ← ⊥
3 while JT K(ρ) 6⊑ ρ do
4 if (∗) then
5 select a transition t ∈ T
6 ρ← ρ ⊔ JtK (ρ)
7 else
8 extract from S a cyclic sub-program S

′ = (X ′, T ′)
9 with renaming κ ∈ X ′ → X

10 ρ′0 ← ρ ◦ κ

11 ρ′′ ← MFP(S′, ρ′0) { κ−1(ρ′′) ⊑ MFP(S, ρ) }
12 ρ← ρ ⊔ κ−1(ρ′′)
13 return ρ

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 29 / 76

Accelerated Computation of the MFP Solution (2)

10 ρ′0 ← ρ ◦ κ

11 ρ′′ ← MFP(S′, ρ′0)

12 ρ← ρ ⊔ κ−1(ρ′′)

Correctness

κ−1(ρ′′) ⊑ MFP(S, ρ)

Alternatives
line 10: any ρ′0 such that ρ′0 ⊑ ρ ◦ κ

e.g. pick X ′ ∈ X ′ and define ρ′0 by
{

ρ′0(X
′) = ρ ◦ κ(X ′)

ρ′0(Y
′) = ⊥ for all Y ′ 6= X ′

line 11: any ρ′′ such that ρ′′ ⊑ MFP(S′, ρ′0)
e.g. replace MFP with MOP

Challenge
Computation the MOP/MFP solution for cyclic initialized data-flow
programs

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 31 / 76

Accelerated Computation of the MFP Solution (2)

10 ρ′0 ← ρ ◦ κ

11 ρ′′ ← MFP(S′, ρ′0)

12 ρ← ρ ⊔ κ−1(ρ′′)

Correctness

κ−1(ρ′′) ⊑ MFP(S, ρ)

Alternatives
line 10: any ρ′0 such that ρ′0 ⊑ ρ ◦ κ

e.g. pick X ′ ∈ X ′ and define ρ′0 by
{

ρ′0(X
′) = ρ ◦ κ(X ′)

ρ′0(Y
′) = ⊥ for all Y ′ 6= X ′

line 11: any ρ′′ such that ρ′′ ⊑ MFP(S′, ρ′0)
e.g. replace MFP with MOP

Challenge
Computation the MOP/MFP solution for cyclic initialized data-flow
programs

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 31 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems
Acceleration for Self-Loops
Acceleration for Cycles

4 Acceleration-Based Interval Constraint Solving

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 32 / 76

Closed Convex Subsets of Rn

Complete Lattice (A,⊑)

Set of all topologically closed convex subsets of Rn, partially ordered
by set inclusion

greatest lower bound ⊓ is set intersection ∩
least upper bound ⊔ is set union followed by closed convex hull

Closed Convex Polyhedra

{~x | M~x ≤ ~b} is called a
{

(real) polyhedron when M ∈ Rn×m

rational polyhedron when M ∈ Qn×m

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 33 / 76

Closed Convex Subsets of Rn

Complete Lattice (A,⊑)

Set of all topologically closed convex subsets of Rn, partially ordered
by set inclusion

greatest lower bound ⊓ is set intersection ∩
least upper bound ⊔ is set union followed by closed convex hull

Closed Convex Polyhedra

{~x | M~x ≤ ~b} is called a
{

(real) polyhedron when M ∈ Rn×m

rational polyhedron when M ∈ Qn×m

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 33 / 76

Guarded Translation Systems

Idea

Guarded commands of the form: if ~x ∈ G then ~x := ~x + ~d

Definition
An n-dim guarded translation is any single input transition whose
transfer function f : A→ A is of the form:

f (C) = (G ∩C) + ~d where
{

G ∈ A is the guard
~d ∈ Rn is the displacement

Notation : X ′ := (G ∩ X) + ~d is also written X
G,~d−−→ X ′

Definition
An n-dim guarded translation system (GTS) is any data-flow program
over (A,⊑) whose transitions are n-dim guarded translations

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 34 / 76

Guarded Translation Systems

Idea

Guarded commands of the form: if ~x ∈ G then ~x := ~x + ~d

Definition
An n-dim guarded translation is any single input transition whose
transfer function f : A→ A is of the form:

f (C) = (G ∩C) + ~d where
{

G ∈ A is the guard
~d ∈ Rn is the displacement

Notation : X ′ := (G ∩ X) + ~d is also written X
G,~d−−→ X ′

Definition
An n-dim guarded translation system (GTS) is any data-flow program
over (A,⊑) whose transitions are n-dim guarded translations

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 34 / 76

Guarded Translation Systems

Idea

Guarded commands of the form: if ~x ∈ G then ~x := ~x + ~d

Definition
An n-dim guarded translation is any single input transition whose
transfer function f : A→ A is of the form:

f (C) = (G ∩C) + ~d where
{

G ∈ A is the guard
~d ∈ Rn is the displacement

Notation : X ′ := (G ∩ X) + ~d is also written X
G,~d−−→ X ′

Definition
An n-dim guarded translation system (GTS) is any data-flow program
over (A,⊑) whose transitions are n-dim guarded translations

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 34 / 76

Guarded Translation Systems (Semantics Rephrase)

Definition (Recall)
An n-dim GTS is any pair S = (X , T) where:

X is a finite set of variables

T is a finite set of n-dim guarded translations X
G,~d−−→ X ′

The complete lattice (A,⊑) of closed convex subsets of Rn is extended
to the complete lattice of valuations (X → A,⊑)

Definition

The data-flow semantics JtK of any transition t = X
G,~d−−→ X ′ is the

monotonic function in (X → A)→ (X → A) defined by:

JtK(ρ)(X ′) = (G ∩ ρ(X)) + ~d

JtK(ρ)(Y) = ρ(Y) for all Y 6= X ′

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 35 / 76

Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program

XG, ~d

X = {X}
T = {t}
(t) X := (G ∩ X) + ~d

with
{

G = R2
+

~d = (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Semantics

-2 -1 0 1 2
-1

0

1

2

3

ρ1 = JtK (ρ0)
ρ2 = JtK (ρ1)
ρ3 = JtK (ρ2) = {X 7→ ∅}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 36 / 76

Instanciating the Acceleration Framework

Challenge
Computation the MOP/MFP solution for cyclic initialized guarded
translation systems (IGTS)

Permits (exact) acceleration of the Kleene fix-point iteration

Raises new interesting theoretical questions !

Outline
1 Acceleration for Self-Loops
2 Acceleration for Cycles

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 37 / 76

Instanciating the Acceleration Framework

Challenge
Computation the MOP/MFP solution for cyclic initialized guarded
translation systems (IGTS)

Permits (exact) acceleration of the Kleene fix-point iteration

Raises new interesting theoretical questions !

Outline
1 Acceleration for Self-Loops
2 Acceleration for Cycles

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 37 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems
Acceleration for Self-Loops
Acceleration for Cycles

4 Acceleration-Based Interval Constraint Solving
From Interval Constraint Systems to Integer Constraint Systems
Solving Integer Constraint Systems

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 38 / 76

MOP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS S = ({X}, {X G,~d−−→ X}, ρ0), if G and ρ0(X)
are polyhedra then MOP(S, ρ0) is a polyhedron

Proof Sketch

MOP(S, ρ0)(X) = ρ0(X) ⊔
(

cloconv
(

G ∩
(

(G ∩ ρ0(X)) + N ~d
))

+ ~d
)

Poly-based semilinear subsets of Rn :
⋃

(

B +
∑

~p∈P N~p
)

Closure of this class under sum, union and intersection

cloconv (S) is a polyhedron when S is poly-based semilinear

Remark
The proof is constructive

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 39 / 76

MOP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS S = ({X}, {X G,~d−−→ X}, ρ0), if G and ρ0(X)
are polyhedra then MOP(S, ρ0) is a polyhedron

Proof Sketch

MOP(S, ρ0)(X) = ρ0(X) ⊔
(

cloconv
(

G ∩
(

(G ∩ ρ0(X)) + N ~d
))

+ ~d
)

Poly-based semilinear subsets of Rn :
⋃

(

B +
∑

~p∈P N~p
)

Closure of this class under sum, union and intersection

cloconv (S) is a polyhedron when S is poly-based semilinear

Remark
The proof is constructive

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 39 / 76

MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS ({X}, {X G,~d−−→ X}, ρ0), the MFP solution
is the valuation:

X 7→
{

ρ0(X) if G ∩ ρ0(X) = ∅
ρ0(X) ⊔ ((G ∩ (ρ0(X) + R+

~d)) + ~d) otherwise

Proof Ideas

⊆ The given expression is a post-fix-point of
s

X
G,~d−−→ X

{
.

⊇ Proof by contradiction, using topological and convexity properties

of both the guard and MFP solution.

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 40 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Standard Widening on Polyhedra
[Cousot & Halbwachs, POPL’78]

IGTS

X

R2
+, (−1, 1)

ρ0 = {X 7→ 1× [−1, 1]}

Application of widening

Coarser than the MFP
Solution!

Iteration with Widening

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Comparison with Polyhedral Abstract Acceleration
[Gonnord & Halbwachs, SAS’06]

Consider an IGTS S =

({X}, {X G,~d−−→ X}, ρ0)

Abstract Acceleration
AbAc(S) = ρ0(X) ⊔MFP(S′)
where S

′ is equal to S except
on its initial valuation:
ρ′0(X) = G ∩ ρ0(X).

Remark
Iteration does not terminate!

Iteration with Abs. Acc.

-2 -1 0 1 2
-1

0

1

2

3

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 42 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems
Acceleration for Self-Loops
Acceleration for Cycles

4 Acceleration-Based Interval Constraint Solving
From Interval Constraint Systems to Integer Constraint Systems
Solving Integer Constraint Systems

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 43 / 76

MOP Solution for Cyclic IGTS

Consider a cyclic IGTS S = ({X1, . . . , Xk}, {t1, . . . , tk}, ρ0) with

ti = Xi
Gi ,

~di−−−→ Xi+1 and Xk+1 = X1, i.e. X1
G1,

~d1−−−→ X2 · · ·Xk
Gk ,~dk−−−→ X1

Let S
′ = ({X1}, {X1

G,~d−−→ X1}), where :
{

G = G1 ∩ (G2 − ~d1) ∩ · · · ∩ (Gk − (~d1 + · · ·+ ~dk−1))
~d = ~d1 + · · ·+ ~dk

The transition X1
G,~d−−→ X1 “simulates” the cycle t1 · · · tk w.r.t. to X1

Reduction to the Self-Loop Case

MOP(S, ρ0)(X1) =
k−1
⊔

i=1

MOP(S′, {X1 7→ (JtkK ◦ · · · ◦ Jti+1K (ρ0))(X1)})

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 44 / 76

MOP Solution for Cyclic IGTS

Consider a cyclic IGTS S = ({X1, . . . , Xk}, {t1, . . . , tk}, ρ0) with

ti = Xi
Gi ,

~di−−−→ Xi+1 and Xk+1 = X1, i.e. X1
G1,

~d1−−−→ X2 · · ·Xk
Gk ,~dk−−−→ X1

Let S
′ = ({X1}, {X1

G,~d−−→ X1}), where :
{

G = G1 ∩ (G2 − ~d1) ∩ · · · ∩ (Gk − (~d1 + · · ·+ ~dk−1))
~d = ~d1 + · · ·+ ~dk

The transition X1
G,~d−−→ X1 “simulates” the cycle t1 · · · tk w.r.t. to X1

Reduction to the Self-Loop Case

MOP(S, ρ0)(X1) =
k−1
⊔

i=1

MOP(S′, {X1 7→ (JtkK ◦ · · · ◦ Jti+1K (ρ0))(X1)})

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 44 / 76

MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS S = ({X1, . . . , Xk}, {t1, . . . , tk}, ρ0) with

ti = Xi
Gi ,

~di−−−→ Xi+1 and Xk+1 = X1, i.e. X1
G1,

~d1−−−→ X2 · · ·Xk
Gk ,~dk−−−→ X1

Let S
′ = ({X1}, {X1

G,~d−−→ X1}), where :
{

G = G1 ∩ (G2 − ~d1) ∩ · · · ∩ (Gk − (~d1 + · · ·+ ~dk−1))
~d = ~d1 + · · ·+ ~dk

The transition X1
G,~d−−→ X1 “simulates” the cycle t1 · · · tk w.r.t. to X1

Reduction to the Self-Loop Case
If ρ(Y) = ⊥ for all Y 6= X1 then

MFP(S, ρ0) = Jtk−1K ◦ · · · ◦ Jt1K(MFP(S′, {X1 7→ ρ0(X1)}))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 45 / 76

MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS S = ({X1, . . . , Xk}, {t1, . . . , tk}, ρ0) with

ti = Xi
Gi ,

~di−−−→ Xi+1 and Xk+1 = X1, i.e. X1
G1,

~d1−−−→ X2 · · ·Xk
Gk ,~dk−−−→ X1

Let S
′ = ({X1}, {X1

G,~d−−→ X1}), where :
{

G = G1 ∩ (G2 − ~d1) ∩ · · · ∩ (Gk − (~d1 + · · ·+ ~dk−1))
~d = ~d1 + · · ·+ ~dk

The transition X1
G,~d−−→ X1 “simulates” the cycle t1 · · · tk w.r.t. to X1

Reduction to the Self-Loop Case
If ρ(Y) = ⊥ for all Y 6= X1 then

MFP(S, ρ0) = Jtk−1K ◦ · · · ◦ Jt1K(MFP(S′, {X1 7→ ρ0(X1)}))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 45 / 76

2-dim Cyclic Example

GTS

X1 X2

X3X4

G1, ~0

G2, ~0

G3, ~0

G4, ~0

G1 =]−∞,−1]× [1,+∞[
G2 = [1,+∞[× [1,+∞[
G3 = [1,+∞[×]−∞,−1]
G4 =]−∞,−1]×]−∞,−1]

Initial Valuation

b

bb

b

X1 7→ {(−2, 2)}
X2 7→ {(2, 2)}
X3 7→ {(2,−2)}
X4 7→ {(−2,−2)}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 46 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

4

1

h1 =
1
4

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

4

1

h2 =
4
15

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

Kleene iteration on 2-dim Cyclic Example

X1 X2

X3X4

4

1

h3 =
15
56

b

bb

b

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 47 / 76

MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk)k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 48 / 76

MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk)k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 48 / 76

MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk)k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 48 / 76

MFP Solution for 2-dim Example

hk+1 =
1

4− hk

3

1

1

hk
b

bb

b

(hk)k∈N is nondecreasing, and lim
k→∞

hk = 2−
√

3

Remark
The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 48 / 76

3-dim Cyclic Example

GTS

X1 X2

X3X4

G1, ~e3

G2, ~e3

G3, ~e3

G4, ~e3

G1 = R− × R+ × R
G2 = R+ × R+ × R
G3 = R+ × R− × R
G4 = R− × R− × R

Initial Valuation

b

bb

b

X1 7→ {(−1, 1)} × R+

X2 7→ {(1, 1)} × R+

X3 7→ {(1,−1)} × R+

X4 7→ {(−1,−1)} × R+

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 49 / 76

Kleene iteration on 3-dim Cyclic Example

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

b

b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

b

b

b

b

b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Kleene iteration on 3-dim Cyclic Example

e1

e3
b

b

b

b

b

b

b

b

bb

b

Remark
The MFP solution of this 3-dim cyclic IGTS is not polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 50 / 76

Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 51 / 76

Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 51 / 76

Acceleration Results for Cycles

2-dim cyclic example with a real (non rational) polyhedral MFP
solution

3-dim cyclic example with a non-polyhedral MFP solution

Question
Is the MFP polyhedral for all 2-dim cyclic IGTS?

Theorem
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

An algebraic number is any real number definable in 〈R,+, ·,≤〉
Algebraic polyhedrality is required even for cyclic 2-dim IGTS

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 51 / 76

Proof (1)

MFP Solution Expression

MFP(X) =
⊔

X0∈X

t1···tk∈LX0,X

JtkK ◦ · · · ◦ Jt1K (∆(X0)) + 0+ MFP(X)

where:

∆(X) = ρ0(X) ⊔
⊔

X
G,~d−−→X ′

bd (G) ∩MFP(X)

bd (G) is the topological boundary of G

LX0,X is the set of simple paths from X0 to X

0+C = {~d | C + R+
~d ⊆ C}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 52 / 76

Proof (2)

Observe that 0+ MFP(X) is a cone in dimension 2.

0+ MFP(X)

There exists ~d1, ~d2, ~d3 ∈ R2 such that:
0+ MFP(X) = R+

~d1 + R+
~d1 + R+

~d1

Reduce to the case G is an half-space.
=⇒ bd (G) is a line.

bd (G) ∩MFP(X)

There exists two half-spaces H1, H2 such that:
bd (G) ∩MFP(X) = bd (G) ∩ H1 ∩ H2

Therefore the MFP solution is definable by a formula in 〈R,+, ·,≤〉.

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 53 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems

4 Acceleration-Based Interval Constraint Solving
From Interval Constraint Systems to Integer Constraint Systems
Solving Integer Constraint Systems

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 54 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems
Acceleration for Self-Loops
Acceleration for Cycles

4 Acceleration-Based Interval Constraint Solving
From Interval Constraint Systems to Integer Constraint Systems
Solving Integer Constraint Systems

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 55 / 76

Intervals of Zn

Complete Lattice (Z,≤)

Let Z = Z ∪ {−∞,+∞} with natural partial order ≤ defined by:

−∞ < · · · < −2 < −1 < 0 < 1 < 2 < · · · < +∞

greatest lower bound ∧ satisfies: a ∧ b = min(a, b) and
∧ ∅ = +∞

least upper bound ∨ satisfies: a∨ b = max(a, b) and
∨ ∅ = −∞

Complete Lattice (I,⊑)

Set of all intervals I = {x ∈ Z | a ≤ x ≤ b} where a, b ∈ Z, partially
ordered by set inclusion

greatest lower bound ⊓ is set intersection ∩
least upper bound ⊔ is set union followed by “discrete convex hull”

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 56 / 76

Interval Constraint Systems

We consider data-flow programs over (I,⊑) with transitions of the
form:

X := I X := X1 + X2 X := X1 ⊓ I
X := −X1 X := X1 ⊔ X2

X := X1 · X2

Allowed transfer functions
constants

full addition and subtraction

full multiplication

intersection with constants

We focus on the MFP solution, equivalently to the least solution of the
constraint system where := is replaced with ⊒

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 57 / 76

Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in Z

I 7→ (I−, I+) where
{

I+ =
∨

I
I− =

∨

(−I) = −∧

I

Translations

X ⊒ X1 ⇔
{

X+ ≥ X+
1

X− ≥ X−
1

X ⊒ −X1 ⇔
{

X+ ≥ X−
1

X− ≥ X+
1

X ⊒ X1 + X2 ⇔
{

X+ ≥ X+
1 + X+

2
X− ≥ X−

1 + X−
2

But
X ⊒ X1 ⊓ I

is not equivalent to
{

X+ ≥ X+
1 ∧ I+

X− ≥ X−
1 ∧ I−

Because ρ(X1) ⊓ I might
be empty !

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 58 / 76

Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in Z

I 7→ (I−, I+) where
{

I+ =
∨

I
I− =

∨

(−I) = −∧

I

Translations

X ⊒ X1 ⇔
{

X+ ≥ X+
1

X− ≥ X−
1

X ⊒ −X1 ⇔
{

X+ ≥ X−
1

X− ≥ X+
1

X ⊒ X1 + X2 ⇔
{

X+ ≥ X+
1 + X+

2
X− ≥ X−

1 + X−
2

But
X ⊒ X1 ⊓ I

is not equivalent to
{

X+ ≥ X+
1 ∧ I+

X− ≥ X−
1 ∧ I−

Because ρ(X1) ⊓ I might
be empty !

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 58 / 76

The Test Functions

Definition
For every v ∈ Z and ≻∈ {≥, >}, define θ≻v : Z × Z → Z by:

θ≻v (z1, z2) =

{

z2 if z1 ≻ v
−∞ otherwise

I1 ⊓ I2 6= ∅ iff I−1 ≥ −I+2 and I+1 ≥ −I−2

if I1 ⊓ I2 6= ∅ then
{

(I1 ⊓ I2)− = I−1 ∧ I−2
(I1 ⊓ I2)+ = I+1 ∧ I+2

Translation of X ⊑ X1 ⊓ I

X ⊒ X1 ⊓ I ⇔
{

X− ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X−
1 ∧ I−))

X+ ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X+
1 ∧ I+))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 59 / 76

The Test Functions

Definition
For every v ∈ Z and ≻∈ {≥, >}, define θ≻v : Z × Z → Z by:

θ≻v (z1, z2) =

{

z2 if z1 ≻ v
−∞ otherwise

I1 ⊓ I2 6= ∅ iff I−1 ≥ −I+2 and I+1 ≥ −I−2

if I1 ⊓ I2 6= ∅ then
{

(I1 ⊓ I2)− = I−1 ∧ I−2
(I1 ⊓ I2)+ = I+1 ∧ I+2

Translation of X ⊑ X1 ⊓ I

X ⊒ X1 ⊓ I ⇔
{

X− ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X−
1 ∧ I−))

X+ ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X+
1 ∧ I+))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 59 / 76

The Test Functions

Definition
For every v ∈ Z and ≻∈ {≥, >}, define θ≻v : Z × Z → Z by:

θ≻v (z1, z2) =

{

z2 if z1 ≻ v
−∞ otherwise

I1 ⊓ I2 6= ∅ iff I−1 ≥ −I+2 and I+1 ≥ −I−2

if I1 ⊓ I2 6= ∅ then
{

(I1 ⊓ I2)− = I−1 ∧ I−2
(I1 ⊓ I2)+ = I+1 ∧ I+2

Translation of X ⊑ X1 ⊓ I

X ⊒ X1 ⊓ I ⇔
{

X− ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X−
1 ∧ I−))

X+ ≥ θ≥−I+(X−
1 , θ≥−I−(X+

1 , X+
1 ∧ I+))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 59 / 76

The Multiplication Functions

Definition
Define the multiplication functions mul+, mul− : Z × Z → Z by:

mul+(z1, z2) =

{

z1 · z2 if z1, z2 > 0

0 otherwise

mul−(z1, z2) =

{

−z1 · z2 if z1, z2 < 0

0 otherwise

Translation of X ⊑ X1 · X2

When ρ(X1) ⊆ N and ρ(X2) ⊆ N then X ⊒ X1 · X2 is equivalent to:
{

X− ≥ θ>−∞(X−
1 , θ>−∞(X+

1 , θ>−∞(X−
2 , θ>−∞(X+

2 , mul−(X−
1 , X−

2)))))
X+ ≥ θ>−∞(X+

1 , θ>−∞(X−
1 , θ>−∞(X+

2 , θ>−∞(X−
2 , mul+(X+

1 , X+
2)))))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 60 / 76

The Multiplication Functions

Definition
Define the multiplication functions mul+, mul− : Z × Z → Z by:

mul+(z1, z2) =

{

z1 · z2 if z1, z2 > 0

0 otherwise

mul−(z1, z2) =

{

−z1 · z2 if z1, z2 < 0

0 otherwise

Translation of X ⊑ X1 · X2

When ρ(X1) ⊆ N and ρ(X2) ⊆ N then X ⊒ X1 · X2 is equivalent to:
{

X− ≥ θ>−∞(X−
1 , θ>−∞(X+

1 , θ>−∞(X−
2 , θ>−∞(X+

2 , mul−(X−
1 , X−

2)))))
X+ ≥ θ>−∞(X+

1 , θ>−∞(X−
1 , θ>−∞(X+

2 , θ>−∞(X−
2 , mul+(X+

1 , X+
2)))))

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 60 / 76

Translation into Positive Multiplication Form

Replace each constraint X ⊒ X1 · X2 by:

X ⊒ X1,u · X2,u X1,u ⊒ X1 ⊓ N
X ⊒ X1,l · X2,l X2,u ⊒ X2 ⊓ N
X ⊒ −X ′

X ′ ⊒ X1,u · X2,l X1,l ⊒ X ′
1 ⊓ N X ′

1 ⊒ −X1

X ′ ⊒ X1,l · X2,u X2,l ⊒ X ′
2 ⊓ N X ′

2 ⊒ −X2

Xi ,u corresponds to the “positive part” of Xi

Xi ,l corresponds to the “negative part” of Xi

Property of Transformed Contraint System
The least solution ρ satisfies ρ(X1) ⊆ N and ρ(X2) ⊆ N for any
multiplicative constraint X ⊒ X1 · X2

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 61 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems
Acceleration for Self-Loops
Acceleration for Cycles

4 Acceleration-Based Interval Constraint Solving
From Interval Constraint Systems to Integer Constraint Systems
Solving Integer Constraint Systems

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 62 / 76

Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over
(Z,≤) with constraints of the form:

X ≥ z X ≥ X1 + X2 X ≥ X1 ∧ z
X ≥ mul+(X1, X2) X ≥ θ≥z(X1, X2)
X ≥ mul−(X1, X2) X ≥ θ>z(X1, X2)

Definition

A monotonic function f ∈ Zk → Z is bounded-increasing if f (~a) < f (~b)

for every ~a < ~b such that f (⊥) < f (~a) and f (~b) < f (⊤)

Except for test functions, all of the above transfer functions are
bounded-increasing

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 63 / 76

Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over
(Z,≤) with constraints of the form:

X ≥ z X ≥ X1 + X2 X ≥ X1 ∧ z
X ≥ mul+(X1, X2) X ≥ θ≥z(X1, X2)
X ≥ mul−(X1, X2) X ≥ θ>z(X1, X2)

Definition

A monotonic function f ∈ Zk → Z is bounded-increasing if f (~a) < f (~b)

for every ~a < ~b such that f (⊥) < f (~a) and f (~b) < f (⊤)

Except for test functions, all of the above transfer functions are
bounded-increasing

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 63 / 76

Computation of the Least Solution

Definition
A constraint X ≥ f (X1, . . . , Xn) is called saturated by a valuation ρ

when ρ(X) ≥ f (⊤)

Main Ideas of the Algorithm
Iterative forward propagation

Keep track for each variable of the last constraint that updated its
value

When a cycle of updates appears, accelerate it to saturate at least
one constraint

Inject test constraints only once they become “active”

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 64 / 76

Cyclic Constraint Systems

X0

c1

X1

c2

Xi

Xi−1

ci

ci−1

X2. . .

. . .

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 65 / 76

Algorithm for the Cyclic Bounded-Increasing Case

1 CyclicSolve(S = (X , C) : cyclic bounded-increasing constraint system,
2 ρ0 : valuation)
3 let X0 → c1 → X1 · · · → cn → Xn = X0 be the ‘‘unique’’ elementary cycle
4 ρ← ρ0

5 for i = 1 to n do
6 ρ← ρ ∨ JciK(ρ)
7 for i = 1 to n do
8 ρ← ρ ∨ JciK(ρ)
9 if ρ ≥ JCK(ρ)

10 return ρ

11 for i = 1 to n do
12 ρ(Xi)← +∞
13 for i = 1 to n do
14 ρ← ρ ∧ JciK(ρ)
15 for i = 1 to n do
16 ρ← ρ ∧ JciK(ρ)
17 return ρ

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 67 / 76

Algorithm for the General Bounded-Increasing Case

1 SolveBI(S = (X , C) : bounded-increasing constraint system,
2 ρ0 : valuation)
3 ρ← ρ0 ∨ JCK(ρ0)
4 while JCK(ρ) 6⊑ ρ

5 λ← ∅ { λ is a partial function from X to C }
6 repeat |C|+ 1 times
7 for each c ∈ C
8 if ρ 6≥ JcK(ρ)
9 ρ← ρ ∨ JcK(ρ)

10 λ(X)← c, where X is the input variable of c
11 if there is a cycle X0 → λ(X1)→ X1 · · ·λ(Xn)→ X0

12 S
′ ← (X , {λ(X1), . . . , λ(Xn)})

13 ρ′ ← CyclicSolve(S′, ρ)
14 ρ← ρ ∨ ρ′

15 return ρ

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 69 / 76

Algorithm for General Integer Constraint Systems

Active Test Constraints
A test constraint c = X ≥ θ≻z(X1, X2) is active for ρ if ρ(X1) ≻ z

Its active form act(c) is the constraint X ≥ X2

1 SolveInteger(S = (X , C) : integer constraint system)
2 ρ← ⊥
3 Ct ← set of test constraints in C
4 C′ ← set of bounded-increasing constraints in C
5 while JCK(ρ) 6⊑ ρ

6 ρ← SolveBI((X , C′), ρ)
7 for each c ∈ Ct

8 if c is active for ρ

9 Ct ← Ct\{c}
10 C′ ← C′ ∪ {act(c)}
11 return ρ

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 71 / 76

Correctness and Complexity Results

Size |S| of a constraint system S = (X , C) defined by |S| = |X |+ |C|

Theorem
The algorithm SolveInteger computes the least solution of a system of
(test and bounded-increasing) integer constraints S by performing
O(|S|3) integer comparisons and image computations by
bounded-increasing transfer functions of S

Theorem
The least solution of an interval constraint system S can by computed
in time O(|S|3) with integer operations performed in O(1)

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 72 / 76

Outline

1 Introduction

2 Acceleration Framework for Data-Flow Analysis

3 Convex Data Flow Analysis of Guarded Translation Systems

4 Acceleration-Based Interval Constraint Solving

5 Conclusion

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 73 / 76

Summary (1)

Acceleration Framework for Data-Flow Analysis
Generalizes “standard” acceleration principles from concrete to
abstract data-flow analysis

Tradeoff between reachability set computation and data-flow
analysis with widenings / narrowings

Application of Framework
Convex data-flow analysis

computation of the MOP and MFP solution for cyclic GTS
better acceleration strategy than previous work for self-loops

Interval Constraint Solving
interval constraints with full multiplication (but restricted ⊓)
instanciation of the generic AcceleratedMFP semi-algorithm
efficient approach: cubic-time complexity, on-the-fly

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 74 / 76

Summary (1)

Acceleration Framework for Data-Flow Analysis
Generalizes “standard” acceleration principles from concrete to
abstract data-flow analysis

Tradeoff between reachability set computation and data-flow
analysis with widenings / narrowings

Application of Framework
Convex data-flow analysis

computation of the MOP and MFP solution for cyclic GTS
better acceleration strategy than previous work for self-loops

Interval Constraint Solving
interval constraints with full multiplication (but restricted ⊓)
instanciation of the generic AcceleratedMFP semi-algorithm
efficient approach: cubic-time complexity, on-the-fly

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 74 / 76

Summary (2)

Guarded Translation Systems
Self-loops Cyclic General

MOP n ≥ 1 Rational Poly. Rational Poly. Not Polyhedral

1 Rational Poly. Rational Poly. Rational Poly.
MFP 2 Rational Poly. Algebraic Poly. Algebraic Poly.

n ≥ 3 Rational Poly. Not Polyhedral Not Polyhedral

Polyhedra are computable for Rational Poly. and Algebraic Poly.

Results on self-loops carry over to singly initialized cycles

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 75 / 76

Related Work & Future Work

Related Work
Interval analysis [Su & Wagner, TACAS’04], [Seidl & Gawlitza,
ESOP’07]

No polynomial-time algorithm for constraints with full multiplication

Abstract acceleration for convex polyhedra [Gonnord &
Halbwachs, SAS’06]

Acceleration technique for two self-loops, operations include reset
Incomplete for single self-loops

Future Work
Multiple self-loops
Other abstract lattices

octogons [Miné, AST’01]
templates [Sankaranarayanan et al., VMCAI’05]
two variables per linear inequality [Simon et al., LOPSTR’02]

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 76 / 76

Related Work & Future Work

Related Work
Interval analysis [Su & Wagner, TACAS’04], [Seidl & Gawlitza,
ESOP’07]

No polynomial-time algorithm for constraints with full multiplication

Abstract acceleration for convex polyhedra [Gonnord &
Halbwachs, SAS’06]

Acceleration technique for two self-loops, operations include reset
Incomplete for single self-loops

Future Work
Multiple self-loops
Other abstract lattices

octogons [Miné, AST’01]
templates [Sankaranarayanan et al., VMCAI’05]
two variables per linear inequality [Simon et al., LOPSTR’02]

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 76 / 76

	Introduction
	Acceleration Framework for Data-Flow Analysis
	Convex Data Flow Analysis of Guarded Translation Systems
	Acceleration for Self-Loops
	Acceleration for Cycles

	Acceleration-Based Interval Constraint Solving
	From Interval Constraint Systems to Integer Constraint Systems
	Solving Integer Constraint Systems

	Conclusion

