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Motivating Example

Example (Code Snippet)

1 X =1;

2 while (x <100) {

3 i f (x >75) x =x+5;
4 elseif (x >50) x=x-3;
5 el se X = X+2;
s }

4

Does the program leave the while loop ?
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Motivating Example

Example (Code Snippet)

1 X =1;

2 while (x <100) {

3 i f (x >75) x =x+5;
4 elseif (x >50) x=x-3;
5 el se X = X+2;
s }

4

Does the program leave the while loop ?
No iff the value of variable x at line 2 remains not greater than 100
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Motivating Example (Reachability Set)

Example (Code Snippet) Reachability Set

1 X=1; Values of x at lines 1, 2, 3, 6:

2 while (x <100) { 1w 7

3 if (X >75) X = x+5;

4 elseif (X 250) X =X—3; 2 = {1,3,,51}U{48,50}
s else X = X+2; 3 — {1,3,...,51}uU{48,50}
6 } 6 — {3,5,...,51}U{48,50}
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Motivating Example (Reachability Set)

Example (Code Snippet) Reachability Set

1 X=1; Values of x at lines 1, 2, 3, 6:

2 while (x <100) { 1w 7

3 if (X >75) X = x+5;

4 elseif (X 250) X :X—3; 2 = {1,3,,51}U{48,50}
s else X = X+2; 3 — {1,3,...,51}uU{48,50}
6 } 6 — {3,5,...,51}uU{48,50}

Features and Drawbacks

@ The reachability set is the most precise invariant
@ The computation of the reachability set may not terminate
@ Its precision is often unnecessary to prove the property of interest
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

X =1, Bounds of x at lines 1, 2, 3, 6:
while (x <100) {
i f (X >75) X = x+5;
elseif (x>50) x=x-3;
el se X = X+2;

}

o g A W N P
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 Xx=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

s if x>75 x=x+5 | 1 = 1—oo4odl

4 elseif (x>50) x=x-3;

5 el se X = X+2;

6 }
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

o g A W N P

X =1;

whil e (x <100) {
i f (x > 75)
el seif (x >50)
el se

}

Bounds of x at lines 1, 2, 3, 6:

1 — ]—o00,+o0|

2wl o2 -

X = X—3;
X = X+2;
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

o g A W N P

X =1;

whil e (x <100) {
i f (x > 75)
el seif (x >50)
el se

}

Bounds of x at lines 1, 2, 3, 6:
X = x+5; 1 — ]—o0,+o0]

x=x-3| 2 — {1}

X = X+2; 3 — {1}
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 Xx=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { _

2 if (X >75) X = x+5; ; = ] q 00, +OO[

4 elseif (x>50) x=x-3; = {1}

5 else X = X+2; 3 — {1}

6 } 6 — {3}

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 8/76



Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1, Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { R I

3 if (X >75) X = x+5; ’

4« elseif (x>50) x=x-3; 2 — {1}u{3}=][1,3]

5 else X = X+2; 3 — {1}

6 } 6 — {3}
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

3 if (X > 75) X = X+5; ; = ]1 3007 +OO[

s elseif (x>50) x=x-3; = [1,3]

5 el se X = X+2; 3 ~ {1}

6 } 6 — {3}
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

2 if (X >75) X = x+5; ; = ]1 300’ +OO[

s elseif (x>50) x=x-3; = [1,3]

5 else X = X+2; 3 — [1,3]

6 } 6 — {3}
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1; Bounds of x at lines 1, 2, 3, 6:
> while (x <100) { B

2 if (X >75) X = x+5; ; = ]1 300’ +OO[

s elseif (x>50) x=x-3; = [1,3]

5 else X = X+2; 3 — [1,3]

o} 6 — [3,5]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1, Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

s if (X >75) x = x+5; ; '_> ]1 ;OJFEOE[,

4« elseif (x>50) x=x-3; — [1,3]V[3,5]

5 else X = X+2; 3 — [1,3]

6 } 6 — [3,5]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

2 if (X >75) X = x+5; ; = ]1 00, +OO[

4 elseif (X > 50) X = X—3; = [ ,+OO[

5 else X = X+2; 3 — [1,3]

o} 6 — [3,5]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 Xx=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

2 if (X >75) X = x+5; ; = ]1 00, +OO[

4 elseif (x>50) x=x-3; = [ ,+OO[

5 else X = X+2: 3 — [1,100]

¢ ) 6 — [3.5]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 Xx=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

3 if (X 2 75) X = X+5; ; = ]1 o0, +OO[

4 elseif (x>50) x=x-3; = [ ,+OO[

5 else X = X+2: 3 — [1,100]

6 } 6 — [3,105]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 Xx=1; Bounds of x at lines 1, 2, 3, 6:
> while (x <100) { L e ]
i = +oo|
3 if (X >75) X = x+5; J
s+ elseif (x>50) x=x-3; 2 — [1,400[A[3,105]
5 else X = X+2: 3 — [1,100]
6 } 6 — [3,105]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1, Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

s it (X >75) x = x+5; ; = ]1 fgéJFOO[

s elseif (x>50) x=x-3; — [1,109]

5 else X = X+2: 3 — [1,100]

6 } 6 — [3,105]
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Motivating Example (Interval Analysis with V and A)

Example (Code Snippet) Interval Analysis with V & A

1 X =1, Bounds of x at lines 1, 2, 3, 6:
> while (x <100) { B

s if (X >75) x =x+5; ; = ]1 fg;roo[

s elseif (x>50) x=x-3; — [1,109]

5 else X = X+2: 3 — [1,100]

6 } 6 — [3,105]

Features and Drawbacks
@ The use of widening (V) ensures termination of the analysis
@ The use of narrowing (A) improves precision

@ The invariant may be too coarse to prove the property of interest
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Motivating Example (Exact Interval Analysis)

Example (Code Snippet) Exact Interval Analysis

1 X=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

2 if (X >75) X = x+5; ; = ]1 ;](-)’ +OO[

s elseif (x>50) x=x-3; — [1,5]]

5 else X = X+2; 3 — [1,51]

6 } 6 — [3,51]
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Motivating Example (Exact Interval Analysis)

Example (Code Snippet) Exact Interval Analysis

1 X=1; Bounds of x at lines 1, 2, 3, 6:
2 while (x <100) { B

s if (X >75) x = x+5; ; = ]1 gf=+00[

s elseif (x>50) x=x-3; — [1,51]

5 else X = X+2; 3 — [1,51]

6 } 6 — [3,51]

Observations

@ Intervals are actually sufficient to prove the property of interest,
i.e. that this program never leaves the while loop

@ Imprecision in the previous analysis came from widening
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Problematics

Invariants for Verification of Safety Properties
@ Efficient computation of precise enough invariants
@ Data-flow analysis, abstract interpretation

@ Widenings/narrowings: successful approach, but might lead to
invariants to coarse for verification
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Problematics

Invariants for Verification of Safety Properties
@ Efficient computation of precise enough invariants
@ Data-flow analysis, abstract interpretation

@ Widenings/narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems
@ Meet Over all Paths

@ Minimum Fix Point
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Problematics

Invariants for Verification of Safety Properties

@ Efficient computation of precise enough invariants
@ Data-flow analysis, abstract interpretation

@ Widenings/narrowings: successful approach, but might lead to
invariants to coarse for verification

Our Objective
Computation of the exact solution to data-flow analysis problems
@ Meet Over all Paths

@ Minimum Fix Point

Challenge
@ When and how can exact analysis be algorithmically performed ?
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Our Approach

Acceleration in Symbolic Verification

@ Symbolically compute the effect of iterating a given cycle

@ Speed up Kleene fix-point iteration in concrete data-flow analysis

@ Developped for several data types: integer variables, continuous
variables, fifo queues, ...

@ Implemented in tools (LASH, FAST, TREX)
@ No theoretical termination guarantee, but good results in practice
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Our Approach

Acceleration in Symbolic Verification

@ Symbolically compute the effect of iterating a given cycle
@ Speed up Kleene fix-point iteration in concrete data-flow analysis

@ Developped for several data types: integer variables, continuous
variables, fifo queues, ...

@ Implemented in tools (LASH, FAST, TREX)
@ No theoretical termination guarantee, but good results in practice

@ Extend acceleration to abstract data-flow analysis

@ Apply the framework to convex/intervals data-flow analysis
@ Investigate completeness of the approach
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@ Introduction

9 Acceleration Framework for Data-Flow Analysis

9 Convex Data Flow Analysis of Guarded Translation Systems
@ Acceleration-Based Interval Constraint Solving

9 Conclusion
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9 Acceleration Framework for Data-Flow Analysis
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Data-Flow Programs (Syntax)

Consider a complete lattice (A, C) and a finite set X of variables

Definition
A transition on X" is any tuple (Xi,...,Xn; f; X) where :
@ Xi,..., Xy € X are pairwise disjoint input variables

o f € A" — A is a monotonic transfer function
@ X € X is an output variable

Notation : (Xi,...,Xn;f; X) is also written X :=f(Xq,...,X;)
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Data-Flow Programs (Syntax)

Consider a complete lattice (A, C) and a finite set X of variables

Definition
A transition on X" is any tuple (Xi,...,Xn; f; X) where :
@ Xi,..., Xy € X are pairwise disjoint input variables

@ f € A" — A is a monotonic transfer function
@ X € X is an output variable

Notation : (Xi,...,Xn;f; X) is also written X :=f(Xq,...,X;)

Definition
A data-flow program over (A, C) is any pair § = (X, T) where:
@ X is a finite set of variables

@ T is a finite set of transitions on X
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Motivating Example (Intervals)

Example (Code Snippet) Data-Flow Program

1 X =1 (to) X1:=T

2 while (x <100) { (t1) Xo:=({0}.Xy1)+ {1}

3 if (X >75) x =x+5; (t2) Xg:=XzM]— o00,100]

4 elseif (x>50) x=x-3; (t3) X7 :=Xz M [101, +oof

s else X = X+2; (ta) Xe := (X3 M [75,400]) + {5}

6 } (ts) Xe:= (X3 M [50,74]) — {3}

7 (ts) Xp:= (X3 n] — oo,49]) + {2}
© () Xei=

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 17/76



Example with Multiple Inputs (Intervals)

1 for () {x=y+z
2 y=x«z —Y; }

3

Xl =T
Yl =T
Zl =T

(t]_) Xo=Y1+2Z4
(tz) Y1 = (Xz * Zz) — Yz

X3 =X ML
Y3 =Y ML
Z3:=27Z.M_1L
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Self-Loop GTS Example (2-Dim Closed Convex)

1 while Xx>0Ay>0) { x=x-1; y=y+1; }

Data-Flow Program

@ Lattice: closed convex subsets of R?
o X ={X}

o T =1{t} .e

o (t) X:=(GnX)+d

. [G = R
win {2 Cay
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Self-Loop GTS Example (2-Dim Closed Convex)

1 while Xx>0Ay>0) { x=x-1; y=y+1; }

Data-Flow Program

@ Lattice: closed convex subsets of R?
o X ={X}

o T ={t} G,JQ@

o (t) X:=(GnX)+d

. [G = R
win {2 Cay
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Data-Flow Programs (Semantics)

Definition (Recall)
A data-flow program over (A, C) is any pair § = (X, T ) where:
@ X is a finite set of variables

@ T is a finite set of transitions on X

(A, C) is extended to the complete lattice of valuations (X — A,C)

Definition
The data-flow semantics [t] of any transition t = X :=f(Xq,...,X,) is
the monotonic function in (¥ — A) — (X — A) defined by:

[tI(P(X) = f(p(X1), .-, p(Xn))
[th(p)(Y) = p(Y)forally #X
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Initialized Data-Flow Programs

Definition

An initialized data-flow program over (A, C) is any pair (8, po) where:
@ § = (X,T) is a data-flow program over (A, C)
@ pp: X — Alis an initial valuation

We identify (8, po) with the data-flow program:

8 = (X, T U{X = po(X) | X € &Y}
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Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program
0310

o X ={X}
o T =t}
o (t) X:=(GnX)+d

. [G = R2
Wlth{a» - (-11)

pr = [tl(po)
® po={Xm—1x[-1,1]} p2 = [tl(p1)

ps = [th(p2) = {X = 0} |
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Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) = []{peX —=A|[tl(p) Epforallt e T}

® MFP(8) is the least fix-point of [T] = | | [t]
teT
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Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) = []{peX —=A|[tl(p) Epforallt e T}

® MFP(8) is the least fix-point of [T] = | | [t]
teT

Meet Over all Paths (MOP) Solution
MOP(8) = [ {[tJo---ota] (L) |tr- -t €T*}

@ Can be viewed as the “abstraction” of the reachability set
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Data-Flow Analysis MFP et MOP Solutions

Minimum Fix-Point (MFP) Solution
MFP(S) = []{peX —=A|[tl(p) Epforallt e T}

® MFP(8) is the least fix-point of [T] = | | [t]
teT

Meet Over all Paths (MOP) Solution
MOP(8) = [ {[tJo---ota] (L) |tr- -t €T*}

@ Can be viewed as the “abstraction” of the reachability set

Kleene Fix-Point Iteration
MOP(S) T [fiey[T]' (L) T MFP(S)
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution

p1 = [t] (o) (L) = po
p2 = [t](p1) T2(L) = poU[t(rH(L))
pz = [th(p2) = {X — 0}
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution

p1 (L) = po
p2 T2(L) = poU[t(rH(L))
3 (L) = poU[t](r'1(L))

4
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution

p1 (L) = po
p2 T2(L) = poU[t(rH(L))
3 (L) = poU[t](r'1(L))

4
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution

p1 (L) = po
p2 T2(L) = poU[t(rH(L))
3 (L) = poU[t](r'1(L))

4
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Self-Loop GTS Example (2-Dim Closed Convex)

MOP Solution MFP Solution

pr = [t](po)
p2 = [t](p1) Kleene fix-point iteration
ps = [th(p2) =X =0} | does not stabilize
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Acceleration of Cyclic Sub-Programs

Speed up Kleene fix-point iteration, without loosing precision

Idea : extract a cyclic sub-program and accelerate it!
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Acceleration of Cyclic Sub-Programs

Speed up Kleene fix-point iteration, without loosing precision

Idea : extract a cyclic sub-program and accelerate it!

@ Copies are allowed in the sub-program
® Renaming s : X' — X

o kN = || AX) (with s (p)(X) = LitX ¢ s(A")
Kk(X")=X
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Accelerated Computation of the MFP Solution (1)

AcceleratedMFP(8 = (X, T) : data-flow program over (A, C))
p—L
whi I'e [T](p) £ pdo
if (x) then
select atransitiont € T
p—pU[t](p)
el se
extract from § a cyclic sub-program 8’ = (X', T)
with renaming x € X/ — X

© o N o g A~ w N P

[
o

Py POK

u p" — MFP(8', pg) {x H(p") EMFP(8,p) }
12 p—purt(p)

13 returnp
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Accelerated Computation of the MFP Solution (2)
0 Py pPOK
1 o — MFP(8/, pj) m
2 p—pl ﬂ_l(p”;) K~1(p") C MFP(8, p)

Alternatives

@ line 10: any pg such that py C pox

/ / /
. p 0 . / ,Oo(x ) po K(X )
e.g. pick X’ € &’ and define p;, by {pg(Y’) — LforallY' #£X/

@ line 11: any p” such that p” T MFP(§', pg)
e.g. replace MFP with MOP
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Accelerated Computation of the MFP Solution (2)
0 Py pPOK
1 o — MFP(8/, pj) m
2 p—pl ﬂ_l(p”;) K~1(p") C MFP(8, p)

Alternatives

@ line 10: any pg such that py C po x

/ / /
. / / 4 ! IOO(X ) = pe K(X )
e.g. pick X’ € &’ and define p;, by {pg(Y’) — LforallY' #£X/

@ line 11: any p” such that p” T MFP(§', pg)
e.g. replace MFP with MOP

Challenge

Computation the MOP/MFP solution for cyclic initialized data-flow
programs

v
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9 Convex Data Flow Analysis of Guarded Translation Systems
@ Acceleration for Self-Loops
@ Acceleration for Cycles
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Closed Convex Subsets of R"

Complete Lattice (A,C)

Set of all topologically closed convex subsets of R", partially ordered
by set inclusion

@ greatest lower bound M is set intersection N
@ least upper bound LI is set union followed by closed convex hull
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Closed Convex Subsets of R"

Complete Lattice (A,C)

Set of all topologically closed convex subsets of R", partially ordered
by set inclusion

@ greatest lower bound M is set intersection N

@ least upper bound LI is set union followed by closed convex hull

Closed Convex Polyhedra

Ao D (real) polyhedron when M € R"*M
O 10T = s elliee & { rational polyhedron when M € Q<M
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Guarded Translation Systems

Guarded commands of the form: if XcGthenX:=X+d
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Guarded Translation Systems

Guarded commands of the form: if XcGthenX:=X+d

Definition
An n-dim guarded translation is any single input transition whose
transfer function f : A — A is of the form:

5 G € Aiis the guard
f(C)=(GNC)+d  where {& € R" is the displacement

Notation : X' := (G N X) + d is also written X G4, x
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Guarded Translation Systems

Guarded commands of the form: if XcGthenX:=X+d

Definition

An n-dim guarded translation is any single input transition whose
transfer function f : A — A is of the form:
G € Ais the guard

f(C)=(GNC)+d  where {& € R" is the displacement

Notation : X' := (G N X) + d is also written X G4, x

Definition

An n-dim guarded translation system (GTS) is any data-flow program
over (A, C) whose transitions are n-dim guarded translations
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Guarded Translation Systems (Semantics Rephrase)

Definition (Recall)
An n-dim GTS is any pair § = (X, T) where:
@ X is a finite set of variables

@ T is a finite set of n-dim guarded translations X S %

The complete lattice (A, C) of closed convex subsets of R" is extended
to the complete lattice of valuations (¥ — A,C)

Definition

The data-flow semantics [t] of any transition t = X 4, X" is the
monotonic function in (X — A) — (X — A) defined by:

[tIp)(X') = (GNp(X))+d
[th(p)(Y) = p(Y)forally X’
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Self-Loop GTS Example (2-Dim Closed Convex)

Data-Flow Program
0310

o X ={X}
o T =t}
o (t) X:=(GnX)+d

. [G = R2
Wlth{a» - (-11)

pr = [tl(po)
® po={Xm—1x[-1,1]} p2 = [tl(p1)

ps = [th(p2) = {X = 0} |
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Instanciating the Acceleration Framework

Challenge

Computation the MOP/MFP solution for cyclic initialized guarded
translation systems (IGTS)

@ Permits (exact) acceleration of the Kleene fix-point iteration
@ Raises new interesting theoretical questions !
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MOP Solution for Self-Loop IGTS

For any n-dim self-loop IGTS § = ({X},{X &, X}, po), iIf G and po(X)
are polyhedra then MOP(S, po) is a polyhedron
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MOP Solution for Self-Loop IGTS

For any n-dim self-loop IGTS 8 = ({X}, {X Ce, X}, po), if G and po(X)
are polyhedra then MOP(S, po) is a polyhedron

Proof Sketch
MOP(S, po)(X) = po(X) U (cloconv (G N ((G N po(X)) + N 6)) + J)

@ Poly-based semilinear subsets of R" : | (B + 2 5ep N ﬁ)

@ Closure of this class under sum, union and intersection
@ cloconv (S) is a polyhedron when S is poly-based semilinear

The proof is constructive
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MFP Solution for Self-Loop IGTS

Theorem

For any n-dim self-loop IGTS ({X }, {X &, X}, po), the MFP solution
is the valuation:

X»—>{ po(X) _ ifGNpe(X) =10
po(X) U ((GN(po(X)+ Ryd))+d) otherwise

Proof Ideas

The given expression is a post-fix-point of [[x Gd, xﬂ _

Proof by contradiction, using topological and convexity properties
of both the guard and MFP solution.
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Comparison with Standard Widening on Polyhedra

[Cousot & Halbwachs, POPL78]

R%,(-1,1) |
g | B
po={X =1 x [1,1]} o 1. .
=TT P |
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Comparison with Standard Widening on Polyhedra

[Cousot & Halbwachs, POPL78]

IGTS Iteration with Widening

R%,(-1,1)

2

po = {X —1x[-1,1]}
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Comparison with Standard Widening on Polyhedra

[Cousot & Halbwachs, POPL78]

IGTS

Iteration with Widening

R%,(-1,1)

2

po = {X —1x[-1,1]}

@ Application of widening
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Comparison with Standard Widening on Polyhedra

[Cousot & Halbwachs, POPL78]

IGTS Iteration with Widening

R%,(-1,1)

2

po = {X —1x[-1,1]}

@ Application of widening

@ Coarser than the MFP y
Solution!

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 41/76



Comparison with Polyhedral Abstract Acceleration

[Gonnord & Halbwachs, SAS’'06]

@ Consider an IGTS S =
G,d
({X}a {X I X}7 pO)

Iteration with Abs. Acc.

Abstract Acceleration
AbAc(8) = po(X) U MFP(8")

where 8’ is equal to 8§ except R
on its initial valuation: : : : :
Po(X) = G N po(X). 0l ... I :
1 :
2 1 0 1 2
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Comparison with Polyhedral Abstract Acceleration

[Gonnord & Halbwachs, SAS’'06]

@ Consider an IGTS 8 = Iteration with Abs. Acc.

(X3, X 24 X3, o)

Abstract Acceleration

AbAC(8) = po(X) L MFP(8")
where 8’ is equal to 8§ except
on its initial valuation:

po(X) = G N po(X).
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Comparison with Polyhedral Abstract Acceleration

[Gonnord & Halbwachs, SAS’'06]

@ Consider an IGTS 8 = Iteration with Abs. Acc.

(X3, X 24 X3, o)

Abstract Acceleration

AbAC(8) = po(X) L MFP(8")
where 8’ is equal to 8§ except
on its initial valuation:

po(X) = G N po(X).

Iteration does not terminate! y
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9 Convex Data Flow Analysis of Guarded Translation Systems

@ Acceleration for Cycles
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MOP Solution for Cyclic IGTS

Consider a cyclic IGTS 8 = ({Xg1,..., Xk}, {t1,...,t}, po) with

G',J‘ . G 7d G ,d
ti = Xi /4 Xi+1 and Xk+1 = le l.e. Xl It lCR X2 cee Xk Zkok, Xl

Let8' = ({X1}, (X1 2% X4}), where :

G = (jlﬂ(GZ__’al)m"'m(Gk_(al+"'+ak—l))
d = dy+-+d

The transition X; ASLR X1 “simulates” the cycle t; - - -ty w.r.t. to X;
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MOP Solution for Cyclic IGTS

Consider a cyclic IGTS 8 = ({Xg1,..., Xk}, {t1,...,t}, po) with
=X 2% X0 and Xyen = X, e Xg 229 X, xS g

Let8' = ({X1}, (X1 2% X4}), where :

G = (jlﬂ(GZ__’al)m"'m(Gk_(al+"'+ak—l))
d = dy+-+d

The transition X; ASLR X1 “simulates” the cycle t; - - -ty w.r.t. to X;

Reduction to the Self-Loop Case

k—1

MOP(8, p0)(X1) = | | MOP(S',{Xy = ([t] o - - o [ti+1] (p0))(X1)})
i—1
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MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS 8 = ({Xg1,..., Xk}, {t1,...,t}, po) with

Gi,dj . G .d Gy.d
ti = Xi —— Xjr1 and Xg11 = Xq, i.e. Xg 2 Xy - X =25 Xy

Let 8’ = ({X1}, (X1 2% X1}), where :

G = GiN(Gp—di)Nn---N(Gk—(d+- +dk 1))
d = dy+--+dg

The transition X; LN X1 “simulates” the cycle t; - - -t W.r.t. to X,
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MFP Solution for Singly-Initialized Cyclic IGTS

Consider a cyclic IGTS 8 = ({Xg1,..., Xk}, {t1,...,t}, po) with
ti =X G'—’d|> Xiy1 and Xgy1 = Xq, i.e. X3 Gl—’dl> Xo -+« Xg Gk—’dk> X1

Let 8’ = ({X1}, (X1 2% X1}), where :

G = GiN(Gp—di)Nn---N(Gk—(d+- +dk 1))
d = dy+--+dg

The transition X; LN X1 “simulates” the cycle t; - - -t W.r.t. to X,

Reduction to the Self-Loop Case

If p(Y) = L forall Y # X; then

MFP(8, p0) = [tk—1] o --- o [ta](MFP(8', {X1 — po(X1)}))
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2-dim Cyclic Example

Initial Valuation

2
B—2L®
Y
“Ol

-

s | e ......... .......

G37 0 * *
G1 = ]-o0,—1] x [1,+400] X1 = {(-2,2)}
Gz = [1,+oo[ x[1,+oo] X2 — {(2,2)}
Gz = [1,+o0[ X ]-00,—1] X3 — {(2,-2)}
Gs = ]-o00,—1] x]~00,—-1] Xa = {(-2,-2)}
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Kleene iteration on 2-dim Cyclic Example

F)y——)

K %)
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Kleene iteration on 2-dim Cyclic Example

& %
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Kleene iteration on 2-dim Cyclic Example
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MFP Solution for 2-dim Example

hk41
i
1
3.0
I
1
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MFP Solution for 2-dim Example

1
hksr = 7— e
=
1
30
Lh
1
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MFP Solution for 2-dim Example

1
hksr = 7— e
=
1
30
Lh
1

® (hi)ye is nondecreasing, and lim hy =2 — V3
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MFP Solution for 2-dim Example

1
hksr = 7— e
=
1
30
Lh
1

® (hi)ye is nondecreasing, and lim hy =2 — V3

The MFP solution of this 2-dim cyclic IGTS is not rational polyhedral

Leroux, Sutre (LaBRI) Accelerated Data-flow Analysis LSV, May 2008 48176



3-dim Cyclic Example

Initial Valuation

—2% ) . \' :
Gy, €3 Go,es | L -

@ G37e‘é @

Gy = R_xR¥xR X; — {(-1,1)} xRt
Gz = Ry xRy xR Xo — {(1,1)} x Rt

Gz = R*xR_xR X3 — {(1,-1)} xRt
Gy = RT xR xR X4 +— {(-1,-1)} xR+
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Kleene iteration on 3-dim Cyclic Example
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Kleene iteration on 3-dim Cyclic Example

es§
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Kleene iteration on 3-dim Cyclic Example

N
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Kleene iteration on 3-dim Cyclic Example

\ ¢

e3§
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Kleene iteration on 3-dim Cyclic Example
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Kleene iteration on 3-dim Cyclic Example
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Kleene iteration on 3-dim Cyclic Example

The MFP solution of this 3-dim cyclic IGTS is not polyhedral
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Acceleration Results for Cycles

@ 2-dim cyclic example with a real (non rational) polyhedral MFP
solution

@ 3-dim cyclic example with a non-polyhedral MFP solution
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Acceleration Results for Cycles

@ 2-dim cyclic example with a real (non rational) polyhedral MFP
solution

@ 3-dim cyclic example with a non-polyhedral MFP solution

Is the MFP polyhedral for all 2-dim cyclic IGTS?
The MFP solution of any 2-dim IGTS is an algebraic polyhedron.

@ An algebraic number is any real number definable in (R, +, -, <)
@ Algebraic polyhedrality is required even for cyclic 2-dim IGTS
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Proof (1)

MFP Solution Expression

MFP(X) = || [tlo-- ot (A(Xo)) + |0 MFP(X)
XpEX
trtELx, x
where:

A(X) = po(X) U || [bd(G)NMFP(X)

G,d
X——X’

@ bd (G) is the topological boundary of G
@ Ly, x is the set of simple paths from Xg to X
@ 0tC={d|C+R,d CC}
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Proof (2)

Observe that 0t MFP(X) is a cone in dimension 2.

There exists d, d2, ds € R? such that:
0+ MFP(X) = Rydy + Rydy + Ry d;

Reduce to the case G is an half-space.
= bd(G)isaline.

There exists two half-spaces H;, H, such that:
bd (G) "MFP(X) =bd(G)NnH; NH,

Therefore the MFP solution is definable by a formula in (R, +, -, <).
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@ Acceleration-Based Interval Constraint Solving
@ From Interval Constraint Systems to Integer Constraint Systems
@ Solving Integer Constraint Systems
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Intervals of Z"

Complete Lattice (Z, <)
Let Z = Z U {—o0, +00} with natural partial order < defined by:

—0 < <2< -1<0<1l<?2< - <+

@ greatest lower bound A satisfies: a Ab = min(a,b) and A 0 = +cc
@ least upper bound V satisfies: avb = max(a,b) and \/ ) = —c

Complete Lattice (Z,C)

Setof allintervals | = {x € Z |a < x < b} where a,b € Z, partially
ordered by set inclusion

@ greatest lower bound 1 is set intersection N

@ least upper bound LI is set union followed by “discrete convex hull”
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Interval Constraint Systems

We consider data-flow programs over (Z, C) with transitions of the
form:

X =1 X = Xq + X X =Xy M1
X = —Xl X = X]_UXZ
XZ:X1-X2

Allowed transfer functions
@ constants
@ full addition and subtraction
@ full multiplication

@ intersection with constants

We focus on the MFP solution, equivalently to the least solution of the
constraint system where := is replaced with 3
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Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in Z

| (17,1%) where {:J_r z ¥(I_|) = —Al
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Interval Constraints to Integer Constraints

Represent intervals by pairs of integers in Z

| (17,1%) where {:J_r z x(l_n = —Al

But

+ > X+ X IXy Ml

X 3 Xq & {i_;il_ ="
£ M) is not equivalent to

X+t >X[ X+t >X Al
X2-X @{x—zxf {x—le—m—

Xt >X{+X5 | Because p(X1) M| might
XX +Xy & {0 01702 P 9

=T {X > Xy + X, be empty !
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The Test Functions

Definition
Foreveryv € Zand € {>,>}, define ., : Z x Z — Z by:

Zo ifz; = v
—oo otherwise

Os(z1,22) =
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The Test Functions

Definition
Foreveryv € Zand € {>,>}, define ., : Z x Z — Z by:

Zo ifz; = v
—oo otherwise

Os(z1,22) =

o N, #0 iff 17 >—17 and I > —I5

: (Iiml)~ = 17 AL
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The Test Functions

Definition
Foreveryv € Zand € {>,>}, define ., : Z x Z — Z by:

Zo ifz; = v
—oo otherwise

Os(z1,22) =

o N, #0 iff 17 >—17 and I > —I5

: (Iiml)~ = 17 AL

Translation of X T X, M|

X™ > Os_ e (X{, 05— (X5, X7 A1)

X 3 X, 11 2
=200 T AT > s (XL 05— (X7, X A TT))
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The Multiplication Functions

Define the multiplication functions mul;, mul_ : Z x Z — Z by:

zy-2p ifz1,2,>0
muly(z1,22) = {0 otherwise

~21-2p if21,2,<0
mul_(z1,22) = {0 otherwise
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The Multiplication Functions

Definition
Define the multiplication functions mul,, mul_ : Z x Z — Z by:

zy-2p ifz1,2,>0
muly(z1,22) = {0 otherwise

~21-2p if21,2,<0
mul_(z1,22) = {0 otherwise

Translation of X C X; - X5
When p(X1) € N and p(X3) € Nthen X I X; - X, is equivalent to:

{x— > 05 oo(X] 405 —oo(X{, 05 s (X5, 05 —ao (XS, mul_ (X1, X5)))))

X+ Z 9>—oo(xf_’9>—oo(xl_a0>—00(X;_70>—00(X2_7mu'-f—(xl—i_’xg_)))))
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Translation into Positive Multiplication Form

Replace each constraint X 3 X; - X, by:

X I Xpu-Xoy X1y 2 X1 TN

X Xy Xy Xou 2 X2 TN

X 3J-X’

X" 3 Xqu- Xz X1 I X1 MN X; 3 =X
X" 3 Xy - Xo X210 I X5 NN X; 3 =X

@ X, corresponds to the “positive part” of X;
@ X; | corresponds to the “negative part” of X;

Property of Transformed Contraint System

The least solution p satisfies p(X1) € N and p(X;) € N for any
multiplicative constraint X J X, - X5
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@ Acceleration-Based Interval Constraint Solving

@ Solving Integer Constraint Systems
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Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over
(Z, <) with constraints of the form:

X >z X > Xy + Xo X >Xy Az
X = muly(Xa, Xz) X 2> 0>2(X1,X2)
X > mul_ (X1, Xy) X > 0=,(X1,X2)
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Bounded-Increasing Integer Constraint Systems

We have reduced interval contraint systems to constraint systems over
(Z, <) with constraints of the form:

X >z X > Xy + Xo X >Xy Az
X = muly(Xa, Xz) X 2> 0>2(X1,X2)
X > mul_ (X1, Xy) X > 0=,(X1,X2)

Definition

A monotonic function f € ZX — Z is bounded-increasing if f (&) < f(b)
for every a < b such that f(_L) < f(&) and f(b) < f(T)

Except for test functions, all of the above transfer functions are
bounded-increasing
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Computation of the Least Solution

Definition
A constraint X > (X4, ..., X;) is called saturated by a valuation p
when p(X) > f(T)

Main ldeas of the Algorithm
@ |terative forward propagation

@ Keep track for each variable of the last constraint that updated its
value

@ When a cycle of updates appears, accelerate it to saturate at least
one constraint

@ Inject test constraints only once they become “active”
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Cyclic Constraint Systems
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Algorithm for the Cyclic Bounded-Increasing Case

CyclicSolve(8 = (X,C) : cyclic bounded-increasing constraint system,
po : valuation)
let Xg — c1 — X1+ — ¢y — Xpn = X be the “unique” elementary cycle
P po
fori=1tondo
p < pV[cil(p)
fori=1tondo
~p=rpV]c(p)
if p>[C](p)
returnp
fori=1tondo
p(Xi) « 400
fori=1tondo
p — pA[cil(p)
fori=1tondo
p— pA[cil(p)
returnp

© 0 N o g A W N P

R A T =
N o oA W N P O
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Algorithm for the General Bounded-Increasing Case

SolveBI(8 = (X,C) : bounded-increasing constraint system,
po : valuation)
p < poV [C](po)
whi l e [Cl(p) £ p
A0 { X is a partial function from X to C }
repeat |C|+ 1times
for eachceC
ifp2Iclp)
p < pV[c](p)
A(X) < ¢, where X is the input variable of ¢
i f thereis acycle Xg — A(X1) — Xg--- A(Xn) — Xo
8 — (X, {(X1),.--,A(Xn)})
p' — CyclicSolve(8’, p)
1 p—p\Vp
15 returnp

© o N o g M w N P

N
N P O
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w
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Algorithm for General Integer Constraint Systems

Active Test Constraints
@ Atest constraint c = X > 0. ,(Xy1, Xz) is active for p if p(X1) > z
@ |ts active form act(c) is the constraint X > X,

Solvelnteger(s = (X,C) : integer constraint system)
p—L1
C; < set of test constraints in C
C’ « set of bounded-increasing constraints in C
whi e [C](p) £ p
p < SolveBI((X,C’), p)
for eachc € C;
i f cis active for p
Ct — Ci\{c}
10 C’ — C'u{act(c)}
u returnp

© o N o g M w N B
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Correctness and Complexity Results

Size |§| of a constraint system § = (X, C) defined by || = |X| + |C]

The algorithm Solvelnteger computes the least solution of a system of
(test and bounded-increasing) integer constraints 8 by performing
O(|$|3) integer comparisons and image computations by
bounded-increasing transfer functions of §

The least solution of an interval constraint system § can by computed
in time O(|$|3) with integer operations performed in O(1)
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Outline

9 Conclusion
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Summary (1)

Acceleration Framework for Data-Flow Analysis
@ Generalizes “standard” acceleration principles from concrete to
abstract data-flow analysis

@ Tradeoff between reachability set computation and data-flow
analysis with widenings/narrowings
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Summary (1)

Acceleration Framework for Data-Flow Analysis

@ Generalizes “standard” acceleration principles from concrete to
abstract data-flow analysis

@ Tradeoff between reachability set computation and data-flow
analysis with widenings/narrowings

Application of Framework

@ Convex data-flow analysis
@ computation of the MOP and MFP solution for cyclic GTS
@ better acceleration strategy than previous work for self-loops

@ Interval Constraint Solving
@ interval constraints with full multiplication (but restricted 1)
@ instanciation of the generic AcceleratedMFP semi-algorithm
o efficient approach: cubic-time complexity, on-the-fly
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Summary (2)

Guarded Translation Systems
Self-loops | Cyclic |  General

| MOP | n>1 || Rational Poly. | Rational Poly. _

1 || Rational Poly. | Rational Poly. Rational Poly.
MFP 2 || Rational Poly. | Algebraic Poly. | Algebraic Poly.
n > 3 || Rational Poly. | Not Polyhedral | Not Polyhedral

@ Polyhedra are computable for Rational Poly. and Algebraic Poly.
@ Results on self-loops carry over to singly initialized cycles
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Related Work & Future Work

Related Work

@ Interval analysis [Su & Wagner, TACAS’04], [Seidl & Gawlitza,
ESOP’07]

@ No polynomial-time algorithm for constraints with full multiplication

@ Abstract acceleration for convex polyhedra [Gonnord &
Halbwachs, SAS’06]
@ Acceleration technique for two self-loops, operations include reset
@ Incomplete for single self-loops
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Related Work & Future Work

Related Work

@ Interval analysis [Su & Wagner, TACAS’04], [Seidl & Gawlitza,
ESOP’07]

@ No polynomial-time algorithm for constraints with full multiplication

@ Abstract acceleration for convex polyhedra [Gonnord &
Halbwachs, SAS’06]

@ Acceleration technique for two self-loops, operations include reset
@ Incomplete for single self-loops

Future Work

@ Multiple self-loops
@ Other abstract lattices
@ octogons [Miné, AST'01]
o templates [Sankaranarayanan et al., VMCAI'05]
@ two variables per linear inequality [Simon et al., LOPSTR’'02]
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