
Temporal Safety Proofs for Systems Code #1

Temporal Safety Proofs for Systems Code

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar

George C. Necula, Grégoire Sutre, Westley Weimer

EECS Departement, University of California, Berkeley

LaBRI, Université de Bordeaux

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #2

Based on the following papers:

Lazy Abstraction, POPL’02, Jan 2002

Temporal Safety Proofs for Systems Code, CAV’02, July 2002

Downloadable from:

http://www.labri.fr/˜sutre/Publications

LaBRI - 6 February 2003

http://www.labri.fr/~sutre/Publications

Temporal Safety Proofs for Systems Code #3

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #4

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #5

Motivations

Methodology for the verification and certification of large software

Crucial for systems code (device drivers)

high rate of bugs (especially in device drivers)

no runtime protection

many third-party providers

We focus on:

safety properties
locking displines, interface specifications

software written in C
Linux & Windows NT device drivers

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #5

Motivations

Methodology for the verification and certification of large software

Crucial for systems code (device drivers)

high rate of bugs (especially in device drivers)

no runtime protection

many third-party providers

We focus on:

safety properties
locking displines, interface specifications

software written in C
Linux & Windows NT device drivers

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #6

Ingredients

Model-checking, but...

doesn’t scale to low-level implementations

can only handle (finite) abstractions

Verification using abstraction – refinement based techniques

automatic construction and verification of abstract models

counter-example guided refinement

lazy abstraction (non uniform abstraction)

Certification: proof-carrying code

verification condition computed from the abstract reachability set

proof generation using internal data from verification

small correctness certificates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #6

Ingredients

Model-checking, but...

doesn’t scale to low-level implementations

can only handle (finite) abstractions

Verification using abstraction – refinement based techniques

automatic construction and verification of abstract models

counter-example guided refinement

lazy abstraction (non uniform abstraction)

Certification: proof-carrying code

verification condition computed from the abstract reachability set

proof generation using internal data from verification

small correctness certificates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #6

Ingredients

Model-checking, but...

doesn’t scale to low-level implementations

can only handle (finite) abstractions

Verification using abstraction – refinement based techniques

automatic construction and verification of abstract models

counter-example guided refinement

lazy abstraction (non uniform abstraction)

Certification: proof-carrying code

verification condition computed from the abstract reachability set

proof generation using internal data from verification

small correctness certificates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #7

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

Solutions:
accelerate: exact computation, but too much useless detail

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #8

Model-checking: basics

Init Error

Iteration doesn’t terminate (too many states)

Solutions:
accelerate: exact computation, but too much useless detail
abstract: too get rid of this unnecessary detail

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #9

Predicate Abstraction [GS97]

Init Error

P1, P2, . . . , Pn : predicates ([[Pi]] : subset of the state space)

Abstract states (boxes) are valuations : {P1, P2, . . . , Pn} → {true, false}

Conservative abstraction (computed using decision procedures)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #9

Predicate Abstraction [GS97]

Init Error

P1, P2, . . . , Pn : predicates ([[Pi]] : subset of the state space)

Abstract states (boxes) are valuations : {P1, P2, . . . , Pn} → {true, false}

Conservative abstraction (computed using decision procedures)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #9

Predicate Abstraction [GS97]

Init Error

P1, P2, . . . , Pn : predicates ([[Pi]] : subset of the state space)

Abstract states (boxes) are valuations : {P1, P2, . . . , Pn} → {true, false}

Conservative abstraction (computed using decision procedures)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #9

Predicate Abstraction [GS97]

Init Error

∀

∃

P1, P2, . . . , Pn : predicates ([[Pi]] : subset of the state space)

Abstract states (boxes) are valuations : {P1, P2, . . . , Pn} → {true, false}

Conservative abstraction (computed using decision procedures)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #10

Model-Checking with Predicate Abstraction

Abstraction too coarse

Refinement is needed to avoid this spurious error trace
split boxes into smaller ones: add new predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #11

Refinement with Predicate Abstraction

Refinement: adding new predicates

Finer grid

The refined abstraction is safe!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #12

Abstract-Check-Refine Loop

Three phases integrated in a completely automatic loop

No false negative

Automatic abstract counter-example checking

for safety properties, reduces to symbolic simulation

Automatic refinement

New predicates automatically inferred from spurious error traces

Previous work: batch-oriented abstract-check-refine loop

Clarke et al.: ACTL∗ but for finite-state systems [CGJ+00]

MSR SLAM Project safety properties for systems code [BR01]

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #12

Abstract-Check-Refine Loop

Three phases integrated in a completely automatic loop

No false negative

Automatic abstract counter-example checking

for safety properties, reduces to symbolic simulation

Automatic refinement

New predicates automatically inferred from spurious error traces

Previous work: batch-oriented abstract-check-refine loop

Clarke et al.: ACTL∗ but for finite-state systems [CGJ+00]

MSR SLAM Project safety properties for systems code [BR01]

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #12

Abstract-Check-Refine Loop

Three phases integrated in a completely automatic loop

No false negative

Automatic abstract counter-example checking

for safety properties, reduces to symbolic simulation

Automatic refinement

New predicates automatically inferred from spurious error traces

Previous work: batch-oriented abstract-check-refine loop

Clarke et al.: ACTL∗ but for finite-state systems [CGJ+00]

MSR SLAM Project safety properties for systems code [BR01]

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #12

Abstract-Check-Refine Loop

Three phases integrated in a completely automatic loop

No false negative

Automatic abstract counter-example checking

for safety properties, reduces to symbolic simulation

Automatic refinement

New predicates automatically inferred from spurious error traces

Previous work: batch-oriented abstract-check-refine loop

Clarke et al.: ACTL∗ but for finite-state systems [CGJ+00]

MSR SLAM Project safety properties for systems code [BR01]

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #13

Abstract-Check-Refine Loop (cont’d)

Input: System (program or model) S and seed predicates P = {P1, P2, . . . , Pn}

1. compute the finite predicate abstraction A of S w.r.t. predicates P

2. model-check A

if A is safe then return S is safe
otherwise extract an (abstract) error path π

3. check whether π is feasible path in S

if don’t know then return don’t know
if π is feasible in S then return S is unsafe

4. refinement
extract an “explanation” of unfeasibility of π as new predicates
P ′

1, P ′

2, . . . , P ′

k

P := P ∪ {P ′

1, P ′

2, . . . , P ′

k}

5. goto 1.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #13

Abstract-Check-Refine Loop (cont’d)

Input: System (program or model) S and seed predicates P = {P1, P2, . . . , Pn}

1. compute the finite predicate abstraction A of S w.r.t. predicates P

2. model-check A

if A is safe then return S is safe
otherwise extract an (abstract) error path π

3. check whether π is feasible path in S

if don’t know then return don’t know
if π is feasible in S then return S is unsafe

4. refinement
extract an “explanation” of unfeasibility of π as new predicates
P ′

1, P ′

2, . . . , P ′

k

P := P ∪ {P ′

1, P ′

2, . . . , P ′

k}

5. goto 1.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #13

Abstract-Check-Refine Loop (cont’d)

Input: System (program or model) S and seed predicates P = {P1, P2, . . . , Pn}

1. compute the finite predicate abstraction A of S w.r.t. predicates P

2. model-check A

if A is safe then return S is safe
otherwise extract an (abstract) error path π

3. check whether π is feasible path in S

if don’t know then return don’t know
if π is feasible in S then return S is unsafe

4. refinement
extract an “explanation” of unfeasibility of π as new predicates
P ′

1, P ′

2, . . . , P ′

k

P := P ∪ {P ′

1, P ′

2, . . . , P ′

k}

5. goto 1.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #13

Abstract-Check-Refine Loop (cont’d)

Input: System (program or model) S and seed predicates P = {P1, P2, . . . , Pn}

1. compute the finite predicate abstraction A of S w.r.t. predicates P

2. model-check A

if A is safe then return S is safe
otherwise extract an (abstract) error path π

3. check whether π is feasible path in S

if don’t know then return don’t know
if π is feasible in S then return S is unsafe

4. refinement
extract an “explanation” of unfeasibility of π as new predicates
P ′

1, P ′

2, . . . , P ′

k

P := P ∪ {P ′

1, P ′

2, . . . , P ′

k}

5. goto 1.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #13

Abstract-Check-Refine Loop (cont’d)

Input: System (program or model) S and seed predicates P = {P1, P2, . . . , Pn}

1. compute the finite predicate abstraction A of S w.r.t. predicates P

2. model-check A

if A is safe then return S is safe
otherwise extract an (abstract) error path π

3. check whether π is feasible path in S

if don’t know then return don’t know
if π is feasible in S then return S is unsafe

4. refinement
extract an “explanation” of unfeasibility of π as new predicates
P ′

1, P ′

2, . . . , P ′

k

P := P ∪ {P ′

1, P ′

2, . . . , P ′

k}

5. goto 1.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #14

Drawbacks

Batch-oriented integration

no sharing of data structures

Abstraction computed completely before the model-checking phase

does unnecessary expensive work

Computations from earlier loop iterations are wasted

redoes work at each iteration

What if the new inferred predicates are used locally only?

error-free parts of the state may have already been explored

→ Need a lazy approach

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #14

Drawbacks

Batch-oriented integration

no sharing of data structures

Abstraction computed completely before the model-checking phase

does unnecessary expensive work

Computations from earlier loop iterations are wasted

redoes work at each iteration

What if the new inferred predicates are used locally only?

error-free parts of the state may have already been explored

→ Need a lazy approach

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #14

Drawbacks

Batch-oriented integration

no sharing of data structures

Abstraction computed completely before the model-checking phase

does unnecessary expensive work

Computations from earlier loop iterations are wasted

redoes work at each iteration

What if the new inferred predicates are used locally only?

error-free parts of the state may have already been explored

→ Need a lazy approach

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #14

Drawbacks

Batch-oriented integration

no sharing of data structures

Abstraction computed completely before the model-checking phase

does unnecessary expensive work

Computations from earlier loop iterations are wasted

redoes work at each iteration

What if the new inferred predicates are used locally only?

error-free parts of the state may have already been explored

→ Need a lazy approach

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #15

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #16

Our proposal

Abstract only where required

reachable state space is very sparse

→ construct the abstraction on the fly

Use greater precision only where required

non uniform abstraction

→ refine locally, based on false error paths

Re-use work from earlier phases / iterations

→ tight integration of the 3 phases

→ Give control to the model-checker

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #16

Our proposal

Abstract only where required

reachable state space is very sparse

→ construct the abstraction on the fly

Use greater precision only where required

non uniform abstraction

→ refine locally, based on false error paths

Re-use work from earlier phases / iterations

→ tight integration of the 3 phases

→ Give control to the model-checker

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #16

Our proposal

Abstract only where required

reachable state space is very sparse

→ construct the abstraction on the fly

Use greater precision only where required

non uniform abstraction

→ refine locally, based on false error paths

Re-use work from earlier phases / iterations

→ tight integration of the 3 phases

→ Give control to the model-checker

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #16

Our proposal

Abstract only where required

reachable state space is very sparse

→ construct the abstraction on the fly

Use greater precision only where required

non uniform abstraction

→ refine locally, based on false error paths

Re-use work from earlier phases / iterations

→ tight integration of the 3 phases

→ Give control to the model-checker

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #17

Abstract only where required

Computation of the abstract transition relation is very expensive

Why compute abstract transitions that are never taken?

On-the-fly abstraction: driven by the search

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #17

Abstract only where required

Computation of the abstract transition relation is very expensive

Why compute abstract transitions that are never taken?

On-the-fly abstraction: driven by the search

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #18

Refine only where required

Why be precise everywhere?

Don’t refine error-free parts of the state space

Local refinement: driven by the search

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #18

Refine only where required

Why be precise everywhere?

Don’t refine error-free parts of the state space

Local refinement: driven by the search

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract post : [[post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract

�

post : [[

�

post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions: post monotonic w.r.t. � ∩ v

usually, post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #19

Abstraction Structure

Labelled Transition System: (S, Σ,→)

Abstraction structure: (R,⊥,t,u, pre,

�

post, [[·]], �)

set R of regions, meaning given by [[·]] : R→ S

induced inclusion pre-order v over regions: r v r′ iff [[r]] ⊆ [[r′]]

empty region ⊥ ([[⊥]] = ∅)

union and intersection of regions: [[r t r′]] = [[r]] ∪ [[r′]], [[r u r′]] = [[r]] ∩ [[r′]]

concrete pre : [[pre(r, l)]] = {s′ ∈ S | ∃ s ∈ [[r]]. s′
l
−→ s}

abstract

�

post : [[

�

post(r, l)]] ⊇ {s′ ∈ S | ∃ s ∈ [[r]]. s
l
−→ s′}

precision pre-order � over regions:

�

post monotonic w.r.t. � ∩ v

usually,
�

post is neither monotonic w.r.t. �, nor monotonic w.r.t. v

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

�

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #20

Example: Predicate Abstraction

Predicate language L
predicates interpreted over S

boolean closure of L is decidable and effectively closed under pre

regions: pairs (ϕ, Γ), where:
Γ ⊆ L is a set of support predicates
ϕ boolean formula over predicates in Γ

straightfoward meaning [[·]], and empty region: (false, ∅)

(ϕ, Γ) t (ϕ′, Γ′) = (ϕ ∨ ϕ′, Γ′ ∪ Γ) and (ϕ, Γ) u (ϕ′, Γ′) = (ϕ ∧ ϕ′,Γ′ ∪ Γ)

pre : follows from closure assumption
support predicates grow as needed

�

post(ϕ, Γ) : smallest (ϕ′, Γ) containing {s′ ∈ S | ∃ s ∈ [[ϕ, Γ]]. s
l
−→ s′}

precision pre-order is containment on support predicates

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #21

Lazy Symbolic Reachability Tree

create root r labeled with r0

while there are unmarked nodes

pick an unmarked node n :r

if r u err 6≡ ⊥

let n′ :r′ σ
−→ n :r be the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

if n′ is the root then return the “error trace” σ

else do_refinement()

else if r v

�

{u | m :u is an uncovered marked node}

mark n as covered

else for each label l ∈ Σ do
r′ ←

�

post(r, l)

construct a son n
′ :r′ of n and label the arc n

l
−→ n

′

mark n as uncovered

return the region
�

{u | m :u is an uncovered marked node}

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #22

Lazy Refinement

When entering do_refinement(), we have:

n′ :r′
σ
−→ n :r is the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

n
′ :r′ is not the root

So we have: n
′′ :r′′

l
−→ n

′ :r′
σ
−→ n :r and pre(err, lσ) u r′′ ≡ ⊥

r′′
lσ
−→ r is a spurious error trace

we need to refine n
′′ :r′′

we re-label n′′ by a new region w′′ satisfying w′′ ≡ r′′ and w′′
� r′′

w′′ should also satisfy post(w′′, lσ) ≡ ⊥ to rule out this false negative

→ The rest of the tree also needs to be updated...

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #22

Lazy Refinement

When entering do_refinement(), we have:

n′ :r′
σ
−→ n :r is the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

n
′ :r′ is not the root

So we have: n
′′ :r′′

l
−→ n

′ :r′
σ
−→ n :r and pre(err, lσ) u r′′ ≡ ⊥

r′′
lσ
−→ r is a spurious error trace

we need to refine n
′′ :r′′

we re-label n′′ by a new region w′′ satisfying w′′ ≡ r′′ and w′′
� r′′

w′′ should also satisfy post(w′′, lσ) ≡ ⊥ to rule out this false negative

→ The rest of the tree also needs to be updated...

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #22

Lazy Refinement

When entering do_refinement(), we have:

n′ :r′
σ
−→ n :r is the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

n
′ :r′ is not the root

So we have: n
′′ :r′′

l
−→ n

′ :r′
σ
−→ n :r and pre(err, lσ) u r′′ ≡ ⊥

r′′
lσ
−→ r is a spurious error trace

we need to refine n
′′ :r′′

we re-label n′′ by a new region w′′ satisfying w′′ ≡ r′′ and w′′
� r′′

w′′ should also satisfy post(w′′, lσ) ≡ ⊥ to rule out this false negative

→ The rest of the tree also needs to be updated...

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #22

Lazy Refinement

When entering do_refinement(), we have:

n′ :r′
σ
−→ n :r is the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

n
′ :r′ is not the root

So we have: n
′′ :r′′

l
−→ n

′ :r′
σ
−→ n :r and pre(err, lσ) u r′′ ≡ ⊥

r′′
lσ
−→ r is a spurious error trace

we need to refine n
′′ :r′′

we re-label n′′ by a new region w′′ satisfying w′′ ≡ r′′ and w′′
� r′′

w′′ should also satisfy

�

post(w′′, lσ) ≡ ⊥ to rule out this false negative

→ The rest of the tree also needs to be updated...

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #22

Lazy Refinement

When entering do_refinement(), we have:

n′ :r′
σ
−→ n :r is the oldest ancestor of n with pre(err, σ) u r′ 6≡ ⊥

n
′ :r′ is not the root

So we have: n
′′ :r′′

l
−→ n

′ :r′
σ
−→ n :r and pre(err, lσ) u r′′ ≡ ⊥

r′′
lσ
−→ r is a spurious error trace

we need to refine n
′′ :r′′

we re-label n′′ by a new region w′′ satisfying w′′ ≡ r′′ and w′′
� r′′

w′′ should also satisfy

�

post(w′′, lσ) ≡ ⊥ to rule out this false negative

→ The rest of the tree also needs to be updated...

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #23

Lazy Refinement (cont’d)

Updating:

either the subtree starting at the sons of the refined node n
′′ are removed

or only regions along the path n′′ :w′′ l
−→ n′ :r′

σ
−→ n :r are re-computed

Unmarking recent leaves to garantee correctness:

all covered leaves that were (last) marked after n′′ was last marked are
unmarked

Theorem When the lazy abstraction algorithm terminates, either:

it returns an error-free over-approximation of the (concrete) reachability
set, or

it returns a concrete error path.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #23

Lazy Refinement (cont’d)

Updating:

either the subtree starting at the sons of the refined node n
′′ are removed

or only regions along the path n′′ :w′′ l
−→ n′ :r′

σ
−→ n :r are re-computed

Unmarking recent leaves to garantee correctness:

all covered leaves that were (last) marked after n′′ was last marked are
unmarked

Theorem When the lazy abstraction algorithm terminates, either:

it returns an error-free over-approximation of the (concrete) reachability
set, or

it returns a concrete error path.

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #24

Application to predicate abstraction

We re-label n′′ :r′′ by w′′ satisfying w′′ ≡ r′′, w′′
� r′′ and

�
post(w′′, lσ) ≡ ⊥

Refining a region consists in adding more support predicates

New support predicates should rule out the spurious error trace

→ Predicate discovery

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #25

Outcomes of Lazy Abstraction

Abstract post computed only where required

crucial, since reachability set is very sparse

Local refinement

reuse previous work: recompute only the spurious error path (or
subtree)

for predicate abstraction: local predicates
computation of post is very sensitive to the number of predicates

General setting

Application to other classes of systems (e.g. hybrid systems)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #25

Outcomes of Lazy Abstraction

Abstract

�

post computed only where required

crucial, since reachability set is very sparse

Local refinement

reuse previous work: recompute only the spurious error path (or
subtree)

for predicate abstraction: local predicates
computation of post is very sensitive to the number of predicates

General setting

Application to other classes of systems (e.g. hybrid systems)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #25

Outcomes of Lazy Abstraction

Abstract

�

post computed only where required

crucial, since reachability set is very sparse

Local refinement

reuse previous work: recompute only the spurious error path (or
subtree)

for predicate abstraction: local predicates
computation of

�

post is very sensitive to the number of predicates

General setting

Application to other classes of systems (e.g. hybrid systems)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #25

Outcomes of Lazy Abstraction

Abstract

�

post computed only where required

crucial, since reachability set is very sparse

Local refinement

reuse previous work: recompute only the spurious error path (or
subtree)

for predicate abstraction: local predicates
computation of

�

post is very sensitive to the number of predicates

General setting

Application to other classes of systems (e.g. hybrid systems)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #26

Lazy predicate abstraction of C

Control Flow Automata
Σ = Op : blocks of assignments, if conditions, function calls
safety-monitor automaton

Predicate language L : theory of equality with uninterpreted functions +
integer arithmetic

Control locations kept explicit: nodes labeled with (q, r)

Predicate discovery (from a false error trace):

Keep substitutions explicit
introduce new (existentially quantified) variables
all operations appear explicitly

Ask a proof of unsatisfiability

Pick predicates appearing in the proof

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #26

Lazy predicate abstraction of C

Control Flow Automata
Σ = Op : blocks of assignments, if conditions, function calls
safety-monitor automaton

Predicate language L : theory of equality with uninterpreted functions +
integer arithmetic

Control locations kept explicit: nodes labeled with (q, r)

Predicate discovery (from a false error trace):

Keep substitutions explicit
introduce new (existentially quantified) variables
all operations appear explicitly

Ask a proof of unsatisfiability

Pick predicates appearing in the proof

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #26

Lazy predicate abstraction of C

Control Flow Automata
Σ = Op : blocks of assignments, if conditions, function calls
safety-monitor automaton

Predicate language L : theory of equality with uninterpreted functions +
integer arithmetic

Control locations kept explicit: nodes labeled with (q, r)

Predicate discovery (from a false error trace):

Keep substitutions explicit
introduce new (existentially quantified) variables
all operations appear explicitly

Ask a proof of unsatisfiability

Pick predicates appearing in the proof

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #27

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #28

Proof Carrying Code [Nec97]

Verification Condition (VC)

first-order formula whose validity ensures correctness of the program

automatically computed from the annotated program code
annotations are invariants
user supplied, or automatically inferred

Code producer sends to the consumer:

annotated program code

proof of VC

Code consumer:

builds the VC from the annotated program code

checks the supplied proof

Proof checking is much easier than verification!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #28

Proof Carrying Code [Nec97]

Verification Condition (VC)

first-order formula whose validity ensures correctness of the program

automatically computed from the annotated program code
annotations are invariants
user supplied, or automatically inferred

Code producer sends to the consumer:

annotated program code

proof of VC

Code consumer:

builds the VC from the annotated program code

checks the supplied proof

Proof checking is much easier than verification!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #28

Proof Carrying Code [Nec97]

Verification Condition (VC)

first-order formula whose validity ensures correctness of the program

automatically computed from the annotated program code
annotations are invariants
user supplied, or automatically inferred

Code producer sends to the consumer:

annotated program code

proof of VC

Code consumer:

builds the VC from the annotated program code

checks the supplied proof

Proof checking is much easier than verification!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #28

Proof Carrying Code [Nec97]

Verification Condition (VC)

first-order formula whose validity ensures correctness of the program

automatically computed from the annotated program code
annotations are invariants
user supplied, or automatically inferred

Code producer sends to the consumer:

annotated program code

proof of VC

Code consumer:

builds the VC from the annotated program code

checks the supplied proof

Proof checking is much easier than verification!

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #29

Temporal Safety Certification

Assumption: the program code is a CFA

Specification: control location err is not reachable from q0

but can use safety monitors to express safety properties

Applying PCC

compute the invariant annotations

compute the VC

Generate the proof

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #29

Temporal Safety Certification

Assumption: the program code is a CFA

Specification: control location err is not reachable from q0

but can use safety monitors to express safety properties

Applying PCC

compute the invariant annotations

compute the VC

Generate the proof

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #30

Verification Condition for Safety

Invariant annotations : formulas Inv(q)

one invariant annotation for each control location

VC states that:

The global invariant annotation is an inductive invariant of the system

Inv(q0) is equivalent to true

Inv(err) is equivalent to false

V C = Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

sp(Inv(q), op) =⇒ Inv(q′)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #30

Verification Condition for Safety

Invariant annotations : formulas Inv(q)

one invariant annotation for each control location

VC states that:

The global invariant annotation is an inductive invariant of the system

Inv(q0) is equivalent to true

Inv(err) is equivalent to false

V C = Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

sp(Inv(q), op) =⇒ Inv(q′)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #30

Verification Condition for Safety

Invariant annotations : formulas Inv(q)

one invariant annotation for each control location

VC states that:

The global invariant annotation is an inductive invariant of the system

Inv(q0) is equivalent to true

Inv(err) is equivalent to false

V C = Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #31

Invariant Generation via Lazy Abstraction

Assume that the lazy abstraction reachability tree, from (q0, true), is computed
with no error found. Then:

for each node n : (err, r) in the tree, r is empty

if n : (q, r)
op
−→ n′ : (q′, r′) then sp(r, op) =⇒ r′

if n : (q, r) is a covered leaf, then there are internal nodes n1 : (q, r1),

n2 : (q, r2), . . . , nk : (q, rk) such that r =⇒ r1 ∨ r2 ∨ · · · ∨ rk

Take:
Inv(q) =

n:(q,r)

r

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #31

Invariant Generation via Lazy Abstraction

Assume that the lazy abstraction reachability tree, from (q0, true), is computed
with no error found. Then:

for each node n : (err, r) in the tree, r is empty

if n : (q, r)
op
−→ n′ : (q′, r′) then sp(r, op) =⇒ r′

if n : (q, r) is a covered leaf, then there are internal nodes n1 : (q, r1),

n2 : (q, r2), . . . , nk : (q, rk) such that r =⇒ r1 ∨ r2 ∨ · · · ∨ rk

Take:
Inv(q) =

n:(q,r)

r

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

sp(Inv(q), op) =⇒ Inv(q′)

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

sp(Inv(q), op) =⇒ Inv(q′)

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract

�

post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #32

Proof Generation

rules: standard deduction rules + special rules (equality, arithmetic, etc.)

Proof decomposition:

Goal : Inv(q0) ∧ ¬Inv(err) ∧

q
op
−→q′

�

sp(Inv(q), op) =⇒ Inv(q′)

�

Goal : sp(r, op) =⇒ r1 ∨ r2 ∨ · · · ∨ rk

If r is the region of an internal node, with n : (q, r)
op
−→ m : (q′, rm), reduces

to:

Goal : sp(r, op) =⇒ rm

→ Put together proofs of abstract

�

post computation

The other case is similar

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #33

Proof Generation (cont’d)

Optimized in two ways:

simple proofs of sp(Inv(q), op) =⇒ Inv(q′), where parts of the disjuncts
are matched using the tree

non-uniform predicate abstraction results in fewer proof obligations

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #34

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #35

The BLAST tool

Berkeley Lazy Abstraction Software Verification Tool

http://www-cad.eecs.berkeley.edu/˜tah/blast/

Applies lazy abstraction and proof generation to C programs

handles all syntactic constructs of C (MSVC and GCC extensions)

applied to Linux and Windows NT device drivers

10K lines of Objective Caml

LaBRI - 6 February 2003

http://www-cad.eecs.berkeley.edu/~tah/blast/

Temporal Safety Proofs for Systems Code #36

The BLAST tool (cont’d)

BLAST uses:

CIL compiler infrastructure [NMRW02]
to parse C programs and produce Control FLow Automata

CUDD package [Som98]
to represent regions as BDDs over support predicates

Simplify theorem prover [DNS]
for abstract post computation and inclusion check

Vampyre proof generating theorem [Vam]
for predicate discovery and proof generation

BLAST is modular:

lazy abstraction algorithm implemented by an OCaml functor

can use different abstraction structures

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #36

The BLAST tool (cont’d)

BLAST uses:

CIL compiler infrastructure [NMRW02]
to parse C programs and produce Control FLow Automata

CUDD package [Som98]
to represent regions as BDDs over support predicates

Simplify theorem prover [DNS]
for abstract post computation and inclusion check

Vampyre proof generating theorem [Vam]
for predicate discovery and proof generation

BLAST is modular:

lazy abstraction algorithm implemented by an OCaml functor

can use different abstraction structures

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #37

Checking drivers with BLAST

Linux device drivers

checked locking discipline

safety-monitor automaton with 3 states

found interprocedural bugs in the locking behavior

Windows NT device drivers (from the Windows NT DDK)

I/O Request Packet Completion Specification

sequence of functions to be called

specific return codes

safety-monitor automaton with 22 states

found bugs involving incorrect status codes

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #38

Checking drivers with BLAST (cont’d)

Program Post-processed Predicates BLAST Time Proof Size

LOC Total Active (sec) (bytes)

qpmouse.c 23539 2 2 0.50 175

ide.c 18131 5 5 4.59 253

aha152x.c 17736 2 2 20.93

tlan.c 16506 5 4 428.63 405

cdaudio.c 17798 85 45 1398.62 156787

floppy.c 17386 62 37 2086.35

[fixed] 93 44 395.97 60129

kbfiltr.c 12131 54 40 64.16

[fixed] 37 34 10.00 7619

mouclass.c 17372 57 46 54.46

parport.c 61781 193 50 1980.09 102967

On a 700 MHz Pentium III with 256 MB RAM

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #39

Outline

1. Introduction

2. Predicate Abstraction

3. Lazy Abstraction

4. Proof Generation

5. Experiments

6. Conclusion and Future Work

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #40

Conclusion

Lazy abstraction:

optimizes the three phases of the abstract-check-refine loop

model-checking driven

local refinement

enables the automatic construction of small proof certificates

proof is generated from the error-free symbolic reachability tree

has been implemented in the tool BLAST

ability to analyze real device drivers (60K lines of C)

generates small proofs (less than 150Kb)

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #41

Problems & Future Work

Recursion

BLAST currently uses an explicit (unbounded finite) stack

Acceleration of loops

Application to other classes of systems (hybrid systems, protocols, ...)

Efficient operations on interpreted BDDs

Completeness results

Non predicate based abstraction structures

add abstraction and refinement in symbolic model-checkers?

LaBRI - 6 February 2003

Temporal Safety Proofs for Systems Code #42

References
[BR01] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.

In SPIN 2001: SPIN Workshop, LNCS 2057, pages 103–122. Springer-Verlag, 2001.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In CAV 00: Computer-Aided Verification, LNCS 1855, pages 154–169. Springer-Verlag,
2000.

[DNS] D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover.
http://research.compaq.com/SRC/esc/Simplify.html.

[GS97] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In CAV 97: Computer-aided

Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

[Nec97] G.C. Necula. Proof carrying code. In POPL 97: Principles of Programming Languages, pages
106–119. ACM, 1997.

[NMRW02] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In CC 02: Compiler Construction, LNCS 2304,
pages 213–228. Springer-Verlag, 2002.

[Sai00] H. Saidi. Model checking guided abstraction and analysis. In SAS 00: Static-Analysis Symposium,
pages 377–396. LNCS 1824, Springer-Verlag, 2000.

[Som98] F. Somenzi. Colorado University decision diagram package. 1998.

[Vam] Vampyre. http://www.eecs.berkeley.edu/\simrupak/Vampyre.

LaBRI - 6 February 2003

http://research.compaq.com/SRC/esc/Simplify.html
http://www.eecs.berkeley.edu/$sim $rupak/Vampyre

	
	
	Outline
	Outline
	Motivations
	Ingredients
	Outline
	Model-checking: basics
	Predicate Abstraction cite {Graf:1997:CAV}
	Model-Checking with Predicate Abstraction
	Refinement with Predicate Abstraction
	Abstract-Check-Refine Loop
	Abstract-Check-Refine Loop (cont'd)
	Drawbacks
	Outline
	Our proposal
	Abstract only where required
	Refine only where required
	Abstraction Structure
	Example: Predicate Abstraction
	Lazy Symbolic Reachability Tree
	Lazy Refinement
	Lazy Refinement (cont'd)
	Application to predicate abstraction
	Outcomes of Lazy Abstraction
	Lazy predicate abstraction of C
	Outline
	Proof Carrying Code cite {Necula:1997:POPL}
	Temporal Safety Certification
	Verification Condition for Safety
	Invariant Generation via Lazy Abstraction
	Proof Generation
	Proof Generation (cont'd)
	Outline
	The 	extsc {Blast} tool
	The 	extsc {Blast} tool (cont'd)
	Checking drivers with 	extsc {Blast}
	Checking drivers with 	extsc {Blast} (cont'd)
	Outline
	Conclusion
	Problems & Future Work
	

