Safety Verification of Communicating One-Counter Machines

A. Heußner T. Le Gall G. Sutre Univ. of Bamberg CEA Saclay LaBRI Bordeaux

FSTTCS 2012, Hyderabad

- Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem
- ⇔ Main Theorem: Proof of "Only If" Direction
- S Main Theorem: Proof of "If" Direction
- Son-going/Future work

- Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem
- ⇔ Main Theorem: Proof of "Only If" Direction
- Shain Theorem: Proof of "If" Direction
- Son-going/Future work

Example Sliding Window Protocol

- \Rightarrow One local counter for each process (x, y)
- ➡ Asynchronous communication via perfect channels (c, d)
 - send the counter's value
 - receive and test/overwrite the counter
- Sources of infinity: messages, channel length, local counters

Safety Verification of Example

Check that err is not reachable

An Erroneous Execution

Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem

⇔ Main Theorem: Proof of "Only If" Direction

Shain Theorem: Proof of "If" Direction

Son-going/Future work

Communication Topologies

Communication types

- strong : standard CFSM-style communication (==)
- \circ weak : counter lost by communication (:=)

→ Definition:
A topology is
$$\mathcal{T} = \langle P, C, \text{src}, \text{dst} \rangle$$
 where
 $\Rightarrow P$: finite set of processes
 $\Rightarrow C$: finite set of channels
 $\Rightarrow \text{ src}, \text{dst} : C \to P \times \{\bullet, \circ\}$

Communicating One-counter Machines

- Definition:

A communicating one-counter machine is $\langle S, I, F, A, \Delta \rangle$ where

- \Rightarrow S : finite set of states
- \Rightarrow *I*, *F* \subseteq *S* : initial and final states
- \Rightarrow A : finite set of actions
- $\Rightarrow \Delta \subseteq S \times A \times S : \text{ finite set of transition rules}$

— Definition: ——

A system of comm. one-counter machines is $\langle \mathcal{T}, (\mathcal{M}^p)_{p \in P} \rangle$ where

 $\vartriangleleft \mathcal{T}: \mathsf{topology}$

SC1CM Semantics: Configurations

 $\begin{array}{l} \hline \quad \text{Recall:} \\ \text{A SC1CM is } \langle \mathcal{T}, (\mathcal{M}^p)_{p \in P} \rangle \text{ where } \mathcal{M}^p = \langle S^p, I^p, F^p, A^p, \Delta^p \rangle \end{array}$

SC1CM Semantics: Transitions

A SC1CM is
$$\langle \mathcal{T}, (\mathcal{M}^p)_{p \in P} \rangle$$
 where $\mathcal{M}^p = \langle S^p, I^p, F^p, A^p, \Delta^p \rangle$

The transition relation $(s, x, w) \xrightarrow{a} (s', x', w')$ is defined by

r exactly one process moves

Recall:

- ➡ counter actions behave as expected
- S communication actions depend on the endpoint's type

•
$$\succ^{c}$$
 $c! \equiv c!x$ \rightarrow^{c} $c! \equiv c!x; x := any$
 \succ^{c} $c? \equiv c?x$ \rightarrow^{c} $c? \equiv x := any; c?x$

Example Sliding Window Protocol

On Presburger Tests versus Zero Tests

- Idea:
Simulation of test(
$$\varphi$$
) by zero-tests in absence of communication
⇔ $\llbracket \varphi \rrbracket = A \cup (B + m \mathbb{N})$ where $A, B \subseteq \mathbb{N}$ finite, and $m \in \mathbb{N}$.
⇔ Maintain (x mod m) in the state

Does not work when the initial counter value is unknown (c? for $\rightarrowtail \circ$)

$$\bigcirc \underbrace{\texttt{test}(\exists k \cdot x = 2k)} \bigcirc$$

Idea:
Simulation of test(φ) by communication to a slave process
⇒ delegate the test with a send over channel •>>>
⇒ the slave checks that its input messages satisfy φ

Parametrized Reachability Problem

— Definition:

Given a topology \mathcal{T} , the decision problem $\operatorname{Rp-Sc1CM}(\mathcal{T})$ is

Input: a system of communicating one-counter machines ${\cal S}$ with topology ${\cal T}$

Output: whether there exists a full run in $\llbracket S \rrbracket$

A run
$$(s, x, w) \xrightarrow{*} (s', x', w')$$
 is full when $\begin{cases} (s, x, w) & \text{is initial} \\ (s', x', w') & \text{is final} \end{cases}$

— Goal: —

Characterize the topologies \mathcal{T} where RP-SC1CM(\mathcal{T}) is decidable.

Note: \circ can be simulated by \bullet

Main Result

- S cycle-free: no simple undirected cycle
- Shunt-free: no simple undirected shunt

Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem

⇔ Main Theorem: Proof of "Only If" Direction

➡ Main Theorem: Proof of "If" Direction

Son-going/Future work

Cycle-freeness of Decidable Topologies

– Idea: -

Simulation of communicating finite-state machines (CFSM)

Message alphabet: $M \subseteq \mathbb{N}$ finite

Shunt-freeness of Decidable Topologies

– Idea: – Simulation of two-counters Minsky machines

- r p and q maintain, each, one counter and ignore the other
- r checks that they take the same rules of the Minsky machine
- \Rightarrow p and q need to send a message $\delta \in \Delta$ without losing their counter!

Shunt-freeness of Decidable Topologies

– Idea: – Simulation of two-counters Minsky machines

- r⇒ p and q maintain, each, one counter and ignore the other
- r checks that they take the same rules of the Minsky machine
- \Rightarrow p and q need to send a message $\delta \in \Delta$ without losing their counter!

— Idea: — Multiply by $|\Delta|$ the counters of p and q

- \Rightarrow p and q send $x + \delta$
- r > r receives and computes $\delta = x \mod |\Delta|$

Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem

⇔ Main Theorem: Proof of "Only If" Direction

⇒ Main Theorem: Proof of "If" Direction

Son-going/Future work

Cycle-free & Shunt-free Topologies

Form of topologies that are weakly-connected, cycle-free and shunt-free

- $rac{l}{\sim}$ Two "roots" $r_1 \rightarrow r_2$
- $\Rightarrow \text{ Every simple undirected path from } \{\mathbf{r}_1, \mathbf{r}_2\} \text{ to } p \notin \{\mathbf{r}_1, \mathbf{r}_2\} \text{ ends}$ with $\cdots \iff p$

Cycle-free & Shunt-free Topologies

Form of topologies that are weakly-connected, cycle-free and shunt-free

- $rac{1}{2}$ Two "roots" $r_1
 ightarrow r_2$
- $\Rightarrow \text{ Every simple undirected path from } \{\mathbf{r}_1, \mathbf{r}_2\} \text{ to } p \notin \{\mathbf{r}_1, \mathbf{r}_2\} \text{ ends}$ with $\cdots \bullet \longleftrightarrow \circ p$

[Recall: \circ can be simulated by \bullet]

Merging Leaf Processes

— Idea: — Merge leaf process q into p by summarizing q's behavior

- r Communications between p and q become synchronizations c ! \cdot c ?
- r > States of **p** become pairs (s^{p}, s^{q})
- $\texttt{L} \ \texttt{Rules} \ (s^\texttt{p}, c ?, t^\texttt{p}) \ \texttt{of} \ \texttt{p} \ \texttt{become} \ ((s^\texttt{p}, s^\texttt{q}), \texttt{test}(\varphi), (t^\texttt{p}, t^\texttt{q})) \ \texttt{where} \$

$$\varphi = \exists u \exists z \cdot (u, c \, !, t^{q}) \in \Delta^{q} \land (s^{q}, z) \xrightarrow{*}_{q} (u, x)$$

Solution Use Presburger-definability of *post** for one-counter machines

Case of Two Processes

$$P \xrightarrow{\mathsf{C}} \P$$

Intersect reachability relations of p and q between synchronizations

$$\cdots \xrightarrow{c!c?} \underbrace{(s,x) \xrightarrow{*} (t,y)}_{\chi_{s,t}} \xrightarrow{c!c?} \cdots$$

$$\chi_{\boldsymbol{s},\boldsymbol{t}}(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{s}^{\mathtt{p}},\boldsymbol{x}) \xrightarrow{*}_{\mathtt{p}} (\boldsymbol{t}^{\mathtt{p}},\boldsymbol{y}) \land (\boldsymbol{s}^{\mathtt{q}},\boldsymbol{x}) \xrightarrow{*}_{\mathtt{q}} (\boldsymbol{t}^{\mathtt{q}},\boldsymbol{y}) \in \mathcal{P}_{2}$$

Issue:

Reachability is **undecidable** for the class of one-counter machines with Presburger-definable updates

One-Counter Reachability Relations

Fix two distinguished Presburger variables x and y

The class of one-counter Presburger predicates is generated by

 $\psi \quad ::= \quad \varphi(\mathtt{x}) \mid \varphi(\mathtt{y}) \mid \varphi(\mathtt{x} - \mathtt{y}) \mid \varphi(\mathtt{y} - \mathtt{x}) \mid \psi \land \psi \mid \psi \lor \psi \mid \mathtt{tt} \mid \mathtt{ff}$

where φ ranges over unary Presburger predicates

Theorem: For every binary relation $R \subseteq \mathbb{N} \times \mathbb{N}$, the two following assertions are equivalent: *i*) $R = \{(x, y) \mid (s, x) \xrightarrow{*} (t, y)\}$ for some one-counter machine *ii*) $R = \llbracket \psi \rrbracket$ for some one-counter Presburger predicate ψ

 $\not\sim \chi_{s,t}(x,y)$ can be translated into a one-counter machine

- Systems of Communicating One-Counter Machines and their Topology Parametrized Reachability Problem
- ⇔ Main Theorem: Proof of "Only If" Direction
- S Main Theorem: Proof of "If" Direction

Son-going/Future work

Decidability of Eager Reachability

— Definition:

A full run ρ is eager if matching (c!, c?) pairs are consecutive in ρ

If ${\mathcal T}$ is cycle-free,

- Solution Solution
- $r \gg \operatorname{Rp-Sc1CM-EAGER}(\mathcal{T})$ is decidable iff \mathcal{T} is shunt-free

— Proposition: -

If \mathcal{T} is strongly connected, then RP-Sc1CM-EAGER(\mathcal{T}) is decidable iff \mathcal{T} contains at most two processes

Open: full characterization of decidable topologies (for eager reachability)

Complexity of $\operatorname{Rp-Sc1CM}$ for decidable topologies

 $\vartriangleleft \mathsf{At} \mathsf{ least} \mathsf{ PSPACE-hard}$

Lossy channels

 \Rightarrow Undecidable for

 $using \ acknowledgments$

Extension from counters to stacks

Sconjecture: same characterization (cycle-free and shunt-free)