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Example Sliding Window Protocol

send(c, x) X++ y++ y == recv(c)

Ca ]

x ;= recv(d) send(d,y)

> One local counter for each process (x, y)

> Asynchronous communication via perfect channels (c, d)
e send the counter’s value
e receive and test/overwrite the counter

> Sources of infinity: messages, channel length, local counters



Safety Verification of Example

Goal:
’(Check absence of unspecified receptions due to y being too large

Lec >

send(c, x) X++

x 1= recv(d)

Goal:
’(Check that err is not reachable




An Erroneous Execution

send(c, x) x++

x 1= recv(d)

send(c, x) X++ send(c, x) x := recv(d) send(c, x)

N

y == recv(c) send(d, y) y == recv(c) - y == recv(c)



Agenda

> Example: Sliding Window Protocol

> Main Theorem: Proof of “Only If" Direction

> Main Theorem: Proof of “If" Direction

> On-going/Future work



Communication Topologies

Communication types
e strong : standard CFSM-style communication (==)

o weak : counter lost by communication (:=)

— Definition:
A topology is T = (P, C,src, dst) where
> P : finite set of processes
> C : finite set of channels
> src,dst: C — P x {e,0}

C
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Communicating One-counter Machines

— Definition:
A communicating one-counter machine is (S, /, F, A, A) where
> S : finite set of states
> [,F C S :initial and final states
> A : finite set of actions
> A CS xAxS: finite set of transition rules

Actions :  add(k) | test(y) | ¢! | ¢c? (ke€Z,peP,ceC)

Definition:
A system of comm. one-counter machines is (T, (MP)pcp) where

> T : topology

> MP : communicating one-counter machine




SC1CM Semantics: Configurations

Recall:
’7\ SCICM is (T, (MP),cp) where MP = (SP_[P_FP AP, AP)

HpEP SsP NP (N*)C
W w w
A configuration is ( s , X , w )

initial &L PP
) def AN x=0 A w=e
final < sP e FP



SC1CM Semantics: Transitions

Recall:
’7\ SCICM is (T, (MP),cp) where MP = (SP_[P_FP AP, AP)

The transition relation (s, x, w) —= (s’, x’, w’) is defined by

> exactly one process moves
> counter actions behave as expected

> communication actions depend on the endpoint’s type

Cc Cc
o— ¢! = clx o— ¢!

clx; x:=any

~se c? = c?x 0 ¢c? = x:=any; clx



Example Sliding Window Protocol

o e
cl add(l) add(l) c?
Ce—m " __«©®

da? dl



On Presburger Tests versus Zero Tests

Idea:
Simulation of test(y) by zero-tests in absence of communication
2 [¢] = AU (B + mN) where A, B C N finite, and m € N.

> Maintain (x mod m) in the state

Does not work when the initial counter value is unknown (c ? for o)

test(Ik - x = 2k)

O O

Idea:
Simulation of test(y) by communication to a slave process
> delegate the test with a send over channel e>—o

> the slave checks that its input messages satisfy ¢




Parametrized Reachability Problem

— Definition:

Given a topology 7, the decision problem Rp-Sclcm(T) is

Input: a system of communicating one-counter machines S
with topology T

Output: whether there exists a full run in [S]

s, x,w) is initial
A run (5, %, w) =+ (', ', w) is full when ¢ (520) BT
(s, x",w’) is final

Goal:
’(Characterize the topologies 7~ where Rp-Sc1cM(T) is decidable.

Note: o can be simulated by e



Main Result

Simple Undirected Cycle Simple Undirected Shunt
[
/ \ Je— - «[]
O] 0 ] X
\’D/ n n

Theorem:
F{P—SCICM(T) is decidable iff 7 is cycle-free and shunt-free

>1

> cycle-free: no simple undirected cycle

> shunt-free: no simple undirected shunt
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Cycle-freeness of Decidable Topologies

Idea
Fimulation of communicating finite-state machines (CFSM)

Message alphabet: M C N finite

add(-1)

test(x =0) add(m) cl

O—OW@ N O0—0

add(—1),add(1)

? add(—m) test(x =0)

C?m @Cm M\




Shunt-freeness of Decidable Topologies

EQ)%OO(L(QE

Idea:
Fimulation of two-counters Minsky machines

> p and q maintain, each, one counter and ignore the other
> r checks that they take the same rules of the Minsky machine
> p and q need to send a message 6 € A without losing their counter!



Shunt-freeness of Decidable Topologies
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Idea:
Fimulation of two-counters Minsky machines

> p and q maintain, each, one counter and ignore the other
> r checks that they take the same rules of the Minsky machine
> p and q need to send a message 6 € A without losing their counter!

Idea:
’(Multiply by |A| the counters of p and q

> pandqgsend x+§
> r receives and computes § = x mod |A|
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Cycle-free & Shunt-free Topologies

Form of topologies that are weakly-connected, cycle-free and shunt-free

>—)r2
ﬁ ﬁ ﬁ ﬁ«—«ﬂ

o Two “roots’ ry > 1o

> Every simple undirected path from {r;i,r2} to p & {r1,r2} ends
with -+ «—op



Cycle-free & Shunt-free Topologies

Form of topologies that are weakly-connected, cycle-free and shunt-free
!”—"H
ﬁ ﬁ ﬁ ﬁ«—«ﬂ

> Two “roots” ry e>—er,

> Every simple undirected path from {r;i,r2} to p &€ {r1,r2} ends
with - - e<—0op

[ Recall: o can be simulated by e ]



Merging Leaf Processes

-
e

Idea:
’(Merge leaf process q into p by summarizing q's behavior

> Schedule q last : g moves only when p attempts to receive from ¢
> Communications between p and q become synchronizations ¢! - c?
> States of p become pairs (sP, s?)
> Rules (sP, c?,tP) of p become ((sP,s%), test(y), (tP, t?)) where

¢ = FuIz-(u,c!,t?) € AT A (5% 2) —q (u,x)

> Use Presburger-definability of post* for one-counter machines



Case of Two Processes

Idea:
Fntersect reachability relations of p and q between synchronizations

cle?

S (s x) = () S
L

Xs,t

Xs,t(xay) = (SP,X) i>F' (tpvy) A (qux) th (tqv.y) € ?2

Issue:

Reachability is undecidable for the class of one-counter machines
with Presburger-definable updates




One-Counter Reachability Relations

Fix two distinguished Presburger variables x and y

The class of one-counter Presburger predicates is generated by
vou= px) [ e(y) [e(x—y) ey —x) [¥AY [PV |tt | £E

where ¢ ranges over unary Presburger predicates

—— Theorem:
For every binary relation R C N x N, the two following assertions

are equivalent:
i) R=1{(x,y) | (s,x) = (t,y)} for some one-counter machine
i) R = [¢] for some one-counter Presburger predicate 1)

© Xs,t(X,y) can be translated into a one-counter machine
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Decidability of Eager Reachability

Definition:
FA full run p is eager if matching (c!, ¢ ?) pairs are consecutive in p

If T is cycle-free,
> Full runs can be re-ordered into eager ones
> RP-Sc1cM-EAGER(T) is decidable iff 7 is shunt-free

Proposition:

If T is strongly connected, then RP-Sc1cM-EAGER(T) is decid-
able iff 7 contains at most two processes

Open: full characterization of decidable topologies (for eager reachability)



Perspectives

Complexity of RP-SclcM for decidable topologies
> At least PSPACE-hard

Lossy channels
. e—0
> Undecidable for [[]] T

© .|:| using acknowledgments
O0——0O

Extension from counters to stacks

> Conjecture: same characterization (cycle-free and shunt-free)



