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Example Sliding Window Protocol

send(c, x) x++

x := recv(d)

y == recv(c)y++

send(d, y)

c

d

ê One local counter for each process (x, y)
ê Asynchronous communication via perfect channels (c, d)

• send the counter’s value
• receive and test/overwrite the counter

ê Sources of infinity: messages, channel length, local counters



Safety Verification of Example

Check absence of unspecified receptions due to y being too large
Goal:

send(c, x) x++

x := recv(d)

y == recv(c)y++

send(d, y)
err

y--
y--

y == recv(c)

c

d

Check that err is not reachable
Goal:



An Erroneous Execution

send(c, x) x++

x := recv(d)

y == recv(c)y++

send(d, y)
err

y--
y--

y == recv(c)

c

d

send(c, x) x++ send(c, x) x++ x := recv(d) send(c, x)

y == recv(c) y++ send(d, y) y == recv(c) y++ y-- y == recv(c)

0 1 1 1



Agenda

ê Example: Sliding Window Protocol

ê Systems of Communicating One-Counter Machines and their
Topology Parametrized Reachability Problem

ê Main Theorem: Proof of “Only If” Direction

ê Main Theorem: Proof of “If” Direction

ê On-going/Future work



Communication Topologies

Communication types
• strong : standard CFSM-style communication (==)
◦ weak : counter lost by communication (:=)

A topology is T = 〈P,C , src, dst〉 where
ê P : finite set of processes
ê C : finite set of channels
ê src, dst : C → P × {•, ◦}

Definition:

p q

c

d



Communicating One-counter Machines

A communicating one-counter machine is 〈S , I ,F ,A,∆〉 where
ê S : finite set of states
ê I ,F ⊆ S : initial and final states
ê A : finite set of actions
ê ∆ ⊆ S × A× S : finite set of transition rules

Definition:

Actions : add(k) | test(ϕ) | c ! | c ? (k ∈ Z, ϕ ∈ P1, c ∈ C )

A system of comm. one-counter machines is 〈T , (Mp)p∈P〉 where
ê T : topology
ê Mp : communicating one-counter machine

Definition:



SC1CM Semantics: Configurations

A SC1CM is 〈T , (Mp)p∈P〉 whereMp = 〈Sp, I p,F p,Ap,∆p〉
Recall:

A configuration is ( s

∈

∏
p∈P Sp

, x

∈

NP

, w

∈

(N∗)C

)

initial def⇐⇒ sp ∈ I p
∧ x = 0 ∧ w = ε

final def⇐⇒ sp ∈ F p



SC1CM Semantics: Transitions

A SC1CM is 〈T , (Mp)p∈P〉 whereMp = 〈Sp, I p,F p,Ap,∆p〉
Recall:

The transition relation (s, x ,w)
a−−→ (s′, x ′,w ′) is defined by

ê exactly one process moves
ê counter actions behave as expected
ê communication actions depend on the endpoint’s type

• c c ! ≡ c ! x
c • c ? ≡ c ? x

◦ c c ! ≡ c ! x ; x := any
c ◦ c ? ≡ x := any ; c ? x



Example Sliding Window Protocol

c ! add(1)

d ?

c ?add(1)

d !

d

c



On Presburger Tests versus Zero Tests

Simulation of test(ϕ) by zero-tests in absence of communication
ê JϕK = A ∪ (B + mN) where A,B ⊆ N finite, and m ∈ N.
ê Maintain (x modm) in the state

Idea:

Does not work when the initial counter value is unknown (c ? for c ◦)

test(∃k · x = 2k)

Simulation of test(ϕ) by communication to a slave process
ê delegate the test with a send over channel • ◦
ê the slave checks that its input messages satisfy ϕ

Idea:



Parametrized Reachability Problem

Given a topology T , the decision problem Rp-Sc1cm(T ) is

Input: a system of communicating one-counter machines S
with topology T

Output: whether there exists a full run in JSK

Definition:

A run (s, x ,w)
∗−−→ (s′, x ′,w ′) is full when

{
(s, x ,w) is initial

(s′, x ′,w ′) is final

Characterize the topologies T where Rp-Sc1cm(T ) is decidable.
Goal:

Note: ◦ can be simulated by •



Main Result

Simple Undirected Cycle Simple Undirected Shunt

≥ 1· · ·

Rp-Sc1cm(T ) is decidable iff T is cycle-free and shunt-free
Theorem:

ê cycle-free: no simple undirected cycle
ê shunt-free: no simple undirected shunt
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Cycle-freeness of Decidable Topologies

Simulation of communicating finite-state machines (CFSM)
Idea:

Message alphabet: M ⊆ N finite

c ! m

add(−1)

test(x = 0) add(m) c !

c ? m

add(−1), add(1)

c ? add(−m) test(x = 0)



Shunt-freeness of Decidable Topologies

p r qc d

Simulation of two-counters Minsky machines
Idea:

ê p and q maintain, each, one counter and ignore the other
ê r checks that they take the same rules of the Minsky machine
ê p and q need to send a message δ ∈ ∆ without losing their counter!

Multiply by |∆| the counters of p and q
Idea:

ê p and q send x + δ

ê r receives and computes δ = x mod |∆|
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Cycle-free & Shunt-free Topologies

Form of topologies that are weakly-connected, cycle-free and shunt-free

r1 r2

ê Two “roots” r1

• •

r2
ê Every simple undirected path from {r1, r2} to p 6∈ {r1, r2} ends

with · · ·

•

◦ p

[ Recall: ◦ can be simulated by • ]
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Merging Leaf Processes

p qc
. . .

. . .

. . .

Merge leaf process q into p by summarizing q’s behavior
Idea:

ê Schedule q last : q moves only when p attempts to receive from c
ê Communications between p and q become synchronizations c ! · c ?

ê States of p become pairs (sp, sq)

ê Rules (sp, c ?, tp) of p become ((sp, sq), test(ϕ), (tp, tq)) where

ϕ = ∃u∃z · (u, c !, tq) ∈ ∆q ∧ (sq, z)
∗−−→q (u, x)

ê Use Presburger-definability of post∗ for one-counter machines



Case of Two Processes

p qc

Intersect reachability relations of p and q between synchronizations
Idea:

· · · c ! c ?−−−→ (s, x)
∗−−→ (t, y)︸ ︷︷ ︸
χs,t

c ! c ?−−−→ · · ·

χs,t(x , y) = (sp, x)
∗−−→p (tp, y) ∧ (sq, x)

∗−−→q (tq, y) ∈ P2

Reachability is undecidable for the class of one-counter machines
with Presburger-definable updates

Issue:



One-Counter Reachability Relations

Fix two distinguished Presburger variables x and y

The class of one-counter Presburger predicates is generated by

ψ ::= ϕ(x) | ϕ(y) | ϕ(x− y) | ϕ(y− x) | ψ ∧ ψ | ψ ∨ ψ | tt | ff

where ϕ ranges over unary Presburger predicates

For every binary relation R ⊆ N × N, the two following assertions
are equivalent:
i) R = {(x , y) | (s, x)

∗−−→ (t, y)} for some one-counter machine
ii) R = JψK for some one-counter Presburger predicate ψ

Theorem:

ê χs,t(x , y) can be translated into a one-counter machine
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Decidability of Eager Reachability

A full run ρ is eager if matching (c !, c ?) pairs are consecutive in ρ
Definition:

If T is cycle-free,
ê Full runs can be re-ordered into eager ones
ê Rp-Sc1cm-Eager(T ) is decidable iff T is shunt-free

If T is strongly connected, then Rp-Sc1cm-Eager(T ) is decid-
able iff T contains at most two processes

Proposition:

Open: full characterization of decidable topologies (for eager reachability)



Perspectives

Complexity of Rp-Sc1cm for decidable topologies
ê At least PSPACE-hard

Lossy channels
ê Undecidable for using acknowledgments

Extension from counters to stacks
ê Conjecture: same characterization (cycle-free and shunt-free)


