
Reachability Analysis of
Communicating Pushdown Systems

Alexander Heußner, Jérôme Leroux, Anca Muscholl,
Grégoire Sutre

LaBRI, CNRS & Université de Bordeaux, France

Slides by Alexander Heußner

Verification of Concurrent Software

Collection of processes
finite-state systems
pushdown systems
counter systems
. . .

that interact via
shared variables
locks /monitors
fifo channels
. . .

Verification of safety properties (reachability problem)

2 / 25

Communicating Finite-State Machines

Each process is a finite-state system

Processes communicate asynchronously via channels which are
first-in first-out,
point-to-point,
reliable (no loss, no insertion !),
and unbounded.

3 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d
ch. 1

εoococococc

ch. 2

εdd

two finite-state processes
two fifo channels
set of configurations: Qclient × Qserver ×M∗ ×M∗

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1

ε

oococococc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1ε

o

ococococc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o−−→

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εo

o

cocococc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o−−→〈(1, 0), (o, ε)〉

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoo

co

cococc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o−−→〈(1, 0), (o, ε)〉 !c−−→

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εooco

co

cocc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o−−→〈(1, 0), (o, ε)〉 !c−−→〈(0, 0), (oc, ε)〉

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoococo

co

cc

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc, ε)〉 ?o−−→

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoocococo

c

c

ch. 2

ε

dd

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc, ε)〉 ?o−−→〈(0, 1), (c , ε)〉

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoocococo

c

c

ch. 2ε

d

d

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc, ε)〉 ?o−−→〈(0, 1), (c , ε)〉 !d−−→

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoocococo

c

c

ch. 2εd

d

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc , ε)〉 ?o−−→〈(0, 1), (c , ε)〉 !d−−→〈(0, 0), (c , d)〉

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoococococ

c

ch. 2εd

d

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc , ε)〉 ?o−−→〈(0, 1), (c , ε)〉 !d−−→〈(0, 0), (c , d)〉

 (local) deadlock
unspecified reception

4 / 25

Communicating Finite-State Machines
Example: Connection / Disconnection Protocol

0

1

!o !c ?d

Client Server0

1

?o ?c !d

ch. 1εoococococ

c

ch. 2εd

d

〈(0, 0), (ε, ε)〉 !o !c−−−→〈(0, 0), (oc , ε)〉 ?o−−→〈(0, 1), (c , ε)〉 !d−−→〈(0, 0), (c , d)〉

let Init = {(0, 0), (ε, ε)}

let Bad = Q1 × {0} × c ·M∗ ×M∗

verify safety: is Bad not reachable from Init ?
4 / 25

Communicating Finite-State Machines
Reachability Analysis

Operational semantics: infinite-state transition system

Turing-powerful [Brand, Zafiropulo: J. ACM’83])
even for 1 finite-state process and 1 channel

Some approaches:
symbolic reachability analysis with loop acceleration

no termination guarantee
lossy channels (well-structured transition system)

false positives
abstraction refinement (CEGAR)

tradeoff between termination guarantee and false positives

5 / 25

CPS Communicating Pushdown Systems

model distributed programs consisting of single local processes
with unbounded recursion and asynchronous communication
based on TCP (point-to-point, fifo, reliable, unbounded)
e.g., implemented on top of Berkeley Sockets API

ê communication architecture:

ê local pushdown automata synchronizing over
ê point-to-point, reliable, unbounded fifo channels

Communicating
Pushdown
System

6 / 25

Question

Investigate the border between decidability and undecida-
bility of the (control-state) reachability question for CPS

ê undecidability arises from both
pushdown stacks (emptiness of intersection of CFL,. . .)

unbounded communication channels
(communicating finite state machines are Turing powerful)

ê need restrictions on
pushdown operations, synchronization operations,
communication architecture, the interplay of these three
the problem (e.g., bounded contexts)

7 / 25

Known Results for CPS

[LaTorre, Madhusudan, Parlato: TACAS’08]

restriction channels are well-queueing:
can only receive messages when the local stack is empty

results Control state reachability over well-queueing architec-
tures is decidable iff the architecture is a root-to-leaf
directed tree. Complexity: 2ExpTime

Bounded context control-state reachability over
well-queueing architectures is decidable in 2ExpTime.

p
q

s r

t
u

v

8 / 25

Our Approach

ansatz focus the undecidability due to pushdown stacks
ê restrict communication by notion of eagerness

A run of a CPS is eager if each receive action
immediately follows its matching send.

A CPS is eager if each configuration can be
reached by an eager run.

remark ê finite state communicating processes have decidable
reachability on eager runs

ê any CPS is eager when the architecture is an
undirected forest

9 / 25

Our Approach

ansatz add dual notion to “well-queueing”

receive-restricted channels
can only receive

when stack is empty
(=well-queueing)

send-restricted channels
can only send when

stack is empty

ê restrict type of channels allowed for CPS to
either send-restricted, receive-restricted, or
both send-&receive-restricted

undecidable
architecture

p

q

10 / 25

Our Approach

ansatz add dual notion to “well-queueing”

receive-restricted channels
can only receive

when stack is empty
(=well-queueing)

send-restricted channels
can only send when

stack is empty

ê restrict type of channels allowed for CPS to
either send-restricted, receive-restricted, or
both send-&receive-restricted

undecidable
architecture

p

q

10 / 25

Decidable Architectures

Mutex

Bounded Phase Reachability

Decidability wrt. Architectures

ê undecidable architectures:

r

p q

r

p q

r

p q

ê What about ?

q1

q2

q3

q4
12 / 25

Decidable Architectures

Definition
An architecture is confluent if it contains a pair of distinct processes
p, q, together with a simple, unoriented path p, r1, . . . , rk , q between
p and q, such that

p r1 . . . rk q

Result
Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

13 / 25

(proof)

Result
Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

proof idea: confluent case

p r1 . . . rk q

Whatever the direction of the channels, we can synchronize two
pushdown systems

Remark: Still undecidable with visibly pushdown systems

14 / 25

(proof)

Result
Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

proof idea: non-confluent case
Each eager run can be re-ordered into an eager run without nested
context switches.
→ the stacks can be concatenated into a single stack

Construct a “product” pushdown system (single stack) that simulates
eager runs without nested context switches.

exponentially many control states

Lower bound: intersection of one pushdown with n finite automata

15 / 25

Decidable Architectures

Mutex

Bounded Phase Reachability

Mutex
(A Semantic Restriction on Cycles)

A CPS is mutex if for all reachable configurations (local control-
states & content of channels) at most one channel per simple cycle
in the architecture is non-empty.

p0

p1

p2

p3p4

ê polyforest architectures are mutex

ê for two processes this equals the
half-duplex property of [Cécé, Finkel:
CAV’97]

Result
Given a CPS that is mutex wrt. a given architecture then each of its
runs can be reordered into an equivalent eager run.

17 / 25

proof

Result
Given a CPS that is mutex wrt. a given architecture then each of its
runs can be reordered into an equivalent eager run.

proof idea:
can always schedule a “minimal” communication event first
if not, there is a cyclic dependency between all pending events

p1 . . . pi pi+1 . . . pk p1 . . . pi pi+1 . . . pk p . . . pi pi+1 . . . pk

but this is prohibited by mutex !

18 / 25

Application to Master-Worker Protocols

p3

p5 p6

p1 p2

p4

p7

p8

“master-worker” distributed computing
hierarchical network
can receive tasks only when local stack is empty,
can send result when local calculation finished (empty stack)

note: mutex
& non-confluent

19 / 25

Decidable Architectures

Mutex

Bounded Phase Reachability

ê basic idea:
under-approximation of concurrent processes by bounding the
number of switches between processes [Qadeer, Rehof:
TACAS’05]

Phases

A phase of a run of a CPS is defined as:

a contiguous subrun
where all actions are of a unique process, say p ∈ P
and p only communicates over channels either like

p∗ ...

or like

p ∗...

well-queueing contexts
of [LMP’08]; “m-phase”;

dual notion; “n-phase”;

21 / 25

Bounded Phase Reachability

Result
Given a CPS and an integer K , the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

proof idea: reduce k-bounded question to the (k − 1)-bounded one

assert: only m-phases and empty pushdowns at phase boundaries
? test whether � is reachable from H in ≤ 5 phases on the CPS

p

q

r
ê decompose run:

recv(m) recv(n)
H

p
♠

r
�

(r •−◦) p
N

(r •−◦) q
F

(p •−◦) q
�

pd
height

exec

22 / 25

Bounded Phase Reachability

Result
Given a CPS and an integer K , the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

proof idea: reduce k-bounded question to the (k − 1)-bounded one

assert: only m-phases and empty pushdowns at phase boundaries
? test whether � is reachable from H in ≤ 5 phases on the CPS

p

q

r
ê decompose run:

recv(m) recv(n)
H

p
♠

r
�

(r •−◦) p
N

(r •−◦) q
F

(p •−◦) q
�

pd
height

exec

22 / 25

Bounded Phase Reachability

Result
Given a CPS and an integer K , the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

proof idea: reduce k-bounded question to the (k − 1)-bounded one

assert: only m-phases and empty pushdowns at phase boundaries
? test whether � is reachable from H in ≤ 5 phases on the CPS

p

q

r
ê decompose run:

recv(m) recv(n)
H

p
♠

r
�

(r •−◦) p
N

(r •−◦) q
F

(p •−◦) q
�

pd
height

exec

22 / 25

proof (continued)

ê guess intermediate control states ♠, �, N, F
ê guess for each phase its process & input channel

recv(m) recv(n)

summary summary

H
p

♠
r

�
(r •−◦) p

N
(r •−◦) q

F

(p •−◦) q
�

pd
height

exec

ê focus last phase
ê internalize sends of last phase (never received)
ê receive actions only possible when stack is empty

ê calculate summaries for subruns with non-empty pushdown
ê generate finite automaton representation for last phase
ê test whether �|p is reachable from F|p

ê synchronize phases 1..k − 1 with this automaton
ê control structure grows in worst case double exponentially

23 / 25

proof (continued)

ê guess intermediate control states ♠, �, N, F
ê guess for each phase its process & input channel

recv(m) recv(n)

summary summary

H
p

♠
r

�
(r •−◦) p

N
(r •−◦) q

F

(p •−◦) q
�

pd
height

exec

ê focus last phase
ê internalize sends of last phase (never received)
ê receive actions only possible when stack is empty

ê calculate summaries for subruns with non-empty pushdown
ê generate finite automaton representation for last phase
ê test whether �|p is reachable from F|p

ê synchronize phases 1..k − 1 with this automaton
ê control structure grows in worst case double exponentially

23 / 25

proof (continued)

ê guess intermediate control states ♠, �, N, F
ê guess for each phase its process & input channel

recv(m) recv(n)

summary summary

H
p

♠
r

�
(r •−◦) p

N
(r •−◦) q

F

(p •−◦) q

�

pd
height

exec

ê focus last phase
ê internalize sends of last phase (never received)
ê receive actions only possible when stack is empty

ê calculate summaries for subruns with non-empty pushdown
ê generate finite automaton representation for last phase
ê test whether �|p is reachable from F|p

ê synchronize phases 1..k − 1 with this automaton
ê control structure grows in worst case double exponentially

23 / 25

proof (continued)

ê guess intermediate control states ♠, �, N, F
ê guess for each phase its process & input channel

recv(m) recv(n)

summary summary

H
p

♠
r

�
(r •−◦) p

N
(r •−◦) q

F

(p •−◦) q

�

pd
height

exec

ê focus last phase
ê internalize sends of last phase (never received)
ê receive actions only possible when stack is empty

ê calculate summaries for subruns with non-empty pushdown
ê generate finite automaton representation for last phase
ê test whether �|p is reachable from F|p

ê synchronize phases 1..k − 1 with this automaton
ê control structure grows in worst case double exponentially

23 / 25

Résumé

control-state reachability

bounded phase control-state reachability

[LMP’08] CPS

well-queueing (=receive-restr.) receive-, send-,and
send&receive-restricted

directed forests non-confluent architectures
with cycles (+mutex)

(all runs implicitly eager) eagerruns

2ExpTime ExpTime-complete

w-q phase (=m-phase)

2ExpTime 2ExpTime-complete

dual

extend

ameliorate

dual

direct proof

m- and n-phases

24 / 25

Perspectives

prototypical implementation
need additional heuristics
“sub-exponential” sub-models

verify other properties: liveness, . . .

hierarchical models
local models are multiple threads
that synchronize by locks, shared variables, etc.
share connections between local threads

messages with data (integers)
local processes modeled as counter systems

l1 l2 l3 l4

v

spawnspawn

25 / 25

