Reachability Analysis of

Communicating Pushdown Systems

Alexander HeuRner, Jérédme Leroux, Anca Muscholl,
Grégoire Sutre

LaBRI, CNRS & Université de Bordeaux, France

Slides by Alexander HeuBner

Verification of Concurrent Software

Collection of processes
o finite-state systems
o pushdown systems
o counter systems
° ...

that interact via
o shared variables
o locks / monitors
o fifo channels
° ...

Verification of safety properties (reachability problem)

2/25

Communicating Finite-State Machines

Each process is a finite-state system

Processes communicate asynchronously via channels which are
o first-in first-out,
o point-to-point,
o reliable (no loss, no insertion !),

o and unbounded.

3/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

—

Client — Server
lo Ic|7d 70 7c|la

o two finite-state processes
o two fifo channels

o set of configurations: Qgjient X Qserver X M* x M*

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — — Server
lo lc|?d 70 7c| ld

((0,0), (2,¢))

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — Ii> — Server
lo lc|?d 70 7c| ld

((0,0), (,€)) =

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — Ii> — Server
lo lc|?d 70 7c| ld

((0,0), (5,€)) = ((1,0), (0, €))

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — — Server
lo Ic|?7d 70 7c|la

((0,0), (5,2)) =% ((1,0), (0,€)) =

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — — Server
lo Ic|7d 70 7c|la

((0,0), (5,€)) =% ((1,0), (0,€)) =+ {(0,0), (oc,))

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — — Server
lo Ic|7d 70 7c|la

((0,0), (,)) =% ((0,0), (0c, £)) 2

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Cllent ™ - Server
lo Ic|?d ?0 ¢/ ld

((0,0), (5,€)) 2% {(0,0), (0, €)) 2 ((0, 1), (c,)

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Cllent ™ - Server
lo Ic|?d ?0 ?c| ld

((0,0), (5,€)) —2% {(0,0), (0, £)) 2 ((0, 1), (¢, 2)) =

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Cllent ™ - Server
lo Ic|?d ?0 ¢/ ld

((0,0), (,)) =% {(0,0), (oc,)) <% ((0,1), (¢, €)) =% ((0,0), (¢, d))

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Client — — Server
lo lc|?d 70 7c| ld

((0,0), (,)) =% {(0,0), (oc,)) <% ((0,1), (¢, €)) =% ((0,0), (¢, d))

4 (local) deadlock 4

unspecified reception

4/25

Communicating Finite-State Machines

Example: Connection / Disconnection Protocol

Cllent ™ - Server
lo Ic|?d ?0 ¢/ ld

((0,0), (2, £)) 2% ((0,0), (oc, £)) =% ((0, 1), (c, £)) =% {(0,0), (¢, d))

o let Init = {(0,0),(g,¢)}
o let Bad = Q1 x {0} x ¢ - M* x M*

o verify safety: is Bad not reachable from /Init ? o2

Communicating Finite-State Machines

Reachability Analysis

Operational semantics: infinite-state transition system

Turing-powerful [Brand, Zafiropulo: J. ACM'83])

o even for 1 finite-state process and 1 channel

Some approaches:
o symbolic reachability analysis with loop acceleration
@ no termination guarantee
o lossy channels (well-structured transition system)
o false positives
o abstraction refinement (CEGAR)
o tradeoff between termination guarantee and false positives

5/25

CPS Communicating Pushdown Systems

o model distributed programs consisting of single local processes
with unbounded recursion and asynchronous communication
based on TCP (point-to-point, fifo, reliable, unbounded)

o e.g., implemented on top of Berkeley Sockets API

> communication architecture:

send(m)

> local pushdown automata synchronizing over oo
> point-to-point, reliable, unbounded fifo channels | system

6/25

Question

Investigate the border between decidability and undecida-
bility of the question for CPS

> undecidability arises from both
o pushdown stacks (emptiness of intersection of CFL,...)
o unbounded communication channels
(communicating finite state machines are Turing powerful)
> need restrictions on

o pushdown operations, synchronization operations,
communication architecture, the interplay of these three

o the problem (e.g., bounded contexts)

7/25

Known Results for CPS

[La Torre, Madhusudan, Parlato: TACAS'08]

restriction channels are well-queueing:

results

can only receive messages when the local stack is empty

Control state reachability over well-queueing architec-
tures is decidable iff the architecture is a root-to-leaf
directed tree. Complexity: 2ExpTime

Bounded context control-state reachability over
well-queueing architectures is decidable in 2ExpTime.

8/25

Our Approach

ansatz focus the undecidability due to pushdown stacks
> restrict communication by notion of eagerness

A run of a CPS is eager if each receive action
immediately follows its matching send.

A CPS is eager if each configuration can be
reached by an eager run.

remark r finite state communicating processes have decidable
reachability on eager runs

> any CPS is eager when the architecture is an
undirected forest

9/25

Our Approach

ansatz add dual notion to “well-queueing”

p .
\‘C receive (m)
a =T |] =D
Chreceve 5 P
/\ send (n) /\
receive-restricted channels send-restricted channels
can only receive can only send when
when stack is empty stack is empty
(=well-queueing)

10/25

Our Approach

ansatz add dual notion to “well-queueing”

p .
\‘C receive (m)
a =T |] =D
Chreceve 5 P
/\ send (n) /\
receive-restricted channels send-restricted channels
can only receive can only send when
when stack is empty stack is empty
(=well-queueing)

undecidable
architecture

> restrict type of channels allowed for CPS to o E
either send-restricted, receive-restricted, or ——
both send-&receive-restricted ;

10/25

Decidable Architectures

Decidability wrt. Architectures

o undecidable architectures:

12/25

Decidable Architectures

Definition
An architecture is confluent if it contains a pair of distinct processes
p, q, together with a simple, unoriented path p,r1, ..., r, g between

p and q, such that

g [P —dnp—o - o—np—dd] 5

Result

Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

13/25

Result

Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

proof idea: confluent case

g [P p—drip—o-- o—np—d9] 5

Whatever the direction of the channels, we can synchronize two
pushdown systems

Remark: Still undecidable with visibly pushdown systems

14 /25

(proof)

Result

Control-state reachability is decidable on eager runs if and only if the
architecture is non confluent. Complexity: ExpTime-complete.

proof idea: non-confluent case

Each eager run can be re-ordered into an eager run without nested
context switches.

— the stacks can be concatenated into a single stack

Construct a “product” pushdown system (single stack) that simulates
eager runs without nested context switches.

o exponentially many control states

Lower bound: intersection of one pushdown with n finite automata

15/25

Mutex

(A Semantic Restriction on Cycles)

A CPS is mutex if for all reachable configurations (local control-
states & content of channels) at most one channel per simple cycle
in the architecture is non-empty.

> polyforest architectures are mutex

> for two processes this equals the
half-duplex property of [Cécé, Finkel:
CAV'97]

Result

Given a CPS that is mutex wrt. a given architecture then each of its
runs can be reordered into an equivalent eager run.

17/25

Result
Given a CPS that is mutex wrt. a given architecture then each of its
runs can be reordered into an equivalent eager run.

proof idea:
@ can always schedule a "minimal” communication event first

o if not, there is a cyclic dependency between all pending events

P ... PP Pit1 -+ Pk P1 .- Pi Pit1 -+ Pk L Pit1 -+ Pk

o but this is prohibited by mutex !

18/25

Application to Master-Worker Protocols

“master-worker” distributed computing ote: mutex
o hierarchical network w
o can receive tasks only when local stack is empty,
can send result when local calculation finished (empty stack)

19/25

Bounded Phase Reachability

> basic idea:
under-approximation of concurrent processes by bounding the

number of switches between processes [Qadeer, Rehof:
TACAS'05]

Phases

A phase of a run of a CPS is defined as:

© a contiguous subrun
o where all actions are of a unique process, say p € P

o and p only communicates over channels either like

./‘(.) well-queueing contexts
* I @0\‘0 < of [LMP’'08]; “m-phase”;
o or like

: o——Ppx < dual notion; “n-phase”;
it

21/25

Bounded Phase Reachability

Result

Given a CPS and an integer K, the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

22/25

Bounded Phase Reachability

Result

Given a CPS and an integer K, the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

proof idea: reduce k-bounded question to the (k — 1)-bounded one

assert: only m-phases and empty pushdowns at phase boundaries
?7 test whether B is reachable from ¥ in < 5 phases on the CPS

22/25

Bounded Phase Reachability

Result

Given a CPS and an integer K, the K phase bounded control-state
reachability problem is solvable in time doubly exponential in K and
polynomial in the size of the CPS. Lower bound : 2ExpTime.

proof idea: reduce k-bounded question to the (k — 1)-bounded one

assert: only m-phases and empty pushdowns at phase boundaries
?7 test whether B is reachable from ¥ in < 5 phases on the CPS

> decompose run:

pd
height

exe

| |
V—=—3—aA
| p |

proof (continued)

> guess intermediate control states &, ¢, A, %
> guess for each phase its process & input channel

d
Peigl‘lt Ty Ty
exe IR | \ | recv(m) recv(n) /\‘
l__)_‘ ‘_@.l * ;N\ 3 a
' P e b reo)p | (re0)a ! (pe—o)a [

23/25

proof (continued)

> guess intermediate control states &, ¢, A, %
> guess for each phase its process & input channel

pd : :

eight 'E~) s H

exe R | \ = | recv(m) recv(n) /\‘ H

+__)_T ‘_@.l T ;N\ 5 'H
p

r I

> focus last phase

o internalize sends of last phase (never received)
> receive actions only possible when stack is empty

23/25

proof (continued)

> guess intermediate control states &, ¢, A, %
> guess for each phase its process & input channel

pd - B . .
cight E) ey :
exe IR | \ = | recv(m) recv(n) /\ H
e b= /N,
' P o 1 reo)p | (reo)a I ——— —
Ceeeeeaaan UM L ummany. .-
> focus last phase
o internalize sends of last phase (never received)
> receive actions only possible when stack is empty
> calculate summaries for subruns with non-empty pushdown
> generate finite automaton representation for last phase
o test whether M|, is reachable from ¥,

23/25

proof (continued)

> guess intermediate control states &, ¢, A, %
> guess for each phase its process & input channel

pd - B . .
cight E) ey :
exe R | \ = | recv(m) recv(n) /\ H
e b= /N,
' P o 1 reo)p | (reo)a I ——— —
Ceeeeeaaan UM L ummany. .-
> focus last phase
o internalize sends of last phase (never received)
> receive actions only possible when stack is empty
> calculate summaries for subruns with non-empty pushdown
> generate finite automaton representation for last phase
o test whether M|, is reachable from ¥,
> synchronize phases 1..k — 1 with this automaton
> control structure grows in worst case double exponentially

23/25

Résumé

[LMP'08] . CPS
control-state reachability
well-queueing (=receive-restr.) —22— receive-, send-, and

send&receive-restricted

directed forests —=xtend 5 on-confluent architectures
with cycles (+mutex)

(all runs implicitly eager) eagerruns

ameliorate

2ExpTime —ameliorate ExpTime-complete

bounded phase control-state reachability

w-q phase (=m-phase) —dual m- and n-phases
2ExpTime direct proof, 2ExpTime-complete

24 /25

Perspectives

o prototypical implementation

o need additional heuristics
o “sub-exponential” sub-models

o verify other properties: liveness, . ..

spaw7 \f:awn
o hierarchical models

o local models are multiple threads
that synchronize by locks, shared variables, etc.
o share connections between local threads E E

o messages with data (integers)
o local processes modeled as counter systems

25 /25

