On Flatness for 2-dimensional Vector Addition Systems with States

Jérôme Leroux and Grégoire Sutre

DIRO, Université de Montréal, Montréal, QC, Canada
LaBRI, Université de Bordeaux, Talence, France

Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

- Formal verification:

```
M\stackrel{?}{\models}\varphi
```


Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

- Formal verification:
- undecidable

```
M\stackrel{?}{\models}\varphi
```


Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

- Formal verification:
- undecidable

```
M\stackrel{?}{\models}\varphi
```

- Computation of forward/backward reachability sets post* / pre*

Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

- Formal verification:
- undecidable

```
M\stackrel{?}{\models}\varphi
```

- Computation of forward/backward reachability sets post* / pre*
- Decidable classes
- dedicated algorithms

Verification of distributed systems

- Distributed systems
- infinite-state, concurrent

」 ensuring correctness: challenging!

- Formal verification:
- undecidable

```
M\stackrel{?}{\models}\varphi
```

- Computation of forward/backward reachability sets post* / pre*
- Decidable classes
- dedicated algorithms
- Semi-algorithms for general classes
- no termination guarantee

Accelerated post* / pre* computation

- $\mathcal{S}=\langle S, \Sigma, \rightarrow\rangle$ labeled transition system

د Set $R \subseteq 2^{S}$ of regions

- closure under set operations (\cap, \backslash)
\lrcorner closure under post/pre : $\operatorname{post}(r, \sigma) \in R$ and $\operatorname{pre}(r, \sigma) \in R$
- effectivity

Accelerated post* / pre* computation

- $\mathcal{S}=\langle S, \Sigma, \rightarrow\rangle$ labeled transition system
- Set $R \subseteq 2^{S}$ of regions
- closure under set operations (\cap, \backslash)
\lrcorner closure under post/pre : $\operatorname{post}(r, \sigma) \in R$ and $\operatorname{pre}(r, \sigma) \in R$
- effectivity
- Loop acceleration:

$$
\operatorname{post}\left(r, \sigma^{*}\right) \text { computable region }
$$

Accelerated post* / pre* computation

- $\mathcal{S}=\langle S, \Sigma, \rightarrow\rangle$ labeled transition system
- Set $R \subseteq 2^{S}$ of regions
- closure under set operations (\cap, \backslash)
\lrcorner closure under post/pre : $\operatorname{post}(r, \sigma) \in R$ and $\operatorname{pre}(r, \sigma) \in R$
- effectivity
- Loop acceleration:

$$
\operatorname{post}\left(r, \sigma^{*}\right) \text { computable region }
$$

- Speeds up post* / pre* computation

Accelerated post* / pre* computation

د $\mathcal{S}=\langle S, \Sigma, \rightarrow\rangle$ labeled transition system

- Set $R \subseteq 2^{S}$ of regions
- closure under set operations (\cap, \backslash)
\lrcorner closure under post/pre : $\operatorname{post}(r, \sigma) \in R$ and $\operatorname{pre}(r, \sigma) \in R$
- effectivity
- Loop acceleration:

$$
\operatorname{post}\left(r, \sigma^{*}\right) \text { computable region }
$$

- Speeds up post* / pre* computation
- Accelerated symbolic model-checkers: LASH, TReX, FAST

Decidable classes vs. Acceleration

Effective computation of post*/pre*

- 2-dim VASS and extensions
- Lossy VASS
- Timed automata
- Lossy Fifo systems
- Pushdown systems
- \cdot.

Decidable classes vs. Acceleration

Effective computation of post* / pre*

Acceleration

- 2-dim VASS and extensions
- Lossy VASS
- Timed automata
- Lossy Fifo systems
- Pushdown systems
- \cdot.
- integer counters systems
- real counters systems
- Fifo systems

」. \cdot

Decidable classes vs. Acceleration

Effective computation of post* / pre*

Acceleration

- 2-dim VASS and extensions
- Lossy VASS
- Timed automata
- Lossy Fifo systems
- Pushdown systems
- \cdot.
- integer counters systems
- real counters systems
- Fifo systems

」. \cdot

』Termination of accelerated semi-algorithms on decidable classes?

Flatness: a condition for termination

$\Delta \mathcal{S}$ is flat if \mathcal{S} is equivalent (w.r.t reachability) to $\bigcup_{i} S_{i}^{\prime}$ where:

- S_{i}^{\prime} is "extracted" from S
- S_{i}^{\prime} contains no nested loops

Flatness: a condition for termination

$\Delta \mathcal{S}$ is flat if \mathcal{S} is equivalent (w.r.t reachability) to $\bigcup_{i} S_{i}^{\prime}$ where:

- S_{i}^{\prime} is "extracted" from S
- S_{i}^{\prime} contains no nested loops
- Accelerated post* / pre* computation terminates iff \mathcal{S} is flat

Flatness: a condition for termination

د \mathcal{S} is flat if \mathcal{S} is equivalent (w.r.t reachability) to $\bigcup_{i} S_{i}^{\prime}$ where:

- S_{i}^{\prime} is "extracted" from S
- S_{i}^{\prime} contains no nested loops
- Accelerated post* $/$ pre ${ }^{*}$ computation terminates iff \mathcal{S} is flat
- Are (some) decidable classes flat?

Flatness: a condition for termination

د \mathcal{S} is flat if \mathcal{S} is equivalent (w.r.t reachability) to $\bigcup_{i} S_{i}^{\prime}$ where:

- S_{i}^{\prime} is "extracted" from S
- S_{i}^{\prime} contains no nested loops
- Accelerated post* $/$ pre ${ }^{*}$ computation terminates iff \mathcal{S} is flat
- Are (some) decidable classes flat?
- Timed automata are flat [CJ99]
Δ binary reachability relation effectively definable in real arithmetic

Flatness: a condition for termination

د \mathcal{S} is flat if \mathcal{S} is equivalent (w.r.t reachability) to $\bigcup_{i} S_{i}^{\prime}$ where:

- S_{i}^{\prime} is "extracted" from S
- S_{i}^{\prime} contains no nested loops
- Accelerated post* / pre* computation terminates iff \mathcal{S} is flat

」 Are (some) decidable classes flat?

- Timed automata are flat [CJ99]
Δ binary reachability relation effectively definable in real arithmetic
- This paper: 2-dim VASS are flat

Flatness：a condition for termination

$\Delta \mathcal{S}$ is flat if \mathcal{S} is equivalent（w．r．t reachability）to $\bigcup_{i} S_{i}^{\prime}$ where：
」 S_{i}^{\prime} is＂extracted＂from S
－S_{i}^{\prime} contains no nested loops
Δ Accelerated post＊／pre＊computation terminates iff \mathcal{S} is flat
」Are（some）decidable classes flat？
－Timed automata are flat［CJ99］
」 binary reachability relation effectively definable in real arithmetic
－This paper：2－dim VASS are flat
－2－dim VASS have an effectively semilinear binary reachability relation

Outline of the talk

- Vector Addition Systems with States
- Flatness
- Ultimate flatness of 2-dim VASS
- Flatness of 2-dim VASS
- Conclusion and future work

n-dim Vector Addition Systems with States

- Finite automaton
- Counters (over \mathbb{N})
$a+1,-1(a n d \neq 0$? $)$

n-dim Vector Addition Systems with States

- Finite automaton
- Counters (over \mathbb{N})
$a+1,-1(a n d \neq 0$? $)$

n-dim Vector Addition Systems with States

- Finite automaton
Δ Counters (over \mathbb{N})
$a+1,-1($ and $\neq 0 ?)$

$$
\begin{array}{r}
(p,(5,0,1)) \stackrel{t_{1}}{\longrightarrow}(p,(5,1,0)) \xrightarrow{t_{2}}(q,(5,1,0)) \xrightarrow{t_{3}}(q,(5,0,2)) \\
\downarrow t_{4} \\
\cdots(q,(4,0,4)) \stackrel{t_{2}^{2}}{\longleftrightarrow}(q,(4,2,0)) \stackrel{t_{2}}{\leftrightarrows}(p,(4,2,0)) \stackrel{t_{1}^{2}}{\longleftrightarrow}(p,(4,0,2))
\end{array}
$$

n-dim Vector Addition Systems with States

- Finite automaton
Δ Counters (over \mathbb{N})
$a+1,-1($ and $\neq 0 ?)$

$$
\begin{array}{r}
(p,(5,0,1)) \xrightarrow{t_{1}}(p,(5,1,0)) \xrightarrow{t_{2}}(q,(5,1,0)) \xrightarrow{t_{3}}(q,(5,0,2)) \\
\downarrow t_{4} \\
\ldots(q,(4,0,4)) \stackrel{t_{2}^{2}}{\longleftrightarrow}(q,(4,2,0)) \stackrel{t_{2}}{\leftrightarrows}(p,(4,2,0)) \stackrel{t_{1}^{2}}{\longleftrightarrow}(p,(4,0,2))
\end{array}
$$

- Equivalent to Petri nets with n unbounded places

VASS: syntax

- Labeled directed graph $V=(Q, T, \alpha, \beta, \delta)$
ΔQ : finite set of locations and T : finite set of transitions
Δ source mapping $\alpha: T \rightarrow Q$ and target mapping $\beta: T \rightarrow Q$
$\lrcorner \delta: T \rightarrow \mathbb{Z}^{n}:$ displacement labeling
Δ Paths: $\Pi_{V}\left(q, q^{\prime}\right) \subseteq T^{*}, \Pi_{V}=\bigcup_{q, q^{\prime} \in Q} \Pi_{V}\left(q, q^{\prime}\right)$

VASS: semantics

$\Delta V=(Q, T, \alpha, \beta, \delta)$
$\Delta Q, T$: finite sets

- $\alpha, \beta: T \rightarrow Q$
- $\delta: T \rightarrow \mathbb{Z}^{n}$

」 Labeled transition system $\left\langle\mathcal{C}_{V}, T, \mathcal{R}_{V}\right\rangle$ where:

$$
\begin{aligned}
& \lrcorner \mathcal{C}_{V}=Q \times \mathbb{N}^{n} \\
& \lrcorner(q, \times) \mathcal{R}_{V}(t)\left(q^{\prime}, x^{\prime}\right) \quad \text { if } \quad\left\{\begin{array}{l}
q=\alpha(t) \\
q^{\prime}=\beta(t) \\
x^{\prime}=\mathrm{x}+\delta(t)
\end{array}\right.
\end{aligned}
$$

VASS: semantics

د $V=(Q, T, \alpha, \beta, \delta)$

- Q, T : finite sets
- $\alpha, \beta: T \rightarrow Q$
- $\delta: T \rightarrow \mathbb{Z}^{n}$

- Labeled transition system $\left\langle\mathcal{C}_{V}, T, \mathcal{R}_{V}\right\rangle$
- Extension of δ and \mathcal{R}_{V} to words $\pi \in T^{*}$ and languages $L \subseteq T^{*}$:

$$
\left\{\begin{array} { l }
{ \delta (\varepsilon) = 0 } \\
{ \delta (\pi \cdot t) = \delta (\pi) + \delta (t) } \\
{ \delta (L) = \{ \delta (\pi) / \pi \in L \} }
\end{array} \quad \left\{\begin{array}{l}
\mathcal{R}_{V}(\varepsilon)=I d_{\mathcal{C}_{V}} \\
\mathcal{R}_{V}(\pi \cdot t)=\mathcal{R}_{V}(\pi) \cdot \mathcal{R}_{V}(t) \\
\mathcal{R}_{V}(L)=\bigcup_{\pi \in L} \mathcal{R}_{V}(\pi)
\end{array}\right.\right.
$$

Semilinear sets

- Given $P \subseteq \mathbb{Z}^{n}$,

$$
P^{*}=\left\{\sum_{i=0}^{k} c_{i} \mathrm{p}_{i} / k, c_{0}, \ldots, c_{k} \in \mathbb{N} \text { and } \mathrm{p}_{0}, \ldots, \mathrm{p}_{k} \in P\right\}
$$

- Linear set: $\left(\mathrm{x}+P^{*}\right)$ with $\mathrm{x} \in \mathbb{Z}^{n}$ and $P \subseteq \mathbb{Z}^{n}$ finite
- Semilinear set: finite union of linear sets

Semilinear sets

- Given $P \subseteq \mathbb{Z}^{n}$,

$$
P^{*}=\left\{\sum_{i=0}^{k} c_{i} \mathrm{p}_{i} / k, c_{0}, \ldots, c_{k} \in \mathbb{N} \text { and } \mathrm{p}_{0}, \ldots, \mathrm{p}_{k} \in P\right\}
$$

- Linear set: $\left(\mathrm{x}+P^{*}\right)$ with $\mathrm{x} \in \mathbb{Z}^{n}$ and $P \subseteq \mathbb{Z}^{n}$ finite
- Semilinear set: finite union of linear sets
- Semilinear sets are the subsets of \mathbb{Z}^{n} that are definable in Presburger arithmetic $\langle\mathbb{Z}, \leq,+\rangle[$ GS66]

Flatness

Δ Linear path scheme: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k} \subseteq \Pi_{V}$ with $\sigma_{i}, \theta_{i} \in T^{*}$

- Semilinear path scheme: finite union of linear path schemes

Flatness

Δ Linear path scheme: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k} \subseteq \Pi_{V}$ with $\sigma_{i}, \theta_{i} \in T^{*}$

- Semilinear path scheme: finite union of linear path schemes

Flatness

Δ Linear path scheme: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k} \subseteq \Pi_{V}$ with $\sigma_{i}, \theta_{i} \in T^{*}$

- Semilinear path scheme: finite union of linear path schemes

Definition

- A reachability subrelation $R \subseteq \mathcal{R}_{V}^{*}$ is flat if $R \subseteq \mathcal{R}_{V}(\rho)$ for some SLPS ρ
- A VASS V is flat if \mathcal{R}_{V}^{*} is flat

Flatness

Δ Linear path scheme: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k} \subseteq \Pi_{V}$ with $\sigma_{i}, \theta_{i} \in T^{*}$

- Semilinear path scheme: finite union of linear path schemes

Definition

- A reachability subrelation $R \subseteq \mathcal{R}_{V}^{*}$ is flat if $R \subseteq \mathcal{R}_{V}(\rho)$ for some $\operatorname{SLPS} \rho$
- A VASS V is flat if \mathcal{R}_{V}^{*} is flat

Theorem. ([CJ98, FL02]) $\mathcal{R}_{V}(\rho)$ is effectively semilinear for any $\operatorname{SLPS} \rho$

Flatness

Δ Linear path scheme: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k} \subseteq \Pi_{V}$ with $\sigma_{i}, \theta_{i} \in T^{*}$

- Semilinear path scheme: finite union of linear path schemes

Definition

- A reachability subrelation $R \subseteq \mathcal{R}_{V}^{*}$ is flat if $R \subseteq \mathcal{R}_{V}(\rho)$ for some SLPS ρ
- A VASS V is flat if \mathcal{R}_{V}^{*} is flat

Theorem. ([CJ98, FL02]) $\mathcal{R}_{V}(\rho)$ is effectively semilinear for any $\operatorname{SLPS} \rho$

Corollary. \mathcal{R}_{V}^{*} is effectively semilinear for any flat VASS V

Towards ultimate flatness in dimension 2

- Goal: find SLPS ρ such that $\mathcal{R}^{*} \subseteq \mathcal{R}(\rho)$

Towards ultimate flatness in dimension 2

Towards ultimate flatness in dimension 2

- Goal: find SLPS ρ such that $\left.\mathcal{R}^{*}\right|_{\left[c . . \infty\left[^{2} \subseteq \mathcal{R}(\rho) \text { for some } c \in \mathbb{N}, ~\right.\right.}$

」 First, look for SLPS that capture all possible displacements

Towards ultimate flatness in dimension 2

- Goal: find SLPS ρ such that $\left.\mathcal{R}^{*}\right|_{\left[c . . \infty\left[^{2} \subseteq \mathcal{R}(\rho)\right.\right.}$ for some $c \in \mathbb{N}$

」 First, look for SLPS that capture all possible displacements

Lemma. $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

Towards ultimate flatness in dimension 2

」 First, look for SLPS that capture all possible displacements

Lemma. $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

- Choose $\rho=t_{1}^{*} t_{2}^{*}$
- But $\left.\mathcal{R}^{*}\right|_{\left[c . . \infty\left[^{2}\right.\right.} \nsubseteq \mathcal{R}(\rho) \quad$ (for all $c \in \mathbb{N}$)

$$
\lrcorner(q,(c, c)) \xrightarrow{*}(q,(4 c, 4 c))
$$

- ρ is not "straight enough"

Eliminating zig-zags

a zigzag-free LPS: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k}$ with $\delta\left(\theta_{i}\right)$ in the same quadrant

- zigzag-free SLPS: finite union of zigzag-free LPS

Eliminating zig-zags

Δ zigzag-free LPS: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k}$ with $\delta\left(\theta_{i}\right)$ in the same quadrant
a zigzag-free SLPS: finite union of zigzag-free LPS

- SLPS in dimension 2 can be "straightened"

Eliminating zig-zags

د zigzag-free LPS: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k}$ with $\delta\left(\theta_{i}\right)$ in the same quadrant

- zigzag-free SLPS: finite union of zigzag-free LPS
- SLPS in dimension 2 can be "straightened"

Lemma. $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ zigzag-free SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

Eliminating zig-zags

د zigzag-free LPS: $\rho=\sigma_{0} \theta_{1}^{*} \sigma_{1} \cdots \theta_{k}^{*} \sigma_{k}$ with $\delta\left(\theta_{i}\right)$ in the same quadrant
a zigzag-free SLPS: finite union of zigzag-free LPS

- SLPS in dimension 2 can be "straightened"

Lemma. $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ zigzag-free SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

- Straighten $\rho=t_{1}^{*} t_{2}^{*}$ into:

$$
\begin{aligned}
\rho^{\prime}= & \overbrace{\left(\varepsilon+t_{1} t_{2}+\left(t_{1} t_{2}\right)^{2}\right)}^{\{(0,0),(1,1),(2,2)\}} \cdot \overbrace{\left(t_{1} t_{2}^{2}\right)^{*} \cdot(\overbrace{\left.t_{1}^{2} t 2\right)^{*}}^{(0,3)^{*}}+}^{(3,0)^{*}}+ \\
& \underbrace{}_{\{\underbrace{t_{1}^{*} \cdot\left(t_{1}^{2} t_{2}\right)^{*}}_{(2,-1),(3,0)\}^{*}}+\underbrace{t_{2}^{*} \cdot\left(t_{1} t_{2}^{2}\right)^{*}}_{\{(-1,2),(0,3)\}^{*}}}+
\end{aligned}
$$

Ultimate flatness of 2-dim VASS

$-\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ zigzag-free SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

Ultimate flatness of 2-dim VASS

- $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ zigzag-free SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

Δ Path from (q, x) to $\left(q^{\prime}, x^{\prime}\right)$ along a zigzag-free LPS
- The "margin" m does not depend on \times or x^{\prime}

Ultimate flatness of 2-dim VASS

- $\exists \rho_{q, q^{\prime}} \subseteq \Pi\left(q, q^{\prime}\right)$ zigzag-free SLPS such that $\delta\left(\rho_{q, q^{\prime}}\right)=\delta\left(\Pi\left(q, q^{\prime}\right)\right)$

Δ Path from (q, x) to $\left(q^{\prime}, x^{\prime}\right)$ along a zigzag-free LPS
- The "margin" m does not depend on \times or x^{\prime}

Proposition. The restriction $\left.\mathcal{R}^{*}\right|_{[c . . \infty]^{2}} \subseteq \mathcal{R}(\rho)$ is flat

Flatness of 1-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$

د $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$

- $\left.\mathcal{R}^{*}\right|_{I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty}}$ are flat

Flatness of 1-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$

د $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$
$=\left.\mathcal{R}^{*}\right|_{I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty}}$ are flat
\lrcorner Consider $(q, x) \xrightarrow{*}\left(q^{\prime}, x^{\prime}\right)$ with $x \leq c$ and $x^{\prime}>c$

$$
\underbrace{(q, x) \xrightarrow{*}\left(q_{1}, c\right)}_{\left.\in \mathcal{R}^{*}\right|_{I}} \text { and } \underbrace{\left(q_{1}, c\right) \xrightarrow{*}\left(q^{\prime}, x^{\prime}\right)}_{\left.\in \mathcal{R}^{*}\right|_{I_{\infty}}}
$$

Flatness of 1-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$

د $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$
$\left.\Delta \mathcal{R}^{*}\right|_{I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty}}$ are flat
Δ Consider $(q, x) \xrightarrow{*}\left(q^{\prime}, x^{\prime}\right)$ with $x \leq c$ and $x^{\prime}>c$

$$
\underbrace{(q, x) \stackrel{*}{\rightarrow}\left(q_{1}, c\right)}_{\left.\in \mathcal{R}^{*}\right|_{I}} \text { and } \underbrace{\left(q_{1}, c\right) \xrightarrow{*}\left(q^{\prime}, x^{\prime}\right)}_{\left.\in \mathcal{R}^{*}\right|_{I_{\infty}}}
$$

- Hence:

$$
\mathcal{R}^{*} \subseteq\left(\left.\left.\mathcal{R}^{*}\right|_{I} \cup \mathcal{R}^{*}\right|_{I_{\infty}}\right)^{2}
$$

Flatness of 2-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$
- $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$
$-\left.\mathcal{R}^{*}\right|_{I \times I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty} \times I_{\infty}}$ are flat

Flatness of 2-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$
- $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$
$\left.\Delta \mathcal{R}^{*}\right|_{I \times I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty} \times I_{\infty}}$ are flat
- By reduction to 1-dim VASS, $\left(\left.\mathcal{R}\right|_{I \times \mathbb{N}}\right)^{*}$ and $\left(\left.\mathcal{R}\right|_{\mathbb{N} \times I}\right)^{*}$ are flat

Flatness of 2-dim VASS

- Simplification: assume that $\delta: T \rightarrow\{-1,0,1\}^{n}$
- $I=[0 . . c]$ and $I_{\infty}=[c . . \infty[$
$\left.\Delta \mathcal{R}^{*}\right|_{I \times I}$ and $\left.\mathcal{R}^{*}\right|_{I_{\infty} \times I_{\infty}}$ are flat
- By reduction to 1-dim VASS, $\left(\left.\mathcal{R}\right|_{I \times \mathbb{N}}\right)^{*}$ and $\left(\left.\mathcal{R}\right|_{\mathbb{N} \times I}\right)^{*}$ are flat
- Decomposition of \mathcal{R}^{*} as for 1-dim VASS

Conclusion and Perspectives

- 2-dim VASS are flat

Conclusion and Perspectives

- 2-dim VASS are flat
- 2-dim VASS have an effectively semilinear binary reachability relation
- Previously: post* / pre* effectively semilinear [HP79]

Conclusion and Perspectives

- 2-dim VASS are flat
- 2-dim VASS have an effectively semilinear binary reachability relation
- Previously: post* / pre* effectively semilinear [HP79]
- \mathcal{R}^{*}, post ${ }^{*}$ and pre ${ }^{*}$ computed with generic acceleration techniques

」 accelerated symbolic model checkers terminate on 2-dim VASS

Conclusion and Perspectives

- 2-dim VASS are flat
- 2-dim VASS have an effectively semilinear binary reachability relation
- Previously: post* / pre* effectively semilinear [HP79]
- \mathcal{R}^{*}, post* and pre* computed with generic acceleration techniques
- accelerated symbolic model checkers terminate on 2-dim VASS
- Practical applications for the effective semilinearity of \mathcal{R}^{*} :
- check relationships between input values and output values
- replace some flat subsystems by semilinear meta-transitions
- parameter synthesis
Δ compute the set of initial states such that the counters stay bounded

Conclusion and Perspectives

- 2-dim VASS are flat
- 2-dim VASS have an effectively semilinear binary reachability relation

」 Previously: post* / pre* effectively semilinear [HP79]

- \mathcal{R}^{*}, post* and pre* computed with generic acceleration techniques
- accelerated symbolic model checkers terminate on 2-dim VASS

Future work

- Investigate flatness of other decidable classes
- Better acceleration framework for Fifo systems

References

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger arithmetic. In Proc. 10th Int. Conf. Computer Aided Verification (CAV'98), Vancouver, BC, Canada, June-July 1998, volume 1427 of Lecture Notes in Computer Science, pages 268-279. Springer, 1998.
[CJ99] H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Proc. 10th Int. Conf. Concurrency Theory (CONCUR'99), Eindhoven, The Netherlands, Aug. 1999, volume 1664 of Lecture Notes in Computer Science, pages 242-257. Springer, 1999.
[FL02] A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications to broadcast protocols. In Proc. 22nd Conf. Found. of Software Technology and Theor. Comp. Sci. (FST\&TCS'2002), Kanpur, India, Dec. 2002, volume 2556 of Lecture Notes in Computer Science, pages 145-156. Springer, 2002.
[GS66] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. Pacific J. Math., 16(2):285-296, 1966.
[HP79] J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5 -dimensional vector addition systems. Theoretical Computer Science, 8(2):135-159, 1979.

