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Counter-automata verification
A simple counter-automata:
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Counter-automata verification naturally appears in practice:
−→ Parametrized systems, system abstractions, communication
protocols, and so on.



Counter-automata reachability

Verification can often be reduced to the reachability problem.

Init Error· · ·

An agorithm in general ?
NO ! Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithms use semilinear sets to symbolically represent
and manipulate infinite subsets of Z

n.



Semilinear sets
A semilinear set X ⊆ Z

m is a finite union of linear sets b+{p1, . . . , pn}∗.

b b b b b b b

b b b b b b

b b b b b

b b b b b

b b b b

b b b

b b b

b b

b

b

{(0, 0)} + {(3, 0), (3, 2), (6, 6)}∗

Recall that semilinear sets can be manipulated with:
−→ Finite sets of basis and periods, Presburger formulas, digit vector
automata.
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Each (decidable) class has a dedicated algorith
m



A generic accelerated algorithm

In practice counter automata are not exactly in a known subclass.
−→ we are interested in semi-algorithms for general classes.

Input: A counter automaton S.

Output: The global reachability relation
∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T∗ and X′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X′ ⊆ X

let X ← X ∪ post(t, X′)

Implemented in tools: FAST, LASH, TReX.
−→ Accelerated symbolic verification works well in practice.
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2t2(l1)
3t1(l2)
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Does the accelerated algorithm terminate for every known semilinear
class of counter automata?



Partial Completeness?

Does the accelerated algorithm terminate for every known semilinear
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Counter machines
• n counters (ranging over N)

• Finite set of locations

• Finite set of transitions, labeled with guarded assignments
− guards of the form

∧
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− assignments of the form
∧

x′i = xi + δi, with δi ∈ Z
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Initialized n-dim counter machine: (S, I)
π
−→ and post(π, I) are naturally defined for any path π ∈ T ∗.

Global reachability relation ∗
−→ is T ∗

−→.
Reachability set post∗(I) is post(T ∗, I).



Acceleration for counter machines
A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

Thm[Finkel&Leroux’02, . . . ]: For any SLPS ρ in a counter machine S,

the reachability subrelation
ρ
−→ is effectively semilinear.



Flatness for counter machines (1/2)

A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

A counter machine S is globally flat if ∗−→ =
ρ
−→ for some SLPS ρ.

An initialized counter machine (S, I) is forward flat if post∗(I) =
post(ρ, I) for some SLPS ρ.

−→ Global flatness implies forward flatness for any I. Converse false.

•
∗
−→ is effectively semilinear for any globally flat counter machine S

• post∗(I) is effectively semilinear for any semilinearly initialized
forward flat counter machine (S, I)



Flatness for counter machines (2/2)
Input: A counter automaton S.

Output: The global reachability relation
∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T∗ and X′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X′ ⊆ X

let X ← X ∪ post(t, X′)

Thm: These semi-algorithms are correct, and they admit a terminating
execution iff the counter machine is globally/forward flat.

−→ The exploration strategy should be “fair” to ensure termination



Partial Completeness?

Are these known semilinear classes of counter automata flat?
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Lossy/inserting counter machines

A counter machine S is called lossy (resp. inserting) when there are
loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is forward flat.

Key ideas:

• Karp&Miller’s algorithm can be seen as a (deterministic)
“refinement” of the generic accelerated post∗ computation.

• This accelerated post∗ semi-algorithm has a terminating execution
iff the initialized counter machine is forward flat.

Thm: Every initialized inserting counter machine is forward flat.

Key ideas:

• As Min(post∗(I)) is finite, we have post(ρm, I) = Min(post∗(I)) for
some finite SLPS ρm.

• Append insertion loops to ρm.
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Cyclic Petri nets

A Petri net is a test-free counter machine “without control location”, i.e.
such that Q = {q0}.

An initialized Petri net (S, I) is called cyclic if I ⊆ post∗(X) for every
X ⊆ post∗(I).

Thm: Every cyclic initialized Petri net is forward flat.

Key idea:

• post∗(I) = post∗({x0}), where x0 ∈ I.

• post∗(I) = Min(post∗({x0})) + (Min((post∗(x0) − x0) ∩ N
n))∗.



Reversible Petri nets

A Petri net S is called globally cyclic if ∗−→ is symmetric.

Thm: Every globally cyclic Petri net is globally flat.

Key idea:

•
∗
−→ is a congruence on N

n and hence it is semilinear.

• Consider (x, x′) + {(p1, p
′
1), . . . , (pk, p′k)} ⊆

∗
−→ .

• x
π0−→ x′ and x + pi

πi−→ x′ + p′i
πi−→ x + pi.

• Take ρ = (π1π0)
∗ . . . (πkπ0)

∗ · π0.

A Petri net S is called reversible if for every t ∈ T , there is t′ ∈ T with
t′
−→= (

t
−→)−1.

Thm: Every reversible Petri net is globally flat.



Persistent and conflict-free Petri nets
An initialized Petri net (S, I) is called persistent if for any x ∈ post∗(I):

x
t1−→ and x

t2−→ =⇒ x
t1t2−−→

Thm: Every semilinearly-initialized persistent Petri net is forward flat.

Key idea:

• Use the proof in [Landweber&Robertson’78] showing semilinearity
of post∗ for persistent Petri nets.

A Petri net S is called conflict-free if (S, Q × N
n) is persistent.

Thm: Every conflict-free Petri net is globally flat.

Key idea:

• Duplicate counters: the new counters remain unchanged (not used).

• Use the semilinear set I = {(x, x′) ∈ N
2n | x = x′}.
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Summary

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
Conflict-free Petri nets
BPP nets
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Cyclic Petri nets
Persistent Petri nets
Regular Petri nets
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globally flat forward flat



Future work
−→ Flatness for subclasses of 2-counter machines
Remark: post∗ and pre∗ are effectively semilinear of lossy 2-counter
machines, but these counter machines are not flat in general.

−→ Extend acceleration techniques to compute post∗ for:
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−→ Is global/forward flatness decidable for Petri nets ?

−→ Is flatness equivalent to semilinearity of ∗−→ /post∗ for Petri nets ?



Appendix



Reversal-bounded (1/2)
Recall: T set of transitions, δ : T → Z

n displacement labeling.
Let ϕδ

i : T ∗ → {+,−}∗ be the morphism defined by:

ϕδ
i (t) =











+ if δ(t)[i] > 0

ε if δ(t)[i] = 0

− if δ(t)[i] < 0

Example: T = {t1, t2, t3}, δ(t1) = 3, δ(t2) = 0, and δ(t3) = −1. Then
ϕδ

1(t1t2t3t3) = + −−.

An initialized counter machine (S, I) is called reversal-bounded if there
exists r ∈ N such that for any π ∈ T ∗:

post(π, I) 6= ∅ =⇒ ϕδ
i (π) ∈ ({+}∗ ∪ {−}∗)≤r

An counter machine S is called globally reversal-bounded if (S, Q×N
n)

is reversal-bounded.



Reversal-bounded (2/2)

Thm: Every initialized reversal-bounded counter machine is forward
flat. Every globally reversal-bounded counter machine is globally flat.

Key ideas:

• Reduce to the case post(π, I) 6= ∅ implies ϕδ
i (π) ∈ {+}∗ ∪ {−}∗.

• Remove the intermediate guards along π.
Example: T = {t1, t2} with δ(t1) = (1,−2) and δ(t2) = (2,−1).

x
b

x′b

• Extract from the regular langage L defined by the control graph, an
SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant of Parikh’s
theorem.



Test-free 2-dim counter machines
A counter machine S is called test-free when µ : T → {≥}n.

Thm: Every test-free 2-dim counter machine is globally flat.

Key ideas:

• Every path π ∈ T ∗ can be re-ordered into a zigzag-free path:

m

(q, x)

(q, x′)

• For large counter values, we obtain some kind of reversal-bounded
counter machine.

• Split N
n into four zones: {[0, c], [c,∞[}2 and show flatness for each.



Regular Petri nets

A singly initialized Petri net (S, {x0}) is said regular if the following trace
language L is regular:

L = {π ∈ T ∗ | post(π, {x0}) 6= ∅}

Thm: Every regular singly initialized Petri net is forward flat.

Key idea:

• Extract from L an SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant
of Parikh’s theorem.



BPP-nets
A Petri net S is called a BPP-net if for any t ∈ T , we have:

µ(t) = (0, . . . , 0, 1, 0, . . . , 0)

Thm[Fribourg&Olsen’97]: Every BPP-net is globally flat.

Key idea: Let R be defined by t1Rt2 iff µ(t1) + δ(t1) ≥ µ(t2).

• post(t1, {x}) 6= ∅ implies post(t1t2, {x}) 6= ∅ for any t1Rt2.

• Moreover if θ = t1 . . . tn with t1R · · ·RtnRt1, then δ(θ) ≥ 0.

• Build an SLPS ρ = θ∗1 . . . θ∗k where θi ∈ T or θi = t1 . . . tn
with t1, ..., tn 2 by 2 distincts and t1R · · ·RtnRt1.
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