
Flat counter automata almost
everywhere !

Jérôme LerouxandGrégoire Sutre

Vertecs Project, IRISA / INRIA, Rennes, FRANCE

MVTsi Team, CNRS / LaBRI, Bordeaux, FRANCE



Counter-automata verification
A simple counter-automata:

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

Counter-automata verification naturally appears in practice:
−→ Parametrized systems, system abstractions, communication
protocols, and so on.



Counter-automata reachability

Verification can often be reduced to the reachability problem.

Init Error· · ·

An agorithm in general ?
NO ! Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithms use semilinear sets to symbolically represent
and manipulate infinite subsets of Z

n.



Semilinear sets
A semilinear set X ⊆ Z

m is a finite union of linear sets b+{p1, . . . , pn}∗.

b b b b b b b

b b b b b b

b b b b b

b b b b b

b b b b

b b b

b b b

b b

b

b

{(0, 0)} + {(3, 0), (3, 2), (6, 6)}∗

Recall that semilinear sets can be manipulated with:
−→ Finite sets of basis and periods, Presburger formulas, digit vector
automata.



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machines



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machinesPetri nets



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machinesPetri nets

Lossy counter machines



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machinesPetri nets

Lossy counter machines

Cyclic Petri nets
Persistent/Conflict-free Petri nets
Regular Petri nets
Restricted 2-counter machines
Lossy test-free counter machines



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machinesPetri nets

Lossy counter machines

Cyclic Petri nets
Persistent/Conflict-free Petri nets
Regular Petri nets
Restricted 2-counter machines
Lossy test-free counter machines

Reversible Petri nets
BPP nets
2-dim VASS



Subclasses of counter automata

∗
−→ eff.

semilinear
post∗ eff.

semilinear
post∗

semilinear
post∗

recursive
post∗

rec. enum.

2-counter machinesPetri nets

Lossy counter machines

Cyclic Petri nets
Persistent/Conflict-free Petri nets
Regular Petri nets
Restricted 2-counter machines
Lossy test-free counter machines

Reversible Petri nets
BPP nets
2-dim VASS

Each (decidable) class has a dedicated algorith
m



A generic accelerated algorithm

In practice counter automata are not exactly in a known subclass.
−→ we are interested in semi-algorithms for general classes.

Input: A counter automaton S.

Output: The global reachability relation
∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T∗ and X′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X′ ⊆ X

let X ← X ∪ post(t, X′)

Implemented in tools: FAST, LASH, TReX.
−→ Accelerated symbolic verification works well in practice.



Completeness?
Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter
automaton?



Completeness?
Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter
automaton? No!

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

To obtain post∗(1, 0), we “need” the path: (l1)
1t1(l2)

2t2(l1)
3t1(l2)

4 · · ·



Completeness?
Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter
automaton? No!

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

To obtain post∗(1, 0), we “need” the path: (l1)
1t1(l2)

2t2(l1)
3t1(l2)

4 · · ·

Does the accelerated algorithm terminate for every known semilinear
class of counter automata?



Partial Completeness?

Does the accelerated algorithm terminate for every known semilinear
class of counter automata?

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistent Petri nets
Conflict-free Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines



Outline

Flat counter automata almost
everywhere !

• Introduction.

⇒ Counter machines, acceleration, flatness.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Persistent and Conflict-free Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.



Counter machines
• n counters (ranging over N)

• Finite set of locations

• Finite set of transitions, labeled with guarded assignments
− guards of the form

∧

xi �i µi, with �i ∈ {=,≥}

− assignments of the form
∧

x′i = xi + δi, with δi ∈ Z



Counter machines
• n counters (ranging over N)

• Finite set of locations

• Finite set of transitions, labeled with guarded assignments
− guards of the form

∧

xi �i µi, with �i ∈ {=,≥}

− assignments of the form
∧

x′i = xi + δi, with δi ∈ Z

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1



Counter machines
• n counters (ranging over N)

• Finite set of locations

• Finite set of transitions, labeled with guarded assignments
− guards of the form

∧

xi �i µi, with �i ∈ {=,≥}

− assignments of the form
∧

x′i = xi + δi, with δi ∈ Z

• Configurations: (q, x) ∈ Q × N
n

• (q, x)
t
−→ (q′, x′) when

− control flows from q to q′ along transition t

− counters evolve according to the guarded assignment of
transition t



Counter machines
• n counters (ranging over N)

• Finite set of locations

• Finite set of transitions, labeled with guarded assignments
− guards of the form

∧

xi �i µi, with �i ∈ {=,≥}

− assignments of the form
∧

x′i = xi + δi, with δi ∈ Z

• Configurations: (q, x) ∈ Q × N
n

• (q, x)
t
−→ (q′, x′) when

− control flows from q to q′ along transition t

− counters evolve according to the guarded assignment of
transition t

Initialized n-dim counter machine: (S, I)
π
−→ and post(π, I) are naturally defined for any path π ∈ T ∗.

Global reachability relation ∗
−→ is T ∗

−→.
Reachability set post∗(I) is post(T ∗, I).



Acceleration for counter machines
A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

Thm[Finkel&Leroux’02, . . . ]: For any SLPS ρ in a counter machine S,

the reachability subrelation
ρ
−→ is effectively semilinear.



Flatness for counter machines (1/2)

A semilinear path scheme ρ ⊆ T ∗ is a finite union of linear path
schemes σ0θ

∗
1σ1 · · · θ

∗
kσk.

θ1 θ2 θ3 θk−1 θk

σ0 σ1 σ2 σk−1 σk

A counter machine S is globally flat if ∗−→ =
ρ
−→ for some SLPS ρ.

An initialized counter machine (S, I) is forward flat if post∗(I) =
post(ρ, I) for some SLPS ρ.

−→ Global flatness implies forward flatness for any I. Converse false.

•
∗
−→ is effectively semilinear for any globally flat counter machine S

• post∗(I) is effectively semilinear for any semilinearly initialized
forward flat counter machine (S, I)



Flatness for counter machines (2/2)
Input: A counter automaton S.

Output: The global reachability relation
∗

−→.

let R← Id and repeat forever

select one of the following tasks:

• if
T
−→ ·R ⊆ R return R

• select π ∈ T∗ and R′, R′′ ⊆ R

let R← R ∪ (R′·
π
∗

−−→ ·R′′)

• select t ∈ T and R′, R′′ ⊆ R

let R← R ∪ (R′·
t
−→ ·R′′)

Input: An initialized counter automaton (S, I).

Output: The reachability set post∗(I).

let X ← I and repeat forever

select one of the following tasks:

• if post(T, X) ⊆ X return X

• select π ∈ T∗ and X′ ⊆ X

let X ← X ∪ post(π∗, X′)

• select t ∈ T and X′ ⊆ X

let X ← X ∪ post(t, X′)

Thm: These semi-algorithms are correct, and they admit a terminating
execution iff the counter machine is globally/forward flat.

−→ The exploration strategy should be “fair” to ensure termination



Partial Completeness?

Are these known semilinear classes of counter automata flat?

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistent Petri nets
Conflict-free Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines



Outline

Flat counter automata almost
everywhere !

• Introduction.

• Counter machines, acceleration, flatness.

⇒ Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Persistent and Conflict-free Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.



Lossy/inserting counter machines

A counter machine S is called lossy (resp. inserting) when there are
loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is forward flat.

Key ideas:

• Karp&Miller’s algorithm can be seen as a (deterministic)
“refinement” of the generic accelerated post∗ computation.

• This accelerated post∗ semi-algorithm has a terminating execution
iff the initialized counter machine is forward flat.

Thm: Every initialized inserting counter machine is forward flat.

Key ideas:

• As Min(post∗(I)) is finite, we have post(ρm, I) = Min(post∗(I)) for
some finite SLPS ρm.

• Append insertion loops to ρm.



Outline

Flat counter automata almost
everywhere !

• Introduction.

• Counter machines and acceleration.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

⇒ Flat Petri nets.
− Cyclic and reversible Petri nets.
− Persistent and Conflict-free Petri nets.
− Regular Petri nets.
− BPP-nets.

• Conclusion.



Cyclic Petri nets

A Petri net is a test-free counter machine “without control location”, i.e.
such that Q = {q0}.

An initialized Petri net (S, I) is called cyclic if I ⊆ post∗(X) for every
X ⊆ post∗(I).

Thm: Every cyclic initialized Petri net is forward flat.

Key idea:

• post∗(I) = post∗({x0}), where x0 ∈ I.

• post∗(I) = Min(post∗({x0})) + (Min((post∗(x0) − x0) ∩ N
n))∗.



Reversible Petri nets

A Petri net S is called globally cyclic if ∗−→ is symmetric.

Thm: Every globally cyclic Petri net is globally flat.

Key idea:

•
∗
−→ is a congruence on N

n and hence it is semilinear.

• Consider (x, x′) + {(p1, p
′
1), . . . , (pk, p′k)} ⊆

∗
−→ .

• x
π0−→ x′ and x + pi

πi−→ x′ + p′i
πi−→ x + pi.

• Take ρ = (π1π0)
∗ . . . (πkπ0)

∗ · π0.

A Petri net S is called reversible if for every t ∈ T , there is t′ ∈ T with
t′
−→= (

t
−→)−1.

Thm: Every reversible Petri net is globally flat.



Persistent and conflict-free Petri nets
An initialized Petri net (S, I) is called persistent if for any x ∈ post∗(I):

x
t1−→ and x

t2−→ =⇒ x
t1t2−−→

Thm: Every semilinearly-initialized persistent Petri net is forward flat.

Key idea:

• Use the proof in [Landweber&Robertson’78] showing semilinearity
of post∗ for persistent Petri nets.

A Petri net S is called conflict-free if (S, Q × N
n) is persistent.

Thm: Every conflict-free Petri net is globally flat.

Key idea:

• Duplicate counters: the new counters remain unchanged (not used).

• Use the semilinear set I = {(x, x′) ∈ N
2n | x = x′}.



Outline

Flat counter automata almost
everywhere !

• Introduction.

• Counter machines, acceleration, flatness.

• Flat counter machines.
− Reversal bounded counter machines.
− Lossy/inserting counter machines.
− Test-free 2-dim counter machines.

• Flat Petri nets.
− Cyclic and reversible Petri nets.
− Persistent and Conflict-free Petri nets.
− Regular Petri nets.
− BPP-nets.

⇒ Conclusion.



Summary

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistent Petri nets
Conflict-free Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines



Summary

∗
−→ eff.

semilinear
post∗ eff.

semilinear

Reversible Petri nets
Conflict-free Petri nets
BPP nets
Test-free 2-counter machines

Cyclic Petri nets
Persistent Petri nets
Regular Petri nets
Reversal-bounded counter machines
Lossy test-free counter machines

globally flat forward flat



Future work
−→ Flatness for subclasses of 2-counter machines
Remark: post∗ and pre∗ are effectively semilinear of lossy 2-counter
machines, but these counter machines are not flat in general.

−→ Extend acceleration techniques to compute post∗ for:

q1 q2

l1 :

{

x′ = x − 1

y′ = y + 1
l2 :

{

x′ = x + 1

y′ = y − 1t1 :

{

x = 0?

y′ = y + 1

t2 :

{

y = 0?

x′ = x + 1

q1

q1

q2

q2

q2

q2

q2 q1

q1

−→ Is global/forward flatness decidable for Petri nets ?

−→ Is flatness equivalent to semilinearity of ∗−→ /post∗ for Petri nets ?



Appendix



Reversal-bounded (1/2)
Recall: T set of transitions, δ : T → Z

n displacement labeling.
Let ϕδ

i : T ∗ → {+,−}∗ be the morphism defined by:

ϕδ
i (t) =











+ if δ(t)[i] > 0

ε if δ(t)[i] = 0

− if δ(t)[i] < 0

Example: T = {t1, t2, t3}, δ(t1) = 3, δ(t2) = 0, and δ(t3) = −1. Then
ϕδ

1(t1t2t3t3) = + −−.

An initialized counter machine (S, I) is called reversal-bounded if there
exists r ∈ N such that for any π ∈ T ∗:

post(π, I) 6= ∅ =⇒ ϕδ
i (π) ∈ ({+}∗ ∪ {−}∗)≤r

An counter machine S is called globally reversal-bounded if (S, Q×N
n)

is reversal-bounded.



Reversal-bounded (2/2)

Thm: Every initialized reversal-bounded counter machine is forward
flat. Every globally reversal-bounded counter machine is globally flat.

Key ideas:

• Reduce to the case post(π, I) 6= ∅ implies ϕδ
i (π) ∈ {+}∗ ∪ {−}∗.

• Remove the intermediate guards along π.
Example: T = {t1, t2} with δ(t1) = (1,−2) and δ(t2) = (2,−1).

x
b

x′b

• Extract from the regular langage L defined by the control graph, an
SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant of Parikh’s
theorem.



Test-free 2-dim counter machines
A counter machine S is called test-free when µ : T → {≥}n.

Thm: Every test-free 2-dim counter machine is globally flat.

Key ideas:

• Every path π ∈ T ∗ can be re-ordered into a zigzag-free path:

m

(q, x)

(q, x′)

• For large counter values, we obtain some kind of reversal-bounded
counter machine.

• Split N
n into four zones: {[0, c], [c,∞[}2 and show flatness for each.



Regular Petri nets

A singly initialized Petri net (S, {x0}) is said regular if the following trace
language L is regular:

L = {π ∈ T ∗ | post(π, {x0}) 6= ∅}

Thm: Every regular singly initialized Petri net is forward flat.

Key idea:

• Extract from L an SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant
of Parikh’s theorem.



BPP-nets
A Petri net S is called a BPP-net if for any t ∈ T , we have:

µ(t) = (0, . . . , 0, 1, 0, . . . , 0)

Thm[Fribourg&Olsen’97]: Every BPP-net is globally flat.

Key idea: Let R be defined by t1Rt2 iff µ(t1) + δ(t1) ≥ µ(t2).

• post(t1, {x}) 6= ∅ implies post(t1t2, {x}) 6= ∅ for any t1Rt2.

• Moreover if θ = t1 . . . tn with t1R · · ·RtnRt1, then δ(θ) ≥ 0.

• Build an SLPS ρ = θ∗1 . . . θ∗k where θi ∈ T or θi = t1 . . . tn
with t1, ..., tn 2 by 2 distincts and t1R · · ·RtnRt1.


	Counter-automata verification
	Counter-automata reachability
	Semilinear sets
	Subclasses of counter automata
	Subclasses of counter automata
	Subclasses of counter automata
	Subclasses of counter automata
	Subclasses of counter automata
	Subclasses of counter automata
	Subclasses of counter automata

	A generic accelerated algorithm
	Completeness?
	Completeness?
	Completeness?

	Partial Completeness?
	Outline
	Counter machines
	Counter machines
	Counter machines
	Counter machines

	Acceleration for counter machines
	Flatness for counter machines (1/2)
	Flatness for counter machines (2/2)
	Partial Completeness?
	Outline
	Lossy/inserting counter machines
	Outline
	Cyclic Petri nets
	Reversible Petri nets
	Persistent and conflict-free Petri nets
	Outline
	Summary
	Summary

	Future work
	Appendix
	Reversal-bounded (1/2)
	Reversal-bounded (2/2)
	Test-free 2-dim counter machines
	Regular Petri nets
	BPP-nets

