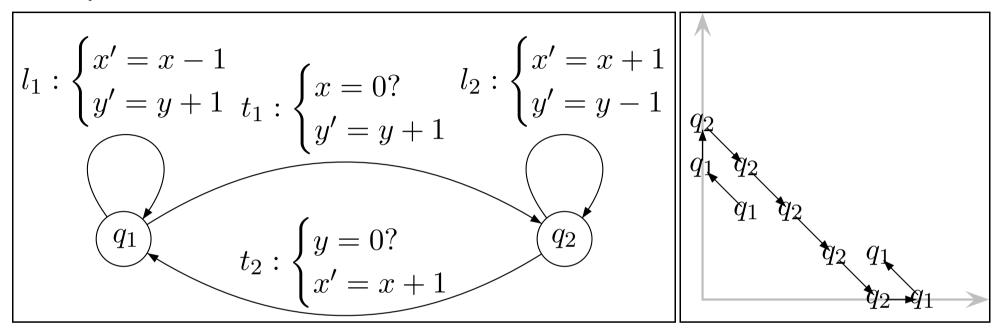
Flat counter automata almost everywhere !

Jérôme Leroux and Grégoire Sutre

Vertecs Project, IRISA / INRIA, Rennes, FRANCE MVTsi Team, CNRS / LaBRI, Bordeaux, FRANCE

Counter-automata verification

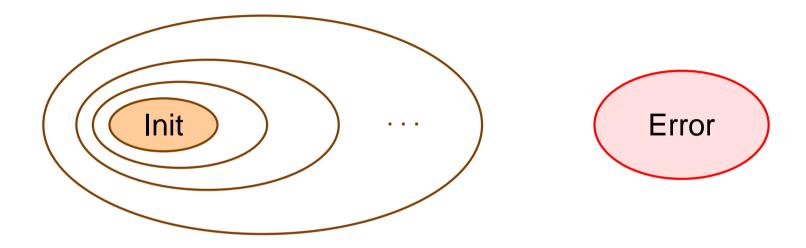
A simple counter-automata:



Counter-automata verification naturally appears in practice: \rightarrow Parametrized systems, system abstractions, communication protocols, and so on.

Counter-automata reachability

Verification can often be reduced to the reachability problem.



An agorithm in general ?

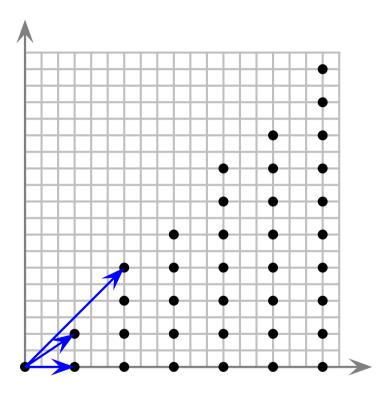
NO ! Because reachability is undecidable even for 2-counter automata.

However, there exist algorithms for subclasses of counter-automata.

Some of these algorithms use semilinear sets to symbolically represent and manipulate infinite subsets of \mathbb{Z}^n .

Semilinear sets

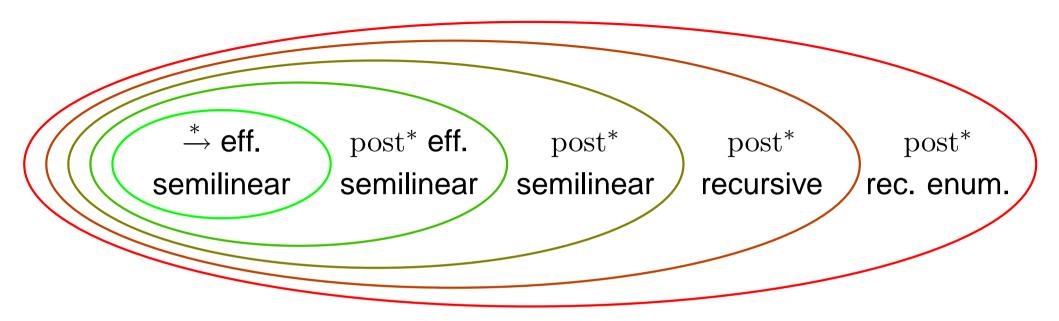
A semilinear set $X \subseteq \mathbb{Z}^m$ is a finite union of linear sets $b + \{p_1, \ldots, p_n\}^*$.

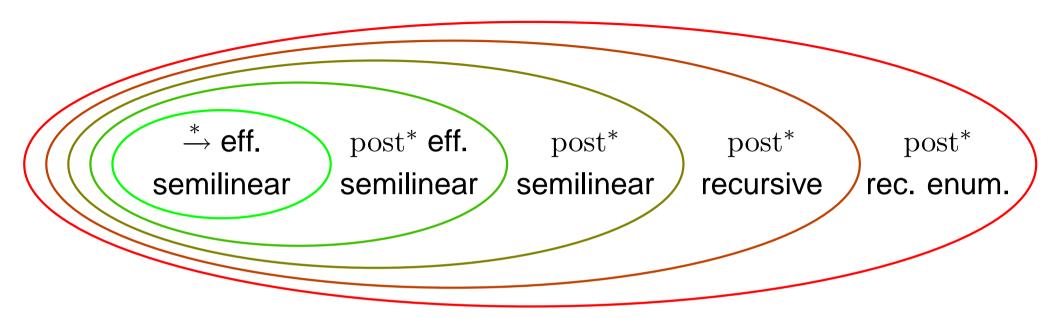


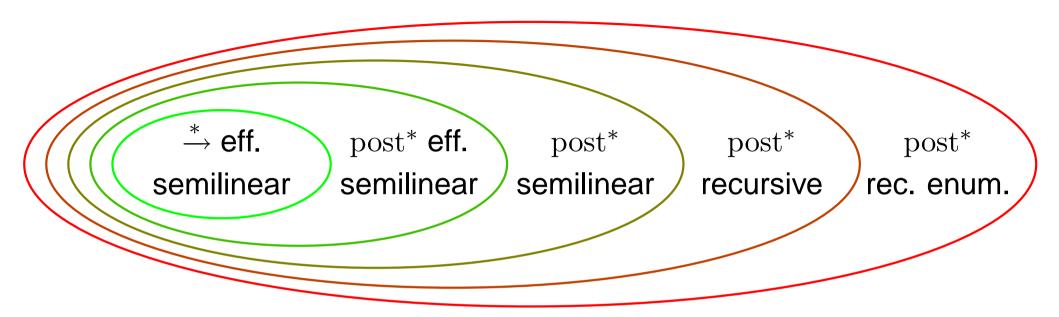
$$\{(0,0)\} + \{(3,0), (3,2), (6,6)\}^*$$

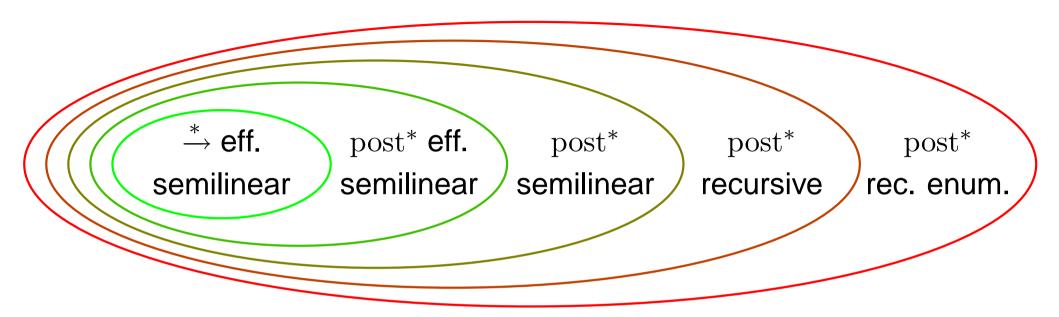
Recall that semilinear sets can be manipulated with:

 \longrightarrow Finite sets of basis and periods, Presburger formulas, digit vector automata.

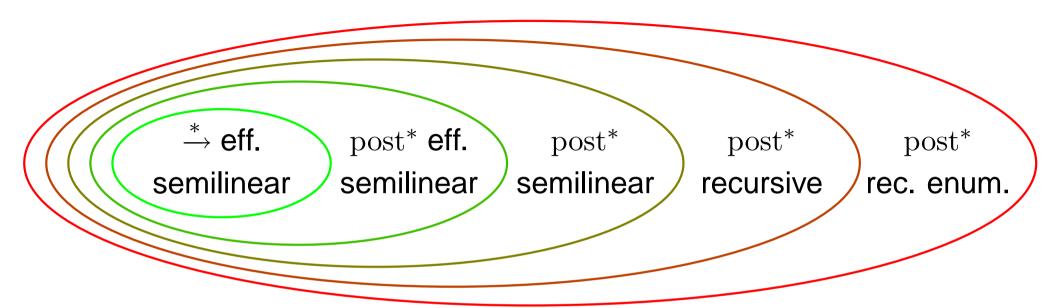








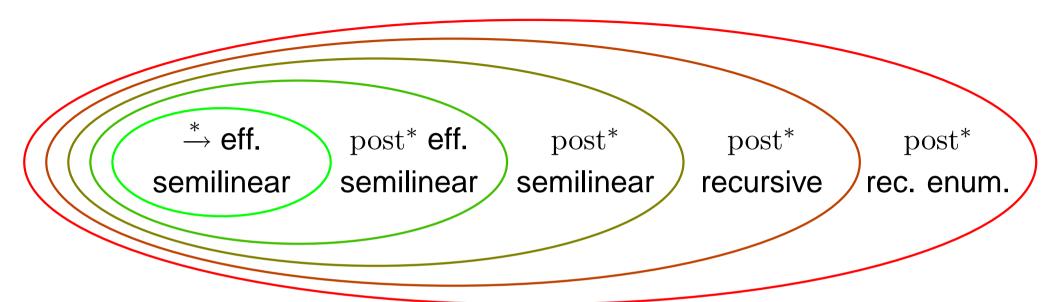
Lossy counter machines



Lossy counter machines

Cyclic Petri nets Persistent/Conflict-free Petri nets Regular Petri nets Restricted 2-counter machines Lossy test-free counter machines

Petri nets

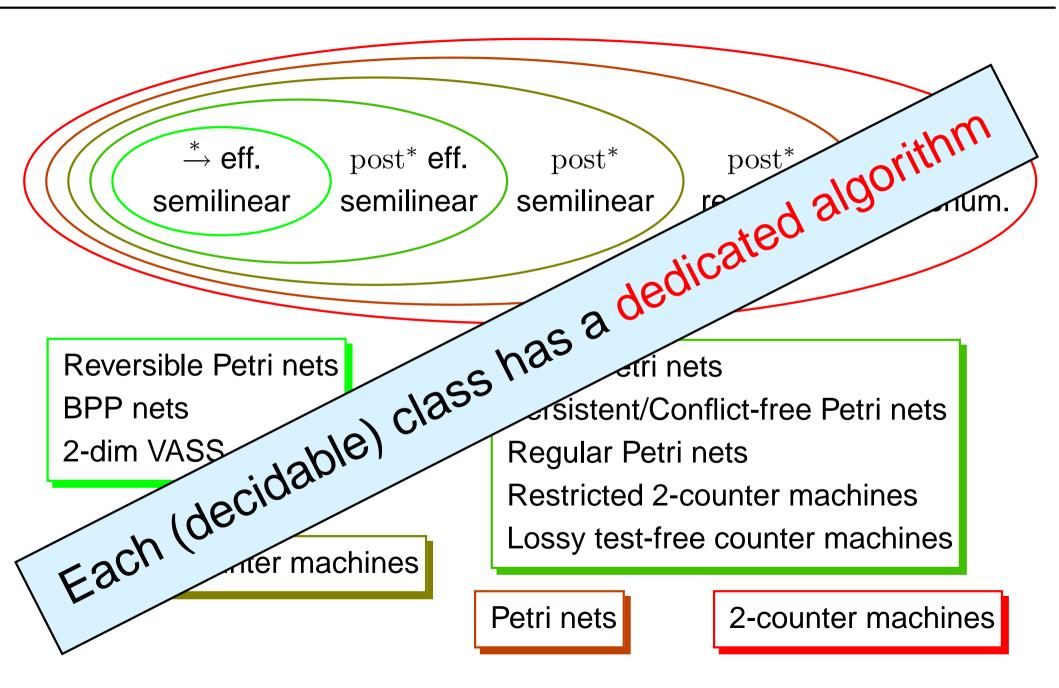


Reversible Petri nets BPP nets 2-dim VASS

Lossy counter machines

Cyclic Petri nets Persistent/Conflict-free Petri nets Regular Petri nets Restricted 2-counter machines Lossy test-free counter machines

Petri nets



A generic accelerated algorithm

In practice counter automata are not exactly in a known subclass. \rightarrow we are interested in semi-algorithms for general classes.

Input: A counter automaton S.

Output: The global reachability relation $\xrightarrow{*}$.

let $R \leftarrow Id$ and repeat forever

select one of the following tasks:

- if $\xrightarrow{T} \cdot R \subseteq R$ return R
- select $\pi \in T^*$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{\pi^*} \cdot R'')$
- select $t \in T$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{t} \cdot R'')$

Input: An initialized counter automaton (S, I).

Output: The reachability set $post^*(I)$.

let $X \leftarrow I$ and repeat forever select one of the following tasks:

- if $post(T, X) \subseteq X$ return X
- select $\pi \in T^*$ and $X' \subseteq X$ let $X \leftarrow X \cup \text{post}(\pi^*, X')$
- select $t \in T$ and $X' \subseteq X$

 $\texttt{let} \ X \leftarrow X \cup \texttt{post}(t, X')$

Implemented in tools: FAST, LASH, TReX. \longrightarrow Accelerated symbolic verification works well in practice.

Completeness?

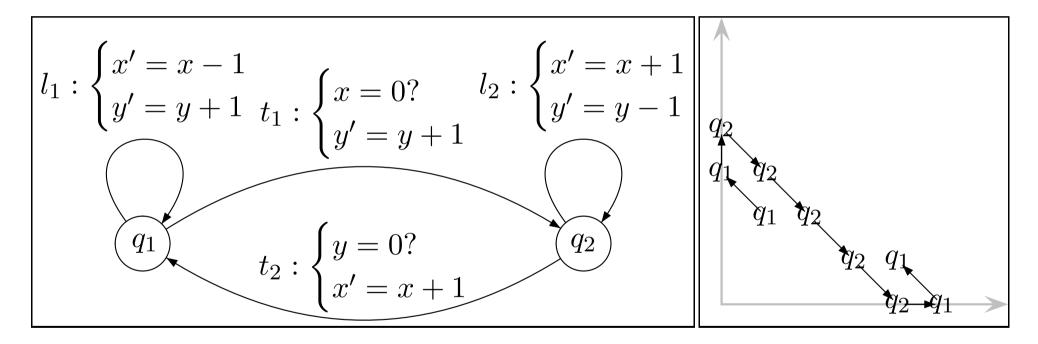
Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter automaton?

Completeness?

Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter automaton? No!

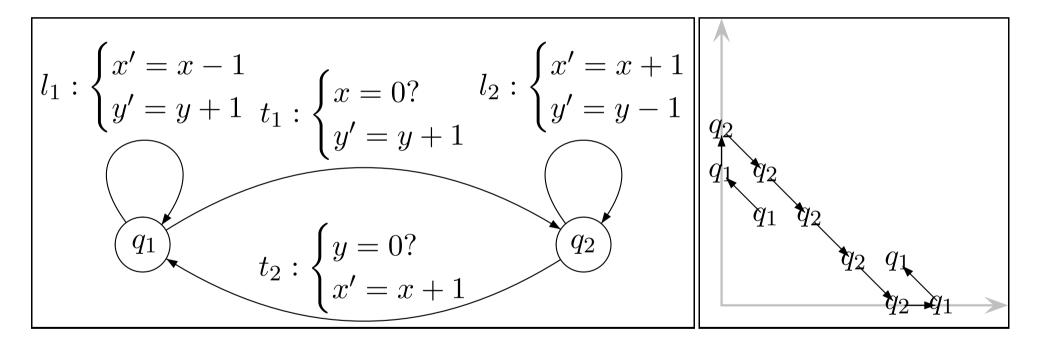


To obtain $post^*(1,0)$, we "need" the path: $(l_1)^1 t_1(l_2)^2 t_2(l_1)^3 t_1(l_2)^4 \cdots$

Completeness?

Algorithm does not terminate for non-semilinear counter automata

Does the accelerated algorithm terminate for every semilinear counter automaton? No!

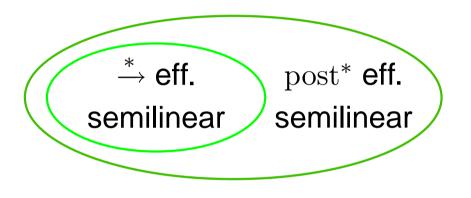


To obtain $post^*(1,0)$, we "need" the path: $(l_1)^1 t_1(l_2)^2 t_2(l_1)^3 t_1(l_2)^4 \cdots$

Does the accelerated algorithm terminate for every known semilinear class of counter automata?

Partial Completeness?

Does the accelerated algorithm terminate for every known semilinear class of counter automata?



Reversible Petri nets BPP nets Test-free 2-counter machines Cyclic Petri nets Persistent Petri nets Conflict-free Petri nets Regular Petri nets Reversal-bounded counter machines Lossy test-free counter machines

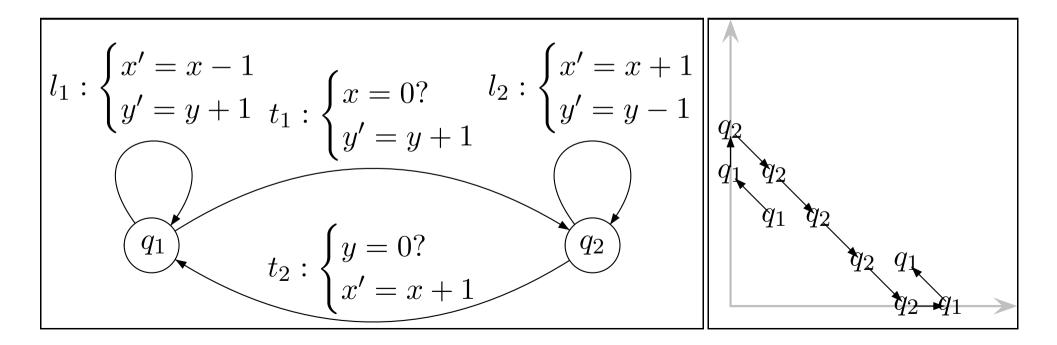
Outline

Flat counter automata almost everywhere !

- Introduction.
- \Rightarrow Counter machines, acceleration, flatness.
 - Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
 - Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Persistent and Conflict-free Petri nets.
 - Regular Petri nets.
 - BPP-nets.
 - Conclusion.

- n counters (ranging over \mathbb{N})
- Finite set of locations
- Finite set of transitions, labeled with guarded assignments
 - guards of the form $\bigwedge x_i \succeq_i \mu_i$, with $\succeq_i \in \{=, \geq\}$
 - assignments of the form $\bigwedge x'_i = x_i + \delta_i$, with $\delta_i \in \mathbb{Z}$

- n counters (ranging over \mathbb{N})
- Finite set of locations
- Finite set of transitions, labeled with guarded assignments
 - guards of the form $\bigwedge x_i \succeq_i \mu_i$, with $\succeq_i \in \{=, \geq\}$
 - assignments of the form $\bigwedge x'_i = x_i + \delta_i$, with $\delta_i \in \mathbb{Z}$



- n counters (ranging over \mathbb{N})
- Finite set of locations
- Finite set of transitions, labeled with guarded assignments
 - guards of the form $\bigwedge x_i \succeq_i \mu_i$, with $\succeq_i \in \{=, \geq\}$
 - assignments of the form $\bigwedge x'_i = x_i + \delta_i$, with $\delta_i \in \mathbb{Z}$
- Configurations: $(q, x) \in Q \times \mathbb{N}^n$
- $(q, x) \xrightarrow{t} (q', x')$ when
 - control flows from q to q' along transition t
 - counters evolve according to the guarded assignment of transition t

- n counters (ranging over \mathbb{N})
- Finite set of locations
- Finite set of transitions, labeled with guarded assignments
 - guards of the form $\bigwedge x_i \succeq_i \mu_i$, with $\succeq_i \in \{=, \geq\}$
 - assignments of the form $\bigwedge x'_i = x_i + \delta_i$, with $\delta_i \in \mathbb{Z}$
- Configurations: $(q, x) \in Q \times \mathbb{N}^n$
- $(q, x) \xrightarrow{t} (q', x')$ when
 - control flows from q to q' along transition t
 - counters evolve according to the guarded assignment of transition t

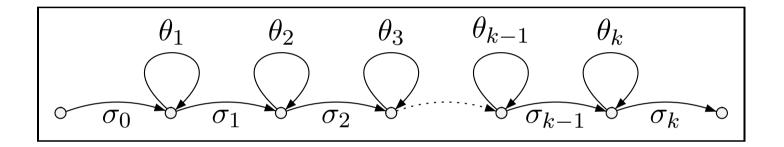
Initialized *n*-dim counter machine: (S, I)

 $\xrightarrow{\pi}$ and $post(\pi, I)$ are naturally defined for any path $\pi \in T^*$.

Global reachability relation $\xrightarrow{*}$ is $\xrightarrow{T^*}$. Reachability set $post^*(I)$ is $post(T^*, I)$.

Acceleration for counter machines

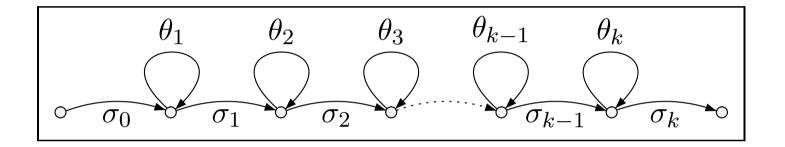
A semilinear path scheme $\rho \subseteq T^*$ is a finite union of linear path schemes $\sigma_0 \theta_1^* \sigma_1 \cdots \theta_k^* \sigma_k$.



Thm[Finkel&Leroux'02, ...]: For any SLPS ρ in a counter machine S, the reachability subrelation $\xrightarrow{\rho}$ is effectively semilinear.

Flatness for counter machines (1/2)

A semilinear path scheme $\rho \subseteq T^*$ is a finite union of linear path schemes $\sigma_0 \theta_1^* \sigma_1 \cdots \theta_k^* \sigma_k$.



A counter machine S is globally flat if $\xrightarrow{*} = \xrightarrow{\rho}$ for some SLPS ρ . An initialized counter machine (S, I) is forward flat if $post^*(I) = post(\rho, I)$ for some SLPS ρ .

 \longrightarrow Global flatness implies forward flatness for any *I*. Converse false.

- $\xrightarrow{*}$ is effectively semilinear for any globally flat counter machine S
- post*(*I*) is effectively semilinear for any semilinearly initialized forward flat counter machine (*S*, *I*)

Flatness for counter machines (2/2)

Input: A counter automaton S.

Output: The global reachability relation $\xrightarrow{*}$.

let $R \leftarrow Id$ and repeat forever select one of the following tasks:

- if $\xrightarrow{T} \cdot R \subseteq R$ return R
- select $\pi \in T^*$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{\pi^*} \cdot R'')$
- select $t \in T$ and $R', R'' \subseteq R$ let $R \leftarrow R \cup (R' \cdot \xrightarrow{t} \cdot R'')$

Input: An initialized counter automaton (S, I). **Output:** The reachability set post*(*I*).

let $X \leftarrow I$ and repeat forever select one of the following tasks:

- if $post(T, X) \subseteq X$ return X
- select $\pi \in T^*$ and $X' \subseteq X$ let $X \leftarrow X \cup post(\pi^*, X')$
- select $t \in T$ and $X' \subseteq X$

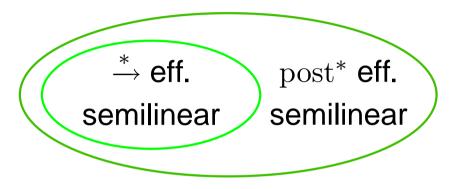
 $\texttt{let} \ X \leftarrow X \cup \texttt{post}(t, X')$

Thm: These semi-algorithms are correct, and they admit a terminating execution iff the counter machine is globally/forward flat.

 \longrightarrow The exploration strategy should be "fair" to ensure termination

Partial Completeness?

Are these known semilinear classes of counter automata flat?



Reversible Petri nets BPP nets Test-free 2-counter machines Cyclic Petri nets Persistent Petri nets Conflict-free Petri nets Regular Petri nets Reversal-bounded counter machines Lossy test-free counter machines

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines, acceleration, flatness.
- \Rightarrow Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
 - Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Persistent and Conflict-free Petri nets.
 - Regular Petri nets.
 - BPP-nets.
 - Conclusion.

Lossy/inserting counter machines

A counter machine S is called lossy (resp. inserting) when there are loss loops (resp. insertion loops) on each location and for each counter.

Thm: Every initialized lossy test-free counter machine is forward flat.

Key ideas:

- Karp&Miller's algorithm can be seen as a (deterministic) "refinement" of the generic accelerated $post^*$ computation.
- This accelerated post* semi-algorithm has a terminating execution iff the initialized counter machine is forward flat.

Thm: Every initialized inserting counter machine is forward flat.

Key ideas:

- As $Min(post^*(I))$ is finite, we have $post(\rho_m, I) = Min(post^*(I))$ for some finite SLPS ρ_m .
- Append insertion loops to ρ_m .

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines and acceleration.
- Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
- \Rightarrow Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Persistent and Conflict-free Petri nets.
 - Regular Petri nets.
 - BPP-nets.
 - Conclusion.

Cyclic Petri nets

A Petri net is a test-free counter machine "without control location", i.e. such that $Q = \{q_0\}$.

An initialized Petri net (S, I) is called cyclic if $I \subseteq post^*(X)$ for every $X \subseteq post^*(I)$.

Thm: Every cyclic initialized Petri net is forward flat.

Key idea:

- $post^*(I) = post^*(\{x_0\})$, where $x_0 \in I$.
- $\operatorname{post}^*(I) = \operatorname{Min}(\operatorname{post}^*(\{x_0\})) + (\operatorname{Min}((\operatorname{post}^*(x_0) x_0) \cap \mathbb{N}^n))^*.$

Reversible Petri nets

A Petri net S is called globally cyclic if $\xrightarrow{*}$ is symmetric.

Thm: Every globally cyclic Petri net is globally flat.

Key idea:

- $\xrightarrow{*}$ is a congruence on \mathbb{N}^n and hence it is semilinear.
- Consider $(x, x') + \{(p_1, p'_1), \dots, (p_k, p'_k)\} \subseteq \xrightarrow{*}$.
- $x \xrightarrow{\pi_0} x'$ and $x + p_i \xrightarrow{\pi_i} x' + p'_i \xrightarrow{\overline{\pi_i}} x + p_i$.

• Take
$$\rho = (\pi_1 \overline{\pi_0})^* \dots (\pi_k \overline{\pi_0})^* \cdot \pi_0$$
.

A Petri net S is called reversible if for every $t \in T$, there is $t' \in T$ with $\xrightarrow{t'} = (\xrightarrow{t})^{-1}$.

Thm: Every reversible Petri net is globally flat.

Persistent and conflict-free Petri nets

An initialized Petri net (S, I) is called persistent if for any $x \in post^*(I)$:

$$x \xrightarrow{t_1} \text{ and } x \xrightarrow{t_2} \implies x \xrightarrow{t_1 t_2}$$

Thm: Every semilinearly-initialized persistent Petri net is forward flat.

Key idea:

 Use the proof in [Landweber&Robertson'78] showing semilinearity of post* for persistent Petri nets.

A Petri net S is called conflict-free if $(S, Q \times \mathbb{N}^n)$ is persistent.

Thm: Every conflict-free Petri net is globally flat.

Key idea:

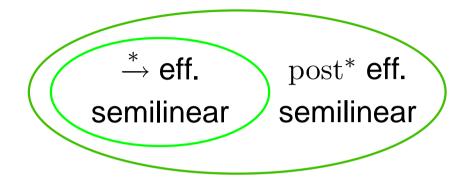
- Duplicate counters: the new counters remain unchanged (not used).
- Use the semilinear set $I = \{(x, x') \in \mathbb{N}^{2n} \mid x = x'\}.$

Outline

Flat counter automata almost everywhere !

- Introduction.
- Counter machines, acceleration, flatness.
- Flat counter machines.
 - Reversal bounded counter machines.
 - Lossy/inserting counter machines.
 - Test-free 2-dim counter machines.
- Flat Petri nets.
 - Cyclic and reversible Petri nets.
 - Persistent and Conflict-free Petri nets.
 - Regular Petri nets.
 - BPP-nets.
- \Rightarrow Conclusion.

Summary



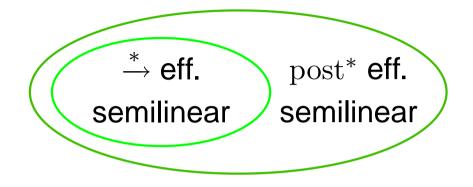
Reversible Petri nets

BPP nets

Test-free 2-counter machines

Cyclic Petri nets Persistent Petri nets Conflict-free Petri nets Regular Petri nets Reversal-bounded counter machines Lossy test-free counter machines

Summary



Reversible Petri nets Conflict-free Petri nets BPP nets

Test-free 2-counter machines

Cyclic Petri nets Persistent Petri nets Regular Petri nets Reversal-bounded counter machines Lossy test-free counter machines

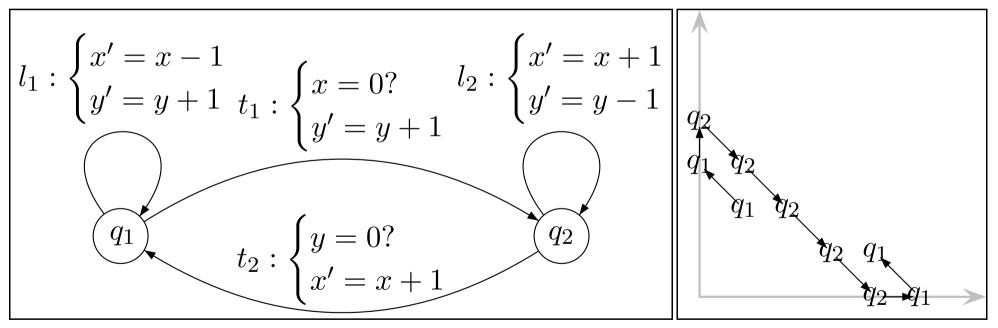
globally flat

forward flat

Future work

 \rightarrow Flatness for subclasses of 2-counter machines Remark: $post^*$ and pre^* are effectively semilinear of lossy 2-counter machines, but these counter machines are not flat in general.

 \longrightarrow Extend acceleration techniques to compute $post^*$ for:



→ Is global/forward flatness decidable for Petri nets ?

 \longrightarrow Is flatness equivalent to semilinearity of $\xrightarrow{*}$ /post* for Petri nets ?

Reversal-bounded (1/2)

Recall: *T* set of transitions, $\delta : T \to \mathbb{Z}^n$ displacement labeling. Let $\varphi_i^{\delta} : T^* \to \{+, -\}^*$ be the morphism defined by:

$$\varphi_i^{\delta}(t) = \begin{cases} + & \text{if } \delta(t)[i] > 0\\ \varepsilon & \text{if } \delta(t)[i] = 0\\ - & \text{if } \delta(t)[i] < 0 \end{cases}$$

Example: $T = \{t_1, t_2, t_3\}$, $\delta(t_1) = 3$, $\delta(t_2) = 0$, and $\delta(t_3) = -1$. Then $\varphi_1^{\delta}(t_1t_2t_3t_3) = + - -$.

An initialized counter machine (S, I) is called reversal-bounded if there exists $r \in \mathbb{N}$ such that for any $\pi \in T^*$:

$$\operatorname{post}(\pi, I) \neq \emptyset \implies \varphi_i^{\delta}(\pi) \in (\{+\}^* \cup \{-\}^*)^{\leq r}$$

An counter machine S is called globally reversal-bounded if $(S, Q \times \mathbb{N}^n)$ is reversal-bounded.

Reversal-bounded (2/2)

Thm: Every initialized reversal-bounded counter machine is forward flat. Every globally reversal-bounded counter machine is globally flat.

Key ideas:

- Reduce to the case $post(\pi, I) \neq \emptyset$ implies $\varphi_i^{\delta}(\pi) \in \{+\}^* \cup \{-\}^*$.
- Remove the intermediate guards along π . Example: $T = \{t_1, t_2\}$ with $\delta(t_1) = (1, -2)$ and $\delta(t_2) = (2, -1)$.
- Extract from the regular langage \mathcal{L} defined by the control graph, an SLPS $\rho \subseteq \mathcal{L}$ such that $\delta(\mathcal{L}) = \delta(\rho)$ with a variant of Parikh's theorem.

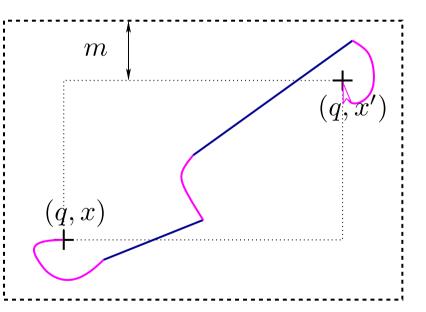
Test-free 2-dim counter machines

A counter machine S is called test-free when $\mu: T \to \{\geq\}^n$.

Thm: Every test-free 2-dim counter machine is globally flat.

Key ideas:

• Every path $\pi \in T^*$ can be re-ordered into a zigzag-free path:



- For large counter values, we obtain some kind of reversal-bounded counter machine.
- Split \mathbb{N}^n into four zones: $\{[0, c], [c, \infty[\}^2 \text{ and show flatness for each.}\}$

Regular Petri nets

A singly initialized Petri net $(S, \{x_0\})$ is said regular if the following trace language \mathcal{L} is regular:

$$\mathcal{L} = \{ \pi \in T^* \mid \text{post}(\pi, \{x_0\}) \neq \emptyset \}$$

Thm: Every regular singly initialized Petri net is forward flat.

Key idea:

Extract from L an SLPS ρ ⊆ L such that δ(L) = δ(ρ) with a variant of Parikh's theorem.

BPP-nets

A Petri net S is called a BPP-net if for any $t \in T$, we have:

 $\mu(t) = (0, \dots, 0, 1, 0, \dots, 0)$

Thm[Fribourg&Olsen'97]: Every BPP-net is globally flat.

Key idea: Let R be defined by t_1Rt_2 iff $\mu(t_1) + \delta(t_1) \ge \mu(t_2)$.

- $post(t_1, \{x\}) \neq \emptyset$ implies $post(t_1t_2, \{x\}) \neq \emptyset$ for any t_1Rt_2 .
- Moreover if $\theta = t_1 \dots t_n$ with $t_1 R \dots R t_n R t_1$, then $\delta(\theta) \ge 0$.
- Build an SLPS $\rho = \theta_1^* \dots \theta_k^*$ where $\theta_i \in T$ or $\theta_i = t_1 \dots t_n$ with t_1, \dots, t_n 2 by 2 distincts and $t_1 R \dots R t_n R t_1$.