An Optimal Automata Approach to LTL Model Checking of Probabilistic Systems

Jean-Michel Couvreur, Nasser Saheb, Grégoire Sutre

LSV, Ecole Normale Sup. de Cachan, France LaBRI, Bordeaux University, France

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

Outline

1. Introduction

- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

Motivations (practical)

- Need for probabilistic modeling:
 - randomized algorithms (distributed systems)
 - message loss in protocols, stochastic delays...
 - biological systems

Motivations (practical)

- Need for probabilistic modeling:
 - randomized algorithms (distributed systems)
 - message loss in protocols, stochastic delays...
 - biological systems
- Verification:
 - is a given property almost surely satisfied by the system?
- Focus on linear time temporal properties

Motivations (practical)

- Need for probabilistic modeling:
 - randomized algorithms (distributed systems)
 - message loss in protocols, stochastic delays...
 - biological systems
- Verification:
 - is a given property almost surely satisfied by the system?
- Focus on linear time temporal properties
- Evaluation:
 - with which probability is a given property satisfied by the system?

LTL verification on probabilistic systems

- The best known automata-based algorithm runs in double exponential time [Var85]
- There is a non-automata based algorithm running in single exponential time and polynomial space [CY95]
- Open problem [Var99]:

automata-based algorithm running in single exponential time?

LTL verification on probabilistic systems

- The best known automata-based algorithm runs in double exponential time [Var85]
- There is a non-automata based algorithm running in single exponential time and polynomial space [CY95]
- Open problem [Var99]:

automata-based algorithm running in single exponential time?

Yes

On-the-fly implementation

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

• Σ : finite alphabet

#7

- Σ : finite alphabet
- \mathcal{C}_{Σ} : set of all basic cylindric sets $w \cdot \Sigma^{\omega}$ with $w \in \Sigma^*$

- Σ : finite alphabet
- \mathcal{C}_{Σ} : set of all basic cylindric sets $w \cdot \Sigma^{\omega}$ with $w \in \Sigma^*$
- $\square \mathcal{B}_{\Sigma} : \sigma\text{-algebra (on } \Sigma^{\omega}) \text{ generated by } \mathcal{C}_{\Sigma}$
 - \blacksquare \mathcal{B}_{Σ} closed under complementation
 - \square \mathcal{B}_{Σ} closed under countable union (and intersection)

- Σ : finite alphabet
- \mathcal{C}_{Σ} : set of all basic cylindric sets $w \cdot \Sigma^{\omega}$ with $w \in \Sigma^*$
- $\blacksquare \mathcal{B}_{\Sigma} : \sigma\text{-algebra (on } \Sigma^{\omega}) \text{ generated by } \mathcal{C}_{\Sigma}$
 - \blacksquare \mathcal{B}_{Σ} closed under complementation
 - \square \mathcal{B}_{Σ} closed under countable union (and intersection)
- $(\Sigma^{\omega}, \mathcal{B}_{\Sigma})$: considered measurable space (Σ will depend on the context)

- Σ : finite alphabet
- \mathcal{C}_{Σ} : set of all basic cylindric sets $w \cdot \Sigma^{\omega}$ with $w \in \Sigma^*$
- $\blacksquare \mathcal{B}_{\Sigma} : \sigma\text{-algebra (on } \Sigma^{\omega}) \text{ generated by } \mathcal{C}_{\Sigma}$
 - \blacksquare \mathcal{B}_{Σ} closed under complementation
 - **\square** \mathcal{B}_{Σ} closed under countable union (and intersection)
- $(\Sigma^{\omega}, \mathcal{B}_{\Sigma})$: considered measurable space (Σ will depend on the context)
- \blacksquare probability measure defined on \mathcal{C}_{Σ} and extended to \mathcal{B}_{Σ}

- $\square M = \langle S, T, \alpha, \beta, \lambda, P_0, P \rangle$
 - 1. $\langle S, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - \blacksquare S : states and T : transitions
 - $\square \alpha: T \to V \text{ and } \beta: T \to V : \text{ source and target mappings } (\bullet \cdot \text{ and } \cdot \bullet)$
 - $\blacksquare \lambda: T \to \Sigma$: transition labeling

- $\blacksquare M = \langle S, T, \alpha, \beta, \lambda, P_0, P \rangle$
 - ⟨S,T,α,β,λ⟩ finite labeled graph over Σ
 S : states and T : transitions
 α : T → V and β : T → V : source and target mappings (• · and ·•)
 λ : T → Σ : transition labeling
 - 2. $P_0: S \to [0,1]$: initial probability distribution s.t. $\sum_{s \in S} P_0(s) = 1$

- $\blacksquare M = \langle S, T, \alpha, \beta, \lambda, P_0, P \rangle$
 - 1. ⟨S,T,α,β,λ⟩ finite labeled graph over Σ
 J S: states and T: transitions
 α: T → V and β: T → V: source and target mappings (• and ·•)
 λ: T → Σ: transition labeling
 - 2. $P_0: S \to [0,1]$: initial probability distribution s.t. $\sum_{s \in S} P_0(s) = 1$
 - 3. $P: T \rightarrow]0,1]$ is a transition probability function s.t. $\sum_{t \in s^{\bullet}} P(t) = 1$

$$\blacksquare M = \langle S, T, \alpha, \beta, \lambda, P_0, P \rangle$$

2.
$$P_0: S \to [0,1]$$
: initial probability distribution s.t. $\sum_{s \in S} P_0(s) = 1$

3.
$$P: T \rightarrow]0,1]$$
 is a transition probability function s.t. $\sum_{t \in s^{\bullet}} P(t) = 1$

■ μ_M probability measure over $(T^{\omega}, \mathcal{B}_T)$ defined by $\mu_M(T^{\omega}) = 1$, and

$$\mu_M(t_0t_1\cdots t_n\cdot T^{\omega}) = \begin{cases} P_0({}^{\bullet}t_0)P(t_0)P(t_1)\cdots P(t_n) \text{ if } t_0t_1\cdots t_n \in Path^*(M) \\ 0 \text{ otherwise.} \end{cases}$$

#8

■ initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$

■ $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

- Initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$
- $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

Notation. $M[s] \cong M$ where $P_0(s) = 1$ (i.e. *s* unique initial state)

- initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$
- $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

Notation. $M[s] \cong M$ where $P_0(s) = 1$ (i.e. *s* unique initial state)

 $\square \mu_M = \sum_{s \in S_0} P_0(s) \cdot \mu_{M[s]}$

- Initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$
- $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

Notation. $M[s] \cong M$ where $P_0(s) = 1$ (i.e. *s* unique initial state)

$$\square \mu_M = \sum_{s \in S_0} P_0(s) \cdot \mu_{M[s]}$$

• when L measurable, $\mu_{M[s]}(L) = \sum_{t \in s^{\bullet}} P(t) \cdot \mu_{M[t^{\bullet}]}(t^{-1}L)$

- Initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$
- $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

Notation. $M[s] \cong M$ where $P_0(s) = 1$ (i.e. *s* unique initial state)

$$\square \mu_M = \sum_{s \in S_0} P_0(s) \cdot \mu_{M[s]}$$

• when L measurable, $\mu_{M[s]}(L) = \sum_{t \in s^{\bullet}} P(t) \cdot \mu_{M[t^{\bullet}]}(t^{-1}L)$

Proposition

• Let $Path_{max}^*$ denote the set of all finite paths ending in a maximal SCC. We have $\mu_M(Path_{max}^* \cdot T^{\omega}) = 1$

- initial states: $S_0 = \{s \in S \mid P_0(s) \neq 0\}$
- $Path^{\omega}(M)$ is measurable and $\mu_M(Path^{\omega}(M)) = 1$

Notation. $M[s] \cong M$ where $P_0(s) = 1$ (i.e. *s* unique initial state)

$$\square \mu_M = \sum_{s \in S_0} P_0(s) \cdot \mu_{M[s]}$$

• when L measurable, $\mu_{M[s]}(L) = \sum_{t \in s^{\bullet}} P(t) \cdot \mu_{M[t^{\bullet}]}(t^{-1}L)$

Proposition

- Let $Path_{max}^*$ denote the set of all finite paths ending in a maximal SCC. We have $\mu_M(Path_{max}^* \cdot T^{\omega}) = 1$
- Let ρ be a finite path contained in some maximal SCC *C*, and let $s \in C$. We have $\mu_{M[s]}((T^* \cdot \rho)^{\omega}) = 1$.

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f\mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f \mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

\blacksquare models are in Σ^ω

 $\blacksquare \lor$ and \neg interpreted as usual

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f \mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

• models are in
$$\Sigma^{\omega}$$

 \blacksquare \lor and \neg interpreted as usual

$$\square abca \dots \models a \quad but \quad bbca \dots \not\models a$$

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f \mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

- \blacksquare models are in Σ^ω
- $\blacksquare \lor$ and \neg interpreted as usual
- $\square abca \dots \models a \quad but \quad bbca \dots \not\models a$
- $\square abca \dots \models Xb$ but $abca \dots \not\models Xc$

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f \mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

- \blacksquare models are in Σ^ω
- $\blacksquare \lor$ and \neg interpreted as usual

$$\square abca \dots \models a \quad but \quad bbca \dots \not\models a$$

$$\square abca \dots \models Xb$$
 but $abca \dots \not\models Xc$

 \blacksquare aaaaaaaaabca $\cdots \models a Ub$ but aaaaaaaabca $\cdots \nvDash a Uc$

$$f ::= a \mid f \lor f \mid \neg f \mid \mathsf{X}f \mid f \mathsf{U}f \qquad (\text{with } a \in \Sigma)$$

- \blacksquare models are in Σ^ω
- $\blacksquare \lor$ and \neg interpreted as usual

$$\square abca \dots \models a \quad but \quad bbca \dots \not\models a$$

$$\square abca \dots \models Xb$$
 but $abca \dots \not\models Xc$

- \blacksquare aaaaaaaaabca $\cdots \models a Ub$ but aaaaaaaabca $\cdots \nvDash a Uc$
- $\blacksquare L(f)$: set of words $w \in \Sigma^{\omega}$ such that $w \models f$

- $\blacksquare A = \langle Q, T, \alpha, \beta, \lambda, Q_0, Acc \rangle$
 - 1. $\langle Q, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - 2. $Q_0 \subseteq Q$: initial locations
 - 3. $acc \subseteq 2^T$: acceptance condition

- $\blacksquare A = \langle Q, T, \alpha, \beta, \lambda, Q_0, Acc \rangle$
 - 1. $\langle Q, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - 2. $Q_0 \subseteq Q$: initial locations
 - 3. $acc \subseteq 2^T$: acceptance condition
- a run $\rho \in Path^{\omega}(A)$ is accepting if $\{t \mid \rho \in (T^* \cdot t)^{\omega}\} \in Acc$

- $\blacksquare A = \langle Q, T, \alpha, \beta, \lambda, Q_0, Acc \rangle$
 - 1. $\langle Q, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - 2. $Q_0 \subseteq Q$: initial locations
 - 3. $acc \subseteq 2^T$: acceptance condition
- a run $\rho \in Path^{\omega}(A)$ is accepting if $\{t \mid \rho \in (T^* \cdot t)^{\omega}\} \in Acc$
- \blacksquare a word w is accepted if $w=\lambda(\rho)$ for some accepting run ρ

- $\blacksquare A = \langle Q, T, \alpha, \beta, \lambda, Q_0, Acc \rangle$
 - 1. $\langle Q, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - 2. $Q_0 \subseteq Q$: initial locations
 - 3. $acc \subseteq 2^T$: acceptance condition
- a run $\rho \in Path^{\omega}(A)$ is accepting if $\{t \mid \rho \in (T^* \cdot t)^{\omega}\} \in Acc$
- \blacksquare a word w is accepted if $w=\lambda(\rho)$ for some accepting run ρ
- L(A) : set of accepted words

- $\blacksquare A = \langle Q, T, \alpha, \beta, \lambda, Q_0, Acc \rangle$
 - 1. $\langle Q, T, \alpha, \beta, \lambda \rangle$ finite labeled graph over Σ
 - 2. $Q_0 \subseteq Q$: initial locations
 - 3. $acc \subseteq 2^T$: acceptance condition
- a run $\rho \in Path^{\omega}(A)$ is accepting if $\{t \mid \rho \in (T^* \cdot t)^{\omega}\} \in Acc$
- \blacksquare a word w is accepted if $w=\lambda(\rho)$ for some accepting run ρ
- L(A) : set of accepted words

Theorem [Var85]

For any ω -automaton A, L(A) is measurable.

From LTL to ω -automata

Theorem [VW94]

Given an LTL formula f, one can build a Büchi ω -automaton A_f , with at most $2^{O(|f|)}$ locations, such that $L(f) = L(A_f)$.

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f?

LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f?

• " $M \models f$ almost surely" $\widehat{=}$

 $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) = 1$

LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f?

• "
$$M \models f$$
 almost surely" $\widehat{=}$

$$\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) = 1$$

• "
$$M \models f$$
 with positive probability" $\widehat{=}$
 $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) > 0$

LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f?

• "
$$M \models f$$
 almost surely" $\widehat{=}$
 $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) = 1$
• " $M \models f$ with positive probability" $\widehat{=}$
 $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) > 0$

LTL probabilistic verification problem is PSPACE-complete [CY95]

LTL probabilistic verification problem:

Given M and f, does M almost surely satisfy f?

• "
$$M \models f$$
 almost surely" $\widehat{=}$
 $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) =$
• " $M \models f$ with positive probability" $\widehat{=}$

$$\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f))) > 0$$

1

- LTL probabilistic verification problem is PSPACE-complete [CY95]
- LTL probabilistic evaluation problem:

Given M and f, compute $\mu_M(Path^{\omega}(M) \cap \lambda^{-1}(L(f)))$

To check whether $M \models f$ with positive probability:

• compute a Büchi automaton A_f with $L(A_f) = L(f)$

 $|A_f|$ in $2^{O(|f|)}$

To check whether $M \models f$ with positive probability:

• compute a Büchi automaton A_f with $L(A_f) = L(f)$

 $|A_f|$ in $2^{O(|f|)}$

 \blacksquare compute a deterministic Street automaton A_f' with $L(A_f') = L(f)$ $|A_f'| \mbox{ in } 2^{2^{O(|f|)}}$

To check whether $M \models f$ with positive probability:

• compute a Büchi automaton A_f with $L(A_f) = L(f)$

 $|A_f|$ in $2^{O(|f|)}$

- \blacksquare compute a deterministic Street automaton A_f' with $L(A_f') = L(f)$ $|A_f'| \mbox{ in } 2^{2^{O(|f|)}}$
- compute the probabilistic system $M \otimes A'_f$ (synchronized product) $|M \otimes A'_f|$ in $O(|M|) \cdot 2^{2^{O(|f|)}}$

To check whether $M \models f$ with positive probability:

• compute a Büchi automaton A_f with $L(A_f) = L(f)$

 $|A_f|$ in $2^{O(|f|)}$

- \blacksquare compute a deterministic Street automaton A_f' with $L(A_f') = L(f)$ $|A_f'| \mbox{ in } 2^{2^{O(|f|)}}$
- compute the probabilistic system $M \otimes A'_f$ (synchronized product) $|M \otimes A'_f|$ in $O(|M|) \cdot 2^{2^{O(|f|)}}$

 \blacksquare check whether $M \otimes A'_f$ has an accepted maximal SCC

in time $O(|M|) \cdot 2^{2^{O(|f|)}}$

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

We use a similar approach:

I translate f into a non-deterministic ω -automaton

$|A_f|$ in $O(2^{|f|})$

We use a similar approach:

I translate f into a non-deterministic ω -automaton

 $|A_f|$ in $O(2^{|f|})$

• compute the ω -automaton $M \otimes A_f$ (synchronized product)

 $|M \otimes A_f|$ in $O(|M| \cdot 2^{|f|})$

We use a similar approach:

I translate f into a non-deterministic ω -automaton

 $|A_f|$ in $O(2^{|f|})$

 \square compute the ω -automaton $M \otimes A_f$ (synchronized product)

 $|M \otimes A_f|$ in $O(|M| \cdot 2^{|f|})$

I look for a "suitable" SCC in $M \otimes A_f$

in time $O(|M| \cdot 2^{|f|})$

We use a similar approach:

I translate f into a non-deterministic ω -automaton

 $|A_f|$ in $O(2^{|f|})$

 \square compute the ω -automaton $M \otimes A_f$ (synchronized product)

 $|M \otimes A_f|$ in $O(|M| \cdot 2^{|f|})$

I look for a "suitable" SCC in $M \otimes A_f$

in time $O(|M| \cdot 2^{|f|})$

 \blacksquare based on properties of the translation from LTL to ω -automaton

Properties of ω -automata coming from LTL

Optimized tableau based translation (slight variation of [Cou00])

Proposition

- Given an LTL formula *f*, one can build a multi-Büchi ω-automaton A_f such that L(f) = L(A_f), and whose size and computation time are in O(|Σ|) ⋅ 2^{O(|f|)}.
- Moreover *A_f* is unambiguous and separated on each SCC.

Properties of ω -automata coming from LTL

Optimized tableau based translation (slight variation of [Cou00])

Proposition

- Given an LTL formula *f*, one can build a multi-Büchi ω-automaton A_f such that L(f) = L(A_f), and whose size and computation time are in O(|Σ|) ⋅ 2^{O(|f|)}.
- Moreover A_f is unambiguous and separated on each SCC.

where:

■ A is unambiguous $\hat{=}$

 $t_1 \neq t_2 \land \bullet t_1 = \bullet t_2 \land \lambda(t_1) = \lambda(t_2) \quad \Rightarrow \quad L(A[t_1^{\bullet}]) \cap L(A[t_2^{\bullet}]) = \emptyset$

Properties of ω -automata coming from LTL

Optimized tableau based translation (slight variation of [Cou00])

Proposition

- Given an LTL formula *f*, one can build a multi-Büchi ω-automaton A_f such that L(f) = L(A_f), and whose size and computation time are in O(|Σ|) ⋅ 2^{O(|f|)}.
- Moreover A_f is unambiguous and separated on each SCC.

where:

■ A is unambiguous $\hat{=}$

 $t_1 \neq t_2 \land {}^{\bullet}t_1 = {}^{\bullet}t_2 \land \lambda(t_1) = \lambda(t_2) \quad \Rightarrow \quad L(A[t_1]) \cap L(A[t_2]) = \emptyset$

■ A is separated $\hat{=} q_1 \neq q_2 \implies L(A[q_1]) \cap L(A[q_2]) = \emptyset$

Synchronized product of M and A_f

$$M \otimes A = \langle S \times Q, T_{\otimes}, \alpha_{\otimes}, \beta_{\otimes}, \lambda_{\otimes}, S_0 \times Q_0, Acc_{\otimes} \rangle$$
 where:

$$T_{\otimes} = \{ (t_M, t_A) \in T_M \times T_A \mid \lambda_M(t_M) = \lambda_A(t_A) \}$$

$$\bullet(t_M, t_A) = (\bullet t_M, \bullet t_A) \text{ and } (t_M, t_A)^{\bullet} = (t_M^{\bullet}, t_A^{\bullet})$$

- $\blacksquare \lambda_{\otimes}$ is the projection from T_{\otimes} to T_M
- $\blacksquare U \in Acc_{\otimes} \text{ iff the projection of } U \text{ on } A \text{ is in } Acc$

Synchronized product of M and A_f

$$M \otimes A = \langle S \times Q, T_{\otimes}, \alpha_{\otimes}, \beta_{\otimes}, \lambda_{\otimes}, S_0 \times Q_0, Acc_{\otimes} \rangle$$
 where:

$$\square T_{\otimes} = \{(t_M, t_A) \in T_M \times T_A \mid \lambda_M(t_M) = \lambda_A(t_A)\}$$

$$\bullet^{\bullet}(t_M, t_A) = (\bullet^{\bullet}t_M, \bullet^{\bullet}t_A) \text{ and } (t_M, t_A)^{\bullet} = (t_M^{\bullet}, t_A^{\bullet})$$

- $\blacksquare \lambda_{\otimes}$ is the projection from T_{\otimes} to T_M
- $\blacksquare U \in Acc_{\otimes} \text{ iff the projection of } U \text{ on } A \text{ is in } Acc$

Proposition

$$\square L(M \otimes A) = Path^{\omega}(M) \cap \lambda_M^{-1}(L(A))$$

Synchronized product of M and A_f

$$M \otimes A = \langle S \times Q, T_{\otimes}, \alpha_{\otimes}, \beta_{\otimes}, \lambda_{\otimes}, S_0 \times Q_0, Acc_{\otimes} \rangle$$
 where:

$$\square T_{\otimes} = \{(t_M, t_A) \in T_M \times T_A \mid \lambda_M(t_M) = \lambda_A(t_A)\}$$

$$\bullet^{\bullet}(t_M, t_A) = (\bullet^{\bullet}t_M, \bullet^{\bullet}t_A) \text{ and } (t_M, t_A)^{\bullet} = (t_M^{\bullet}, t_A^{\bullet})$$

- $\blacksquare \lambda_{\otimes}$ is the projection from T_{\otimes} to T_M
- $\blacksquare U \in Acc_{\otimes} \text{ iff the projection of } U \text{ on } A \text{ is in } Acc$

Proposition

- $\square L(M \otimes A) = Path^{\omega}(M) \cap \lambda_M^{-1}(L(A))$
- $M \models f$ with positive probability iff $\mu_{M[s]}(L(M \otimes A[s,q])) > 0$ from an initial location $(s,q) \in S_0 \times Q_0$

#20

Synchronized product of M and A_f (cont'd)

 $\blacksquare L(s,q) \mathbin{\widehat{=}} L(M \!\otimes\! A[s,q])$

$$L(s,q) = \bigcup_{(t_M,t_A) \in (s,q)^{\bullet}} t_M \cdot L(t_M^{\bullet}, t_A^{\bullet})$$

$$\blacksquare V(s,q) \widehat{=} \mu_{M[s]}(L(s,q))$$

V(s,q) > 0 iff V(s',q') > 0 for some (s',q') reachable from (s,q)

Synchronized product of M and A_f (cont'd)

 $\blacksquare L(s,q) \mathrel{\widehat{=}} L(M \!\otimes\! A[s,q])$

$$L(s,q) = \bigcup_{(t_M,t_A)\in(s,q)^{\bullet}} t_M \cdot L(t_M^{\bullet}, t_A^{\bullet})$$

$$\quad \blacksquare \ V(s,q) \widehat{=} \ \mu_{M[s]}(L(s,q))$$

V(s,q) > 0 iff V(s',q') > 0 for some (s',q') reachable from (s,q)

- An SCC *C* of $M \otimes A$ is called:
 - null if V(s,q) = 0 for all $(s,q) \in C$
 - persistent if C is an SCC which is maximal among the non null SCCs,
 - transient otherwise.

Synchronized product of M and A_f (cont'd)

 $\blacksquare L(s,q) \mathbin{\widehat{=}} L(M \!\otimes\! A[s,q])$

$$L(s,q) = \bigcup_{(t_M,t_A)\in(s,q)^{\bullet}} t_M \cdot L(t_M^{\bullet}, t_A^{\bullet})$$

$$\quad \blacksquare \ V(s,q) \widehat{=} \ \mu_{M[s]}(L(s,q))$$

V(s,q) > 0 iff V(s',q') > 0 for some (s',q') reachable from (s,q)

- **An SCC** C of $M \otimes A$ is called:
 - null if V(s,q) = 0 for all $(s,q) \in C$
 - persistent if C is an SCC which is maximal among the non null SCCs,
 - transient otherwise.
- Goal: check the existence of a reachable non null SCC

- $\blacksquare M \otimes A)_{|C} \cong \text{ "restriction of } M \otimes A \text{ to } C$
- $\blacksquare L_C(s,q) = L((M \otimes A)_{|C}[s,q])$
- $V_C(s,q) = \mu_{M[s]}(L_C(s,q))$

- $\blacksquare M \otimes A)_{|C} \cong \text{"restriction of } M \otimes A \text{ to } C$
- $\square L_C(s,q) = L((M \otimes A)_{|C}[s,q])$
- $V_C(s,q) = \mu_{M[s]}(L_C(s,q))$
- *C* is locally positive if $V_C(s,q) > 0$ for all $(s,q) \in C$

#22

- $\blacksquare M \otimes A)_{|C} \cong \text{"restriction of } M \otimes A \text{ to } C$
- $\square L_C(s,q) = L((M \otimes A)_{|C}[s,q])$
- $V_C(s,q) = \mu_{M[s]}(L_C(s,q))$
- *C* is locally positive if $V_C(s,q) > 0$ for all $(s,q) \in C$

persistent \Rightarrow locally positive \Rightarrow non null

- $\blacksquare M \otimes A)_{|C} \cong \text{"restriction of } M \otimes A \text{ to } C$
- $\square L_C(s,q) = L((M \otimes A)_{|C}[s,q])$
- $V_C(s,q) = \mu_{M[s]}(L_C(s,q))$
- *C* is locally positive if $V_C(s,q) > 0$ for all $(s,q) \in C$

persistent \Rightarrow locally positive \Rightarrow non null

■ $M \models f$ with positive probability iff there is a locally positive SCC reachable from an initial location (s,q) in $S_0 \times Q_0$

Caracterisation of locally positive SCCs

- \blacksquare C is accepted if its set of transitions is in Acc_{\otimes}
- \square *C* is complete if every finite path of *M* starting in *C* is contained in *C*

Caracterisation of locally positive SCCs

- \blacksquare *C* is accepted if its set of transitions is in Acc_{\otimes}
- \square *C* is complete if every finite path of *M* starting in *C* is contained in *C*

Proposition

If A is multi-Büchi or unambiguous, then

locally positive \Leftrightarrow *accepted* \land *complete*

Caracterisation of locally positive SCCs

 \blacksquare *C* is accepted if its set of transitions is in Acc_{\otimes}

 \square *C* is complete if every finite path of *M* starting in *C* is contained in *C*

Proposition

If A is multi-Büchi or unambiguous, then

locally positive \Leftrightarrow *accepted* \land *complete*

Proposition

- when *A* is multi-Büchi, acceptance checking is in $O(|Acc| \cdot |C|)$
- when A is unambiguous and separated on each SCC, completeness checking is in O(|C|)

Main result

Theorem

Given an LTL formula f, checking whether $M \models f$ with positive probability can be done in $O(|M| \cdot |f| \cdot 2^{|f|})$.

Evaluation

Proposition

■ If A is unambiguous then

$$V(s,q) = \sum_{(t_M,t_A)\in(s,q)^{\bullet}} P(t_M) \cdot V(t_M^{\bullet}, t_A^{\bullet})$$

Evaluation

Proposition

■ If A is unambiguous then

$$V(s,q) = \sum_{(t_M,t_A)\in(s,q)^{\bullet}} P(t_M) \cdot V(t_M^{\bullet}, t_A^{\bullet})$$

- Moreover, for every persistent SCC C,
 - If C is deterministic then V(s,q) = 1 for all $s, q \in C$
 - if C is separated then $\sum_{q:(s,q)\in C} V(s,q) = 1$ for all $s \in C$

Evaluation

Proposition

■ If A is unambiguous then

$$V(s,q) = \sum_{(t_M,t_A)\in(s,q)^{\bullet}} P(t_M) \cdot V(t_M^{\bullet}, t_A^{\bullet})$$

- Moreover, for every persistent SCC C,
 - If C is deterministic then V(s,q) = 1 for all $s,q \in C$
 - if C is separated then $\sum_{q:(s,q)\in C} V(s,q) = 1$ for all $s \in C$
- Equation system decomposed and solved for each component

Outline

- 1. Introduction
- 2. Probabilistic systems
- 3. Linear Temporal Logic and ω -automata
- 4. LTL verification and evaluation problems
- 5. Our approach
- 6. Conclusion

Experimentation: the ProbaTaf tool

- Probabilistic systems described by bounded Petri nets
- LTL formulas on the Petri net: transitions, markings and "dead"
- explicit description of the probabilistic system
- symbolic BDD-based representation of ω -automata
- on-the-fly verification algorithm [Cou99]
- simple Gauss elimination algorithm for evaluation
- application to several examples:
 - biased dice game [KY76]
 - randomized election algorithm [MSZ03]

#28

Experimentation: the ProbaTaf tool

000 Probataf-0.27
time (RdP Eval) = 166 ms
System :/Users/couvreur/Desktop/recup/tree4.net
state = 750, transition = 2842
time (LTL Eval) =251 ms
F("L0" && X(dead))
Probability : 0.1428571428571428
time (LTL Eval) =229 ms
F("L1" && X(dead))
Probability : 0.21428571428571425
time (LTL Eval) =243 ms
F("L2" && X(dead))
Probability : 0.2142857142857143
Load Reload Check Eval F("L2" && X(dead))

Conclusion and perspectives

- Optimal automata-based approach for LTL verification
 - Allows evaluation
- **Based** on properties of ω -automata: separation and unambiguity
- Java implementation of the method

Conclusion and perspectives

- Optimal automata-based approach for LTL verification
 - Allows evaluation
- **Based** on properties of ω -automata: separation and unambiguity
- Java implementation of the method

Future work

- precision of the solver
- infinite-state probabilistic systems
- stochastic systems

References

- [Cou99] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In *FM'99—Formal Methods, Volume I*, volume 1708 of *Lecture Notes in Computer Science*, pages 253–271. Springer, 1999.
- [Cou00] Jean-Michel Couvreur. Un point de vue symbolique sur la logique temporelle linéaire. In *Actes du Colloque LaCIM 2000*, volume 27 of *Publications du LaCIM*, pages 131–140. Université du Québec à Montréal, August 2000.
- [CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. *Journal of the ACM*, 42(4):857–907, July 1995.
- [KY76] Knuth and Yao. The complexity of nonuniform random number generation. In *Algorithms and Complexity: New Directions and Recent Results, Ed. J. F. Traub.* Academic Press, 1976.
- [MSZ03] Yves Métivier, Nasser Saheb, and Akka Zemmari. A uniform randomized election in trees. In *SIROCCO 10*, volume 17 of *Proceedings in Informatics*, pages 259–274. Carleton Scientific, 2003.
- [Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In *Proc. 26th* IEEE Symp. Foundations of Computer Science (FOCS'85), Portland, OR, USA, Oct. 1985, pages 327–338, 1985.
- [Var99] M. Y. Vardi. Probabilistic linear-time model checking: An overview of the automata-theoretic approach. In Proc. 5th Int. AMAST Workshop Formal Methods for Real-Time and Probabilistic Systems (ARTS'99), Bamberg, Germany, May 1999, volume 1601 of Lecture Notes in Computer Science, pages 265–276. Springer, 1999.
- [VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. *Information and Computation*, 115(1):1–37, 1994.