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Verification of Concurrent Systems (1)

ê Concurrent systems everywhere!

ê Hard to design correctly
Complex and unforeseen interactions between components
Need for to automated verification tools
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Verification of Concurrent Systems (2)

Model-checking

M
?

|= ϕ

Need modelsM with
enough expressive power to represent the system to verify
support for automatic verification (model-checking decidable)

Vector Addition Systems ' Petri nets
Classical model for (parametrized) concurrent systems

I Rendez-vous synchronization
I Asynchronous communication via unbounded unordered buffers
I Dynamic process creation

Fundamental class that is often used as a toolbox

ê Can we have more expressive power while retaining decidability?
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Vector Addition Systems with States in a Nutshell

A vector addition system with states is a finite-state automaton that is

equipped with finitely many counters x, y, . . .

counters range over the set N of natural numbers

counter operations are:
I increment:

x := x + 1

I guarded decrement:

assert(x > 0) ; x := x− 1

Vector addition systems with states are similar to Petri nets
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Vector Addition Systems — Syntax

Definition
A vector addition system is a pair 〈v init,A〉 where

v init ∈ Nd : initial vector
A ⊆ Zd : finite set of actions

A = {(−1, 2), (2,−1)}
v init = (1, 1)

(1, 1)

(−1, 2)

(2,−1)
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Vector Addition Systems — Semantics

The semantics of a VAS 〈v init,A〉 is the transition system 〈Nd , v init,→〉
whose transition relation → is given by

a ∈ A ∧ v ′ = v + a ≥ 0
v → v ′

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

(1, 1)

(−1, 2)

(2,−1)
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Vector Addition Systems with States — Syntax

Definition
A vector addition system with states is a tuple 〈Q, qinit, v init,∆〉 where

Q : finite set of states
qinit ∈ Q : initial state
v init ∈ Nd : initial vector
∆ ⊆ Q × Zd × Q : finite set of transition rules
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Q = {p, q}
qinit = p
v init = (1, 0, 0)

∆ = {(p, (−1, 1, 0), p), . . .}
p q
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0
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Vector Addition Systems with States — Syntax

Definition
A vector addition system with states is a tuple 〈Q, qinit, v init,∆〉 where

Q : finite set of states
qinit ∈ Q : initial state
v init ∈ Nd : initial vector
∆ ⊆ Q × Zd × Q : finite set of transition rules

VAS

〈v init,A〉
'

VASS

〈{q}, q, v init, {q} × A× {q}〉
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Vector Addition Systems with States — Semantics

The semantics of a VASS 〈Q, qinit, v init,∆〉 is the transition system
〈Q × Nd , (qinit, v init),→〉 whose transition relation → is given by

(q, a, q′) ∈ ∆ ∧ v ′ = v + a ≥ 0
(q, v)→ (q′, v ′)

(p, 1, 0, 0) (p, 0, 1, 0)

(q, 0, 1, 0)(q, 2, 0, 0)

(p, 2, 0, 1) (p, 1, 1, 1) (p, 0, 2, 1)

(q, 0, 2, 1)(q, 2, 1, 1)(q, 4, 0, 1)

(p, 4, 0, 2) (p, 3, 1, 2)

p q
(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

J. Leroux, M. Praveen, G. Sutre Boundedness for Pushdown VAS Jan. 2014 10 / 42



Vector Addition Systems with States — Semantics

The semantics of a VASS 〈Q, qinit, v init,∆〉 is the transition system
〈Q × Nd , (qinit, v init),→〉 whose transition relation → is given by

(q, a, q′) ∈ ∆ ∧ v ′ = v + a ≥ 0
(q, v)→ (q′, v ′)

(p, 1, 0, 0) (p, 0, 1, 0)

(q, 0, 1, 0)(q, 2, 0, 0)

(p, 2, 0, 1) (p, 1, 1, 1) (p, 0, 2, 1)

(q, 0, 2, 1)(q, 2, 1, 1)(q, 4, 0, 1)

(p, 4, 0, 2) (p, 3, 1, 2)

p q
(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

J. Leroux, M. Praveen, G. Sutre Boundedness for Pushdown VAS Jan. 2014 10 / 42



Model-Checking Problems for VASS

〈Q, qinit, v init,∆〉
?

|= ϕ

where ϕ specifies : reachability, coverability, boundedness, termination,
liveness, regularity, . . .

Definition
The reachability set is the set of all configurations that are reachable
from the initial configuration:{

(q, v) ∈ Q × Nd | (qinit, v init)
∗−→ (q, v)

}
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Reachability Set — VAS Example

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

(1, 1)

(−1, 2)

(2,−1)

The reachability set is

(1, 1) + N · (1, 1) + N · (3, 0) + N · (0, 3)
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Reachability Set — VASS Example [Hopcroft&Pansiot 79]

(p, 1, 0, 0) (p, 0, 1, 0)

(q, 0, 1, 0)(q, 2, 0, 0)

(p, 2, 0, 1) (p, 1, 1, 1) (p, 0, 2, 1)

(q, 0, 2, 1)(q, 2, 1, 1)(q, 4, 0, 1)

(p, 4, 0, 2) (p, 3, 1, 2)

p q
(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

The reachability set is

∪
{p} × {(x , y , z) ∈ N3 | 1 ≤ x + y ≤ 2z}

{q} × {(x , y , z) ∈ N3 | 1 ≤ x + 2y ≤ 2z+1}
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VASs ' Petri nets ' VASSs

Additional Feature of Petri nets
Test x ≥ cst without modifying x

VAS

Petri netVASS

⊆

|Q| := |T |+ 1

d := d + 2

d := d + 3
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State of the Art — Reachability & Coverability

Input: A VAS 〈v init,A〉 and a final vector vfinal

Reachability Problem

Output: Whether v init
∗−→ vfinal

Decidable [Mayr 81, Kosaraju 82, Leroux 11]
ExpSpace-hard [Lipton 76]

Coverability Problem

Output: Whether ∃v : v init
∗−→ v ≥ vfinal

Decidable [Karp&Miller 69]
ExpSpace-complete [Rackoff 78]
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State of the Art — Boundedness and Other Problems

Input: A VAS 〈v init,A〉

Boundedness Problem

Output: Whether {v ∈ Nd | v init
∗−→ v} is finite

Decidable [Karp&Miller 69]
ExpSpace-complete [Rackoff 78]

Other ExpSpace-complete problems include:
Termination: Are all runs finite?
Regularity / Context-freeness: Is the language regular / context-free?

Some undecidable problems:
CTL model-checking: Does 〈v init,A〉 satisfy a given CTL formula?
Equality: Are the reachability sets of two given VAS equal?
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Reachability Tree

Consider a VAS 〈v init,A〉 with A = {a1, . . . , an}

The reachability tree is the potentially infinite tree obtained by an
exhaustive and enumerative forward exploration

v init

v

v1 vn

v i = v + ai

Only keep the children v i such that v i = v + ai ≥ 0
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Reachability Tree — VAS Example

(1, 1)

(0, 3) (3, 0)

(2, 2) (2, 2)

(1, 4) (4, 1)

(3, 3) (3, 3)(0, 6) (6, 0)

(1, 1)

(−1, 2)

(2,−1)
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How to Truncate?

Monotonicity Property of VAS

∀
v → v ′

≤ ≤

u → u′
∃ v ′ = u′ + (v − u)

Consider a run
v init

∗−−→ v ∗−−→ v ′

such that
v < v ′

Then
v init

∗−−→ v ∗−−→ v ′ ∗−−→ v ′′ ∗−−→ v ′′′ · · ·

with
v < v ′ < v ′′ < v ′′′ < · · ·
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Reduced Reachability Tree [Karp&Miller 69, Finkel 90]

The reduced reachability tree is the prefix of the reachability tree
obtained as follows

v init

v

v ′

if v ≤ v ′
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Finiteness of the Reduced Reachability Tree

Theorem
The reduced reachability tree of a VAS 〈v init,A〉 is finite.

Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König’s Lemma, there is an infinite
branch

v init → v1 → v2 · · ·

Dickson’s Lemma
Every infinite sequence v0, v1, v2, . . . of vectors in Nd contains an
increasing pair v i ≤ v j with i < j .

By Dickson’s Lemma, there exists i < j such that v i ≤ v j .
Hence, by truncation, v j has no child.
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Deciding Boundedness with the Reduced Reachability Tree

Theorem
A VAS 〈v init,A〉 is unbounded if, and only if, its reduced reachability
tree contains a leaf that is strictly larger than one of its ancestors.

Proof.
⇐ If v init

∗−−→ v ∗−−→ v ′ > v then, by monotonicity, there are infinitely
many reachable configurations.
⇒ If the VAS is unbounded, then its reachability tree is infinite.
By König’s Lemma and then Dickson’s Lemma, there exists a node that
is strictly larger than one of its ancestors.
Pick the first one. It is a leaf in the reduced reachability tree.
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Reduced Reachability Tree — VAS Example

(1, 1)

(0, 3) (3, 0)

(2, 2) (2, 2)

(1, 1)

(−1, 2)

(2,−1)

This VAS is unbounded
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Reduced Reachability Tree — VASS Example (Variant)

(p, 1, 0, n) (p, 0, 1, n)

(q, 0, 1, n)(q, 2, 0, n)

(p, 2, 0, n − 1) (p, 0, 2, n − 1)

(q, 0, 2, n − 1)(q, 4, 0, n − 1)

(p, 4, 0, n − 2)

(p, 2n, 0, 0)

p q
(1, 0, n)

(−1, 1, 0) (2,−1, 0)

0

(0, 0,−1)

This VAS is bounded

ê But the depth of the reduced reachability tree is at least 2n
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How Big Can the Reduced Reachability Tree be?

Theorem ([McAloon 84])
The size of the reduced reachability tree of a VAS A = 〈v init,A〉 is at
most

primitive-recursive in |A| when the dimension d is fixed,
Ackermannian in |A| when the dimension d is part of the input.

But the boundedness problem is ExpSpace-complete [Rackoff 78]

If there is a witness

v init
∗−−→ v ∗−−→ v ′ > v

then there is one of length at most doubly-exponential in |A|.
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Pushdown Vector Addition Systems in a Nutshell

VASS

'

VAS

'

Petri net

+

ê Richer model for the verification of concurrent systems
Multi-threaded recursive programs
One recursive server + unboundedly many finite-state clients

ê Study the decidability frontier

VAS PDA

VAS + zero-tests Multi-PDA
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Pushdown VAS(S) — Syntax

Definition
A pushdown VAS is a triple 〈v init, Γ,∆〉 where

v init ∈ Nd : initial vector
Γ : finite stack alphabet
∆ ⊆ (Zd × Op) : finite set of actions, with

Op = {ε} ∪ {push(γ), pop(γ) | γ ∈ Γ}

p q r
(+5)

(−1), push(G)

(+1)

(−1), push(F ) (+2), pop(F )

pop(G)
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Pushdown VAS(S) — Semantics (1)

The semantics of a pushdown VAS 〈v init, Γ,∆〉 is the transition system
〈Nd × Γ∗, (v init, ε),→〉 whose transition relation → is given by

(a, ε) ∈ ∆ ∧ v ′ = v + a ≥ 0
(v , σ)→ (v ′, σ)

(a, push(γ)) ∈ ∆ ∧ v ′ = v + a ≥ 0
(v , σ)→ (v ′, σ · γ)

(a, pop(γ)) ∈ ∆ ∧ v ′ = v + a ≥ 0
(v , σ · γ)→ (v ′, σ)
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Pushdown VAS(S) — Semantics (2)

p q r
(+5)

(−1), push(G)

(+1)

(−1), push(F ) (+2), pop(F )

pop(G)

(p, 5, ε)

(p, 4,G)

(p, 3,G G)

(p, 0,G 5)

(q, 1,G 5)

(q, 0,G 5 F )

(r , 0,G 5 F )

(r , 2,G 5)

(q, 2,G 4)

(q, 0,G 5 F F )

(r , 0,G 5 F F )

(r , 4,G 3)
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State of the Art

Reachability for pushdown VAS is Tower-hard [Lazic 12]

Decidability is open

Reachability is decidable for sub-classes of pushdown VAS

VAS with one zero-tested counter [Reinhardt 08]

VAS ∩ CFL of finite index [Atig&Ganty 11]

Boundedness and place-boundedness are decidable for VAS with one
zero-tested counter [Bonnet&Finkel&Leroux&Zeitoun 12]

ê We show that boundedness is decidable for pushdown VAS

Reachability tree: similar to the VAS case

Truncation technique adapted to pushdown VAS
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Truncation of the Reachability Tree — Failed Attempt

Consider a run
(v init, ε)

∗−−→ (v , σ)
∗−−→ (v ′, σ′)

such that
v ≤ v ′ and σ ≤suffix σ

′

Then (v init, ε)
∗−−→ (v , σ)

∗−−→ (v ′, σ′) ∗−−→ (v ′′, σ′′) ∗−−→ (v ′′′, σ′′′) · · ·

But:
ε

F

F G

F G G

push(F )
push(G)

No truncation, infinite branch!
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Reduced Reachability Tree for Pushdown VAS

The reduced reachability tree is the prefix of the reachability tree
obtained as follows

v init, ε

v , σ

v ′, σ′

if

{
v ≤ v ′

σ ≤prefix ρ

(u, ρ)
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Finiteness of the Reduced Reachability Tree

Theorem
The reduced reachability tree of a pushdown VAS 〈v init, Γ,∆〉 is finite.

Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König’s Lemma, there is an infinite
branch

v init → v1 → v2 · · ·

· · ·
v v ′ ≥ v

· · ·
v v ′ ≥ vv

v ′ ≥ v
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Deciding Boundedness with the Reduced Reachability Tree

Theorem
A pushdown VAS 〈v init, Γ,∆〉 is unbounded if, and only if, its reduced
reachability tree contains a path

(v , σ) (v ′, σ′)︸ ︷︷ ︸
σ remains a prefix

such that v ≤ v ′ and σ ≤prefix σ
′, and at least one of these inequalities

is strict.
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How Big Can the Reduced Reachability Tree be?

Very very big. . .
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Fast Growing Functions

Functions Fα : N→ N, indexed by ordinals α ≤ ωω

F0(n) = n + 1,
Fα+1(n) = F n+1

α (n)

Fλ(n) = Fλn(n) if λ < ωω is a limit ordinal

F1 : linear, F2 exponential, F3 tower of exponentials

Fω is an Ackermannian function

Fωω is an hyper-Ackermannian function

Example

Fω2+ω+1(2) = Fω2+ω(Fω2+ω(Fω2+ω(2)))
= Fω2+ω(Fω2+ω(Fω2+3(2)))
= Fω2+ω(Fω2+ω(Fω2+2(Fω2+2(Fω2+2(2)))))
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Hyper-Ackermannian Bounds

Theorem
The reduced reachability tree of a pushdown VASS A has at most
Fωω(|A|) nodes

Theorem
For all n ∈ N, there exists a pushdown VASS An, of size quadratic in n,
such that the reduced reachability tree of An has at least Fωω(n) nodes
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Summary

ê Extension of the reduced reachability tree from VAS to Pushdown VAS

ê Boundedness and termination are decidable for pushdown VAS

ê Hyper-Ackermannian (Fωω) worst-case running time

The reduced reachability tree of a pushdown VASS A has at most
Fωω(|A|) nodes

This bound is tight
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Open Problems

ê Complexity of the boundedness problem for pushdown VAS
Upper bound: Hyper-Ackermann
Lower bound: Tower of exponentials

ê Reachability for Pushdown VAS
Open even for 1-dim VASS + stack

ê Coverability for Pushdown VAS
Open even for 1-dim VASS + stack
Coverability for Pushdown VAS is harder than reachability for VAS
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