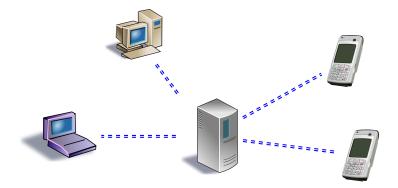
On the Boundedness Problem for Pushdown Vector Addition Systems

Jérôme Leroux, M. Praveen and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Kolloquiumsvortrag, University of Bamberg, January 29th 2014

Verification of Concurrent Systems (1)

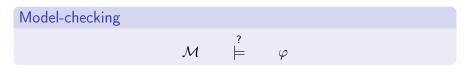


- Concurrent systems everywhere!
- ID Hard to design correctly
 - Complex and unforeseen interactions between components
 - Need for to automated verification tools

J. Leroux, M. Praveen, G. Sutre

Boundedness for Pushdown VAS

Verification of Concurrent Systems (2)



Need models ${\mathcal M}$ with

- enough expressive power to represent the system to verify
- support for automatic verification (model-checking decidable)

Vector Addition Systems $\ \simeq \$ Petri nets

- Classical model for (parametrized) concurrent systems
 - Rendez-vous synchronization
 - Asynchronous communication via unbounded unordered buffers
 - Dynamic process creation
- Fundamental class that is often used as a toolbox

 \hookrightarrow Can we have more expressive power while retaining decidability?

2 The Reduced Reachability Tree for VAS

3 Extension to Pushdown Vector Addition Systems

Vector Addition Systems

2 The Reduced Reachability Tree for VAS

3 Extension to Pushdown Vector Addition Systems

4 Conclusion

Vector Addition Systems with States in a Nutshell

A vector addition system with states is a finite-state automaton that is

- \bullet equipped with finitely many counters x,y,\ldots
- \bullet counters range over the set $\mathbb N$ of natural numbers
- counter operations are:
 - increment:

$$\mathbf{x} := \mathbf{x} + \mathbf{1}$$

guarded decrement:

$$\texttt{assert}(x > 0)$$
; $x := x - 1$

Vector addition systems with states are similar to Petri nets

Definition

A vector addition system is a pair $\langle \textbf{\textit{\nu}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\mathbf{A} \subseteq \mathbb{Z}^d$: finite set of actions

Definition

A vector addition system is a pair $\langle \textbf{\textit{v}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\mathbf{A} \subseteq \mathbb{Z}^d$: finite set of actions

$$A = \{(-1,2), (2,-1)\}$$

$$(1,1)$$

$$(1,1)$$

$$(2,-1)$$

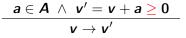
Vector Addition Systems — Semantics

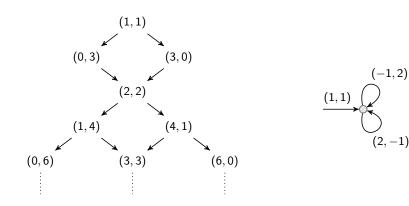
The semantics of a VAS $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \mathbf{v}_{init}, \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$egin{array}{cccc} m{a}\inm{A}\ \wedge\ m{v}'=m{v}+m{a}\geqm{0}\ m{v}
ightarrowm{v}' & m{v}' & m{v}' \end{array}$$

Vector Addition Systems — Semantics

The semantics of a VAS $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \mathbf{v}_{init}, \rightarrow \rangle$ whose transition relation \rightarrow is given by





Vector Addition Systems — Semantics

The semantics of a VAS $\langle \mathbf{v}_{\mathrm{init}}, \mathbf{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \mathbf{v}_{\mathrm{init}}, \rightarrow \rangle$ whose transition relation \rightarrow is given by



Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{\rm init}, \boldsymbol{\nu}_{\rm init}, \Delta
angle$ where

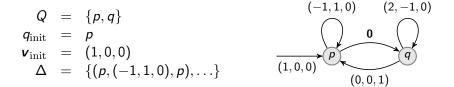
- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules

Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{\rm init}, \boldsymbol{\nu}_{\rm init}, \Delta
angle$ where

- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\boldsymbol{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules



Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{\rm init}, \boldsymbol{\nu}_{\rm init}, \Delta
angle$ where

- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules

Vector Addition Systems with States — Semantics

The semantics of a VASS $\langle Q, q_{\text{init}}, \mathbf{v}_{\text{init}}, \Delta \rangle$ is the transition system $\langle Q \times \mathbb{N}^d, (q_{\text{init}}, \mathbf{v}_{\text{init}}), \rightarrow \rangle$ whose transition relation \rightarrow is given by

Vector Addition Systems with States — Semantics

The semantics of a VASS $\langle Q, q_{\text{init}}, \mathbf{v}_{\text{init}}, \Delta \rangle$ is the transition system $\langle Q \times \mathbb{N}^d, (q_{\text{init}}, \mathbf{v}_{\text{init}}), \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$egin{array}{lll} (q,oldsymbol{a},q')\in\Delta &\wedge oldsymbol{v}'=oldsymbol{v}+oldsymbol{a}\geq 0 \ (q,oldsymbol{v})
ightarrow (q',oldsymbol{v}') \end{array}$$

$$(p, 1, 0, 0) \rightarrow (p, 0, 1, 0)$$

$$\downarrow$$

$$(q, 2, 0, 0) \leftarrow (q, 0, 1, 0)$$

$$\downarrow$$

$$(p, 2, 0, 1) \rightarrow (p, 1, 1, 1) \rightarrow (p, 0, 2, 1)$$

$$\downarrow$$

$$(q, 4, 0, 1) \leftarrow (q, 2, 1, 1) \leftarrow (q, 0, 2, 1)$$

$$\downarrow$$

$$(p, 4, 0, 2) \rightarrow (p, 3, 1, 2) \dots \rightarrow$$

$$(p, 1, 1, 0)$$

$$(-1, 1, 0)$$

$$(-1, 1, 0)$$

$$(2, -1, 0)$$

$$\downarrow$$

$$(1, 0, 0)$$

$$(0, 0, 1)$$

Model-Checking Problems for VASS

$$\langle \boldsymbol{Q}, \boldsymbol{q}_{ ext{init}}, \boldsymbol{v}_{ ext{init}}, \boldsymbol{\Delta}
angle \stackrel{?}{\models} arphi arphi$$

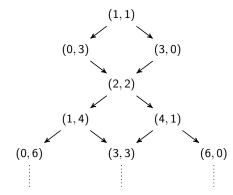
where φ specifies : reachability, coverability, boundedness, termination, liveness, regularity, \ldots

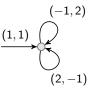
Definition

The reachability set is the set of all configurations that are reachable from the initial configuration:

$$\left\{(q,oldsymbol{v})\in Q imes \mathbb{N}^d \mid (q_{ ext{init}},oldsymbol{v}_{ ext{init}}) \stackrel{*}{
ightarrow} (q,oldsymbol{v})
ight\}$$

Reachability Set — VAS Example





The reachability set is

 $(1,1) + \mathbb{N} \cdot (1,1) + \mathbb{N} \cdot (3,0) + \mathbb{N} \cdot (0,3)$

J. Leroux, M. Praveen, G. Sutre

Boundedness for Pushdown VAS

Jan. 2014 12 / 42

Reachability Set — VASS Example [Hopcroft&Pansiot 79]

$$(p, 1, 0, 0) \rightarrow (p, 0, 1, 0)$$

$$\downarrow$$

$$(q, 2, 0, 0) \leftarrow (q, 0, 1, 0)$$

$$\downarrow$$

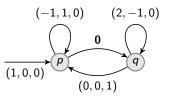
$$(p, 2, 0, 1) \rightarrow (p, 1, 1, 1) \rightarrow (p, 0, 2, 1)$$

$$\downarrow$$

$$(q, 4, 0, 1) \leftarrow (q, 2, 1, 1) \leftarrow (q, 0, 2, 1)$$

$$\downarrow$$

$$(p, 4, 0, 2) \rightarrow (p, 3, 1, 2) \dots \dots$$



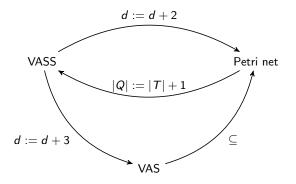
The reachability set is

$$\cup \quad \{p\} \times \{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x + y \le 2^z\} \\ \cup \quad \{q\} \times \{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x + 2y \le 2^{z+1}\}$$

VASs \simeq Petri nets \simeq VASSs

Additional Feature of Petri nets

Test $x \ge cst$ without modifying x



State of the Art — Reachability & Coverability

Input: A VAS $\langle \textbf{\textit{v}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$ and a final vector $\textbf{\textit{v}}_{\mathrm{final}}$

Reachability Problem

Output: Whether $v_{\mathrm{init}} \xrightarrow{*} v_{\mathrm{final}}$

- Decidable [Mayr 81, Kosaraju 82, Leroux 11]
- EXPSPACE-hard [Lipton 76]

Coverability Problem

Output: Whether $\exists \textit{v} : \textit{v}_{\mathrm{init}} \xrightarrow{*} \textit{v} \geq \textit{v}_{\mathrm{final}}$

- Decidable [Karp&Miller 69]
- EXPSPACE-complete [Rackoff 78]

State of the Art — Boundedness and Other Problems

Input: A VAS $\langle \textbf{\textit{v}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$

Boundedness Problem

Output: Whether $\{ \pmb{v} \in \mathbb{N}^d \mid \pmb{v}_{\mathrm{init}} \xrightarrow{*} \pmb{v} \}$ is finite

- Decidable [Karp&Miller 69]
- EXPSPACE-complete [Rackoff 78]

Other EXPSPACE-complete problems include:

- Termination: Are all runs finite?
- Regularity / Context-freeness: Is the language regular / context-free?

Some undecidable problems:

- CTL model-checking: Does $\langle \boldsymbol{v}_{\mathrm{init}}, \boldsymbol{A} \rangle$ satisfy a given CTL formula?
- Equality: Are the reachability sets of two given VAS equal?

2 The Reduced Reachability Tree for VAS

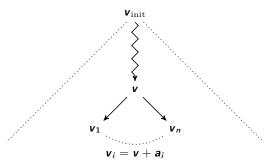
3 Extension to Pushdown Vector Addition Systems

4 Conclusion

Reachability Tree

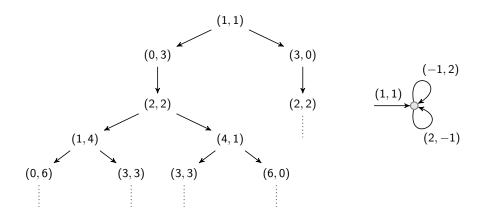
Consider a VAS $\langle \boldsymbol{v}_{\mathrm{init}}, \boldsymbol{A} \rangle$ with $\boldsymbol{A} = \{\boldsymbol{a}_1, \dots, \boldsymbol{a}_n\}$

The reachability tree is the potentially infinite tree obtained by an exhaustive and enumerative forward exploration

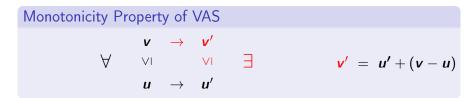


Only keep the children v_i such that $v_i = v + a_i \ge 0$

Reachability Tree — VAS Example



How to Truncate?



Consider a run

$$\mathbf{v}_{ ext{init}} \xrightarrow{*} \mathbf{v} \xrightarrow{*} \mathbf{v}'$$

such that

v < v'

Then

$$\mathbf{v}_{\mathrm{init}} \xrightarrow{*} \mathbf{v} \xrightarrow{*} \mathbf{v}' \xrightarrow{*} \mathbf{v}'' \xrightarrow{*} \mathbf{v}''' \xrightarrow{*} \mathbf{v}''' \cdots$$

with

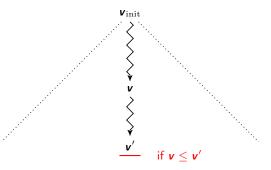
 $\mathbf{v} < \mathbf{v}' < \mathbf{v}'' < \mathbf{v}''' < \cdots$

J. Leroux, M. Praveen, G. Sutre

Boundedness for Pushdown VAS

Reduced Reachability Tree [Karp&Miller 69, Finkel 90]

The reduced reachability tree is the prefix of the reachability tree obtained as follows



Finiteness of the Reduced Reachability Tree

Theorem

The reduced reachability tree of a VAS $\langle v_{\mathrm{init}}, A \rangle$ is finite.

Proof. By contradiction, assume that it is infinite. The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$\boldsymbol{v}_{\mathrm{init}}
ightarrow \boldsymbol{v}_1
ightarrow \boldsymbol{v}_2 \cdots$$

Dickson's Lemma

Every infinite sequence $v_0, v_1, v_2, ...$ of vectors in \mathbb{N}^d contains an increasing pair $v_i \leq v_j$ with i < j.

By Dickson's Lemma, there exists i < j such that $\mathbf{v}_i \leq \mathbf{v}_j$. Hence, by truncation, \mathbf{v}_j has no child.

Theorem

A VAS $\langle \mathbf{v}_{\rm init}, \mathbf{A} \rangle$ is unbounded if, and only if, its reduced reachability tree contains a leaf that is strictly larger than one of its ancestors.

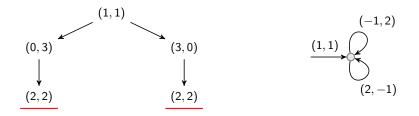
Proof.

 \bigcirc If the VAS is unbounded, then its reachability tree is infinite.

By König's Lemma and then Dickson's Lemma, there exists a node that is strictly larger than one of its ancestors.

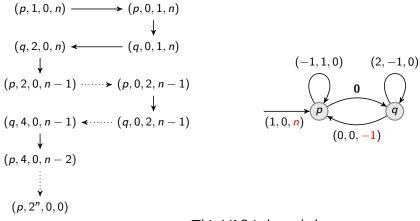
Pick the first one. It is a leaf in the reduced reachability tree.

Reduced Reachability Tree — VAS Example



This VAS is unbounded

Reduced Reachability Tree — VASS Example (Variant)



This VAS is bounded

r But the depth of the reduced reachability tree is at least 2^n

Boundedness for Pushdown VAS

How Big Can the Reduced Reachability Tree be?

Theorem ([McAloon 84])

The size of the reduced reachability tree of a VAS $\mathcal{A}=\langle \textbf{v}_{\rm init}, \textbf{A}\rangle$ is at most

- primitive-recursive in $|\mathcal{A}|$ when the dimension d is fixed,
- Ackermannian in $|\mathcal{A}|$ when the dimension d is part of the input.

How Big Can the Reduced Reachability Tree be?

Theorem ([McAloon 84])

The size of the reduced reachability tree of a VAS $\mathcal{A}=\langle \textbf{v}_{\rm init}, \textbf{A}\rangle$ is at most

- primitive-recursive in $|\mathcal{A}|$ when the dimension d is fixed,
- Ackermannian in $|\mathcal{A}|$ when the dimension d is part of the input.

But the boundedness problem is ExpSpace-complete [Rackoff 78]

If there is a witness

$$\mathbf{v}_{\mathrm{init}} \xrightarrow{*} \mathbf{v} \xrightarrow{*} \mathbf{v}' > \mathbf{v}$$

then there is one of length at most doubly-exponential in $|\mathcal{A}|$.

2 The Reduced Reachability Tree for VAS

3 Extension to Pushdown Vector Addition Systems

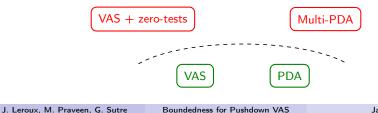
4 Conclusion

Pushdown Vector Addition Systems in a Nutshell

- r Richer model for the verification of concurrent systems
 - Multi-threaded recursive programs
 - One recursive server + unboundedly many finite-state clients

Pushdown Vector Addition Systems in a Nutshell

- \Rightarrow Richer model for the verification of concurrent systems
 - Multi-threaded recursive programs
 - One recursive server + unboundedly many finite-state clients
- Study the decidability frontier



Pushdown VAS(S) — Syntax

Definition

A pushdown VAS is a triple $\langle \textbf{\textit{v}}_{\mathrm{init}}, \Gamma, \Delta \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- Γ : finite stack alphabet
- $\Delta \subseteq (\mathbb{Z}^d imes \mathtt{Op})$: finite set of actions, with

 $\mathtt{Op} = \{\varepsilon\} \cup \{\mathtt{push}(\gamma), \mathtt{pop}(\gamma) \mid \gamma \in \mathsf{F}\}$

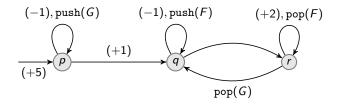
Pushdown VAS(S) — Syntax

Definition

A pushdown VAS is a triple $\langle \textbf{\textit{v}}_{\mathrm{init}}, \Gamma, \Delta \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- Γ : finite stack alphabet
- $\Delta \subseteq (\mathbb{Z}^d imes \mathtt{Op})$: finite set of actions, with

 $\mathtt{Op} = \{\varepsilon\} \cup \{\mathtt{push}(\gamma), \mathtt{pop}(\gamma) \mid \gamma \in \mathsf{F}\}$



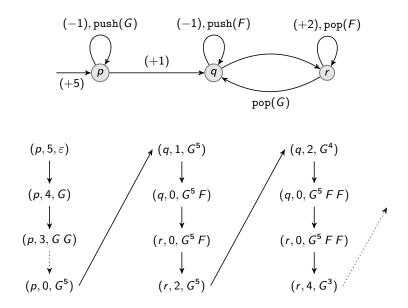
The semantics of a pushdown VAS $\langle \mathbf{v}_{\mathrm{init}}, \Gamma, \Delta \rangle$ is the transition system $\langle \mathbb{N}^d \times \Gamma^*, (\mathbf{v}_{\mathrm{init}}, \varepsilon), \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$\frac{(\boldsymbol{a},\varepsilon)\in\Delta\ \land\ \boldsymbol{v}'=\boldsymbol{v}+\boldsymbol{a}\geq\boldsymbol{0}}{(\boldsymbol{v},\sigma)\rightarrow(\boldsymbol{v}',\sigma)}$$

$$\frac{(\textit{\textbf{a}}, \texttt{push}(\gamma)) \in \Delta \ \land \ \textit{\textbf{v}}' = \textit{\textbf{v}} + \textit{\textbf{a}} \geq \textit{\textbf{0}}}{(\textit{\textbf{v}}, \sigma) \rightarrow (\textit{\textbf{v}}', \sigma \cdot \gamma)}$$

$$\frac{(\textit{\textbf{a}}, \texttt{pop}(\gamma)) \in \Delta \land \textit{\textbf{v}}' = \textit{\textbf{v}} + \textit{\textbf{a}} \geq \textit{\textbf{0}}}{(\textit{\textbf{v}}, \sigma \cdot \gamma) \rightarrow (\textit{\textbf{v}}', \sigma)}$$

Pushdown VAS(S) — Semantics (2)



Boundedness for Pushdown VAS

State of the Art

Reachability for pushdown VAS is $\operatorname{TOWER}\text{-hard}$ [Lazic 12]

• Decidability is open

Reachability is decidable for sub-classes of pushdown VAS

- VAS with one zero-tested counter [Reinhardt 08]
- VAS \cap CFL of finite index [Atig&Ganty 11]

Boundedness and place-boundedness are decidable for VAS with one zero-tested counter [Bonnet&Finkel&Leroux&Zeitoun 12]

- - Reachability tree: similar to the VAS case
 - Truncation technique adapted to pushdown VAS

Truncation of the Reachability Tree — Failed Attempt

Consider a run

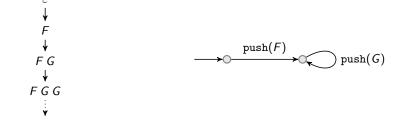
$$(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma')$$

such that

$$oldsymbol{
u} \leq oldsymbol{
u}' \hspace{0.2cm} ext{and} \hspace{0.2cm} \sigma \leq_{\mathsf{suffix}} \sigma'$$

Then $(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma') \xrightarrow{*} (\mathbf{v}'',\sigma'') \xrightarrow{*} (\mathbf{v}''',\sigma''') \cdots$

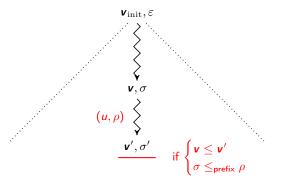
But:



No truncation, infinite branch!

Reduced Reachability Tree for Pushdown VAS

The reduced reachability tree is the prefix of the reachability tree obtained as follows



Theorem

The reduced reachability tree of a pushdown VAS $\langle \bm{v}_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

Theorem

The reduced reachability tree of a pushdown VAS $\langle v_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

Theorem

The reduced reachability tree of a pushdown VAS $\langle \bm{v}_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

Theorem

The reduced reachability tree of a pushdown VAS $\langle v_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

Theorem

The reduced reachability tree of a pushdown VAS $\langle \bm{v}_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

$$\boldsymbol{v}_{\mathrm{init}}
ightarrow \boldsymbol{v}_1
ightarrow \boldsymbol{v}_2 \cdots$$

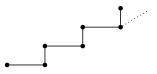
Theorem

The reduced reachability tree of a pushdown VAS $\langle v_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch

 $\textbf{\textit{v}}_{\mathrm{init}} \rightarrow \textbf{\textit{v}}_1 \rightarrow \textbf{\textit{v}}_2 \cdots$

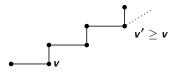


Theorem

The reduced reachability tree of a pushdown VAS $\langle v_{\rm init}, \Gamma, \Delta \rangle$ is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by König's Lemma, there is an infinite branch



Theorem

A pushdown VAS $\langle v_{\rm init},\Gamma,\Delta\rangle$ is unbounded if, and only if, its reduced reachability tree contains a path

$$(\mathbf{v},\sigma)$$
 (\mathbf{v}',σ')

 σ remains a prefix

such that $\mathbf{v} \leq \mathbf{v}'$ and $\sigma \leq_{\text{prefix}} \sigma'$, and at least one of these inequalities is strict.

How Big Can the Reduced Reachability Tree be?

Very very big...

Fast Growing Functions

Functions $F_{\alpha}:\mathbb{N}\to\mathbb{N}$, indexed by ordinals $\alpha\leq\omega^{\omega}$

$$\begin{array}{lll} F_0(n) &=& n+1, \\ F_{\alpha+1}(n) &=& F_{\alpha}^{n+1}(n) \\ F_{\lambda}(n) &=& F_{\lambda_n}(n) & \text{if } \lambda < \omega^{\omega} \text{ is a limit ordinal} \end{array}$$

 F_1 : linear, F_2 exponential, F_3 tower of exponentials

 F_{ω} is an Ackermannian function

 $F_{\omega^{\omega}}$ is an hyper-Ackermannian function

Example

$$\begin{aligned} F_{\omega^{2}+\omega+1}(2) &= F_{\omega^{2}+\omega}(F_{\omega^{2}+\omega}(F_{\omega^{2}+\omega}(2))) \\ &= F_{\omega^{2}+\omega}(F_{\omega^{2}+\omega}(F_{\omega^{2}+3}(2))) \\ &= F_{\omega^{2}+\omega}(F_{\omega^{2}+\omega}(F_{\omega^{2}+2}(F_{\omega^{2}+2}(F_{\omega^{2}+2}(2))))) \end{aligned}$$

Theorem

The reduced reachability tree of a pushdown VASS A has at most $F_{\omega^{\omega}}(|A|)$ nodes

Theorem

For all $n \in \mathbb{N}$, there exists a pushdown VASS \mathcal{A}_n , of size quadratic in n, such that the reduced reachability tree of \mathcal{A}_n has at least $F_{\omega^{\omega}}(n)$ nodes

1 Vector Addition Systems

2 The Reduced Reachability Tree for VAS

3 Extension to Pushdown Vector Addition Systems

- \vartriangleleft Extension of the reduced reachability tree from VAS to Pushdown VAS
- r Hyper-Ackermannian ($F_{\omega^{\omega}}$) worst-case running time
 - The reduced reachability tree of a pushdown VASS $\mathcal A$ has at most $F_{\omega^\omega}(|\mathcal A|)$ nodes
 - This bound is tight

r Complexity of the boundedness problem for pushdown VAS

- Upper bound: Hyper-Ackermann
- Lower bound: Tower of exponentials
- Reachability for Pushdown VAS
 - Open even for 1-dim VASS + stack
- Coverability for Pushdown VAS
 - Open even for 1-dim VASS + stack
 - Coverability for Pushdown VAS is harder than reachability for VAS