Hyper-Ackermannian Bounds for Pushdown Vector Addition Systems

Jérôme Leroux, M. Praveen and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

CSL-LICS, Vienna, Austria, July 2014

2 Reduced Reachability Tree for Pushdown VAS

3 Worst-Case Size of the Reduced Reachability Tree

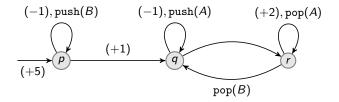
1 Pushdown Vector Addition Systems

2 Reduced Reachability Tree for Pushdown VAS

3 Worst-Case Size of the Reduced Reachability Tree

4 Conclusion

Pushdown Vector Addition Systems — Model



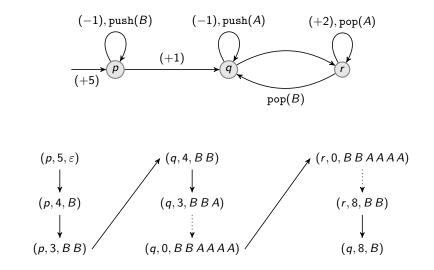
VAS

 $d \text{ (implicit) counters over } \mathbb{N}$ counter actions • syntax: $\mathbf{a} \in \mathbb{Z}^d$ • semantics: $\underbrace{\mathbf{v}}_{\in \mathbb{N}^d} \rightarrow \underbrace{\mathbf{v} + \mathbf{a}}_{\in \mathbb{N}^d}$

Stack finite stack alphabet

push and pop

Pushdown Vector Addition Systems — Model



Pushdown Vector Addition Systems — Motivations

- r Richer model for the verification of concurrent systems
 - Multi-threaded recursive programs
 - One recursive server + unboundedly many finite-state clients

Pushdown Vector Addition Systems — Motivations

- \Rightarrow Richer model for the verification of concurrent systems
 - Multi-threaded recursive programs
 - One recursive server + unboundedly many finite-state clients
- S Is the model too powerful?

	Boundedness	Coverability	Reachability
VAS	EXPSPACE-c ^{1,2}	EXPSPACE-c ^{1,2}	Decidable ^{3,4}
+ full counter	Decidable ⁵	Decidable	Decidable ⁶
+ stack		Tower	₹-h ⁷

Lipton 1976
 Finkel, Sangnier 2010

[2] Rackoff 1978[7] Lazić 2012

[3] Mayr 1981 [4] Kosaraju 1982

[6] Reinhardt 2008

	Boundedness	Coverability	Reachability
VAS	EXPSPACE-c ^{1,2}	$ExpSpace-c^{1,2}$	Decidable ^{3,4}
+ full counter	Decidable ⁵	Decidable	Decidable ⁶
+ stack		Tower	₹-h ⁷

[1] Lipton 1976	[2] Rackoff 1978	[3] Mayr 1981
[5] Finkel, Sangnier 2010	[7] Lazić 2012	[4] Kosaraju 1982
		[6] Reinhardt 2008

Subclasses of pushdown VAS with decidable reachability

- Multiset pushdown systems [Sen, Viswanathan 2006]
- VAS \cap CFL of finite index [Atig, Ganty 2011]

	Boundedness	Coverability	Reachability
VAS	EXPSPACE-c ^{1,2}	$ExpSpace-c^{1,2}$	Decidable ^{3,4}
+ full counter	Decidable ⁵	Decidable	Decidable ⁶
+ stack	?	Tower	₹-h ⁷

[1] Lipton 1976	[2] Rackoff 1978	[3] Mayr 1981
[5] Finkel, Sangnier 2010	[7] Lazić 2012	[4] Kosaraju 1982
		[6] Reinhardt 2008

Subclasses of pushdown VAS with decidable reachability

- Multiset pushdown systems [Sen, Viswanathan 2006]
- VAS \cap CFL of finite index [Atig, Ganty 2011]

- \Rightarrow Boundedness is decidable for pushdown VAS
 - Reduced reachability tree: adaptation of the VAS case
- - Bound the length of bad nested sequences over (\mathbb{N}^d,\leq)
 - Weak computation of an hyper-Ackermannian function
 - Inspired from recent results on bad sequences for various wqo's
 - ▶ [Figueira, Figueira, Schmitz, Schnoebelen 2011]
 - [Schmitz, Schnoebelen 2011]
 - ▶ ...

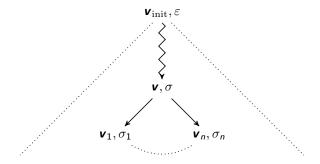


2 Reduced Reachability Tree for Pushdown VAS

3 Worst-Case Size of the Reduced Reachability Tree

4 Conclusion

Reachability Tree of a Pushdown VAS

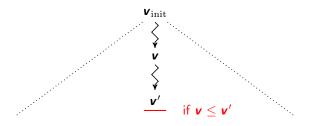


r Exhaustive and enumerative forward exploration from $(\mathbf{v}_{\mathrm{init}}, \varepsilon)$

➡ Potentially infinite, need to truncate

Reduced Reachability Tree for VAS [Karp, Miller 1969]

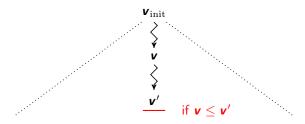
Truncation rule:



10 / 24

Reduced Reachability Tree for VAS [Karp, Miller 1969]

Truncation rule:



For every VAS, \leq and < are simulation relations

Truncation entails that

•
$$\mathbf{v}_{\text{init}} \xrightarrow{*} \mathbf{v} \xrightarrow{*} \mathbf{v}' \xrightarrow{*} \mathbf{v}'' \xrightarrow{*} \mathbf{v}''' \xrightarrow{*} \mathbf{v}''' \cdots$$

• If
$$\boldsymbol{\nu} < \boldsymbol{\nu}'$$
 then $\boldsymbol{\nu} < \boldsymbol{\nu}' < \boldsymbol{\nu}'' < \boldsymbol{\nu}''' < \cdots$

RRT-based Algorithm for VAS Boundedness

Theorem ([Karp, Miller 1969])

The reduced reachability tree of a VAS \mathcal{A} is finite.

Proof. König's Lemma + Dickson's Lemma

Theorem ([Karp, Miller 1969])

A VAS A is unbounded if, and only if, its reduced reachability tree contains a leaf that is strictly larger than one of its ancestors.

RRT-based Algorithm for VAS Boundedness

Theorem ([Karp, Miller 1969])

The reduced reachability tree of a VAS \mathcal{A} is finite.

Proof. König's Lemma + Dickson's Lemma

Theorem ([Karp, Miller 1969])

A VAS A is unbounded if, and only if, its reduced reachability tree contains a leaf that is strictly larger than one of its ancestors.

Theorem ([McAloon 1984], [Figueira et al. 2011])

The size of the reduced reachability tree of a VAS ${\cal A}$ is at most

- primitive-recursive in $|\mathcal{A}|$ when the dimension d is fixed,
- Ackermannian in $|\mathcal{A}|$ when the dimension is part of the input.

Tentative Simulation-Based Truncation for Pushdown VAS

Consider a run

$$(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma')$$

such that

$$oldsymbol{v} \leq oldsymbol{v}'$$
 and $\sigma \leq_{\mathsf{suffix}} \sigma'$

Then $(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma') \xrightarrow{*} (\mathbf{v}'',\sigma'') \xrightarrow{*} (\mathbf{v}''',\sigma''') \cdots$

Tentative Simulation-Based Truncation for Pushdown VAS

Consider a run

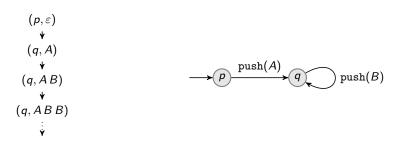
$$(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma')$$

such that

$$oldsymbol{
u} \leq oldsymbol{
u}' \hspace{0.2cm} ext{and} \hspace{0.2cm} \sigma \leq_{ ext{suffix}} \sigma'$$

Then $(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma') \xrightarrow{*} (\mathbf{v}'',\sigma'') \xrightarrow{*} (\mathbf{v}''',\sigma''') \cdots$

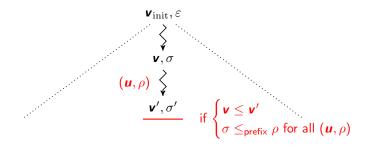
But:



No truncation, infinite branch!

Reduced Reachability Tree for Pushdown VAS

Truncation rule:



Truncation entails that

•
$$(\mathbf{v}_{\text{init}},\varepsilon) \xrightarrow{*} (\mathbf{v},\sigma) \xrightarrow{*} (\mathbf{v}',\sigma') \xrightarrow{*} (\mathbf{v}'',\sigma'') \xrightarrow{*} (\mathbf{v}''',\sigma''') \cdots$$

• If
$$m{v} < m{v}'$$
 then $m{v} < m{v}' < m{v}'' < m{v}''' < \cdots$

• If $\sigma <_{\text{prefix}} \sigma'$ then $\sigma <_{\text{prefix}} \sigma' <_{\text{prefix}} \sigma'' <_{\text{prefix}} \sigma''' <_{\text{prefix}} \cdots$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\mathrm{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

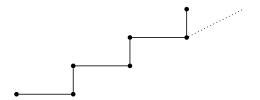
$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$

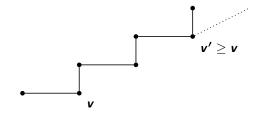


Theorem

The reduced reachability tree of a pushdown VAS \mathcal{A} is finite.

Proof. By contradiction, assume that it is infinite.

$$(\mathbf{v}_{\text{init}},\varepsilon) \rightarrow (\mathbf{v}_1,\sigma_1) \rightarrow (\mathbf{v}_2,\sigma_2) \cdots$$



Theorem

A pushdown VAS A is unbounded if, and only if, its reduced reachability tree contains a path



 σ remains a prefix

such that $\mathbf{v} \leq \mathbf{v}'$ and $\sigma \leq_{\text{prefix}} \sigma'$, and at least one of these inequalities is strict.

How big can the reduced reachability tree be?

2 Reduced Reachability Tree for Pushdown VAS

3 Worst-Case Size of the Reduced Reachability Tree

4 Conclusion

Fast Growing Functions

Functions $F_{\alpha}: \mathbb{N} \to \mathbb{N}$, indexed by ordinals $\alpha \leq \omega^{\omega}$

$$\begin{array}{rcl} F_0(n) &=& n+1, \\ F_{\alpha+1}(n) &=& F_{\alpha}^{n+1}(n) \\ F_{\lambda}(n) &=& F_{\lambda_n}(n) & \mbox{if } \lambda \mbox{ is a limit ordinal} \end{array}$$

 F_1 : linear, F_2 exponential, F_3 tower of exponentials

 F_{ω} is an Ackermannian function

 $F_{\omega^{\omega}}$ is an hyper-Ackermannian function

Example

$$F_{\omega^{\omega}}(2) = F_{\omega^{3}}(2) = F_{\omega^{2}.3}(2)$$

= $F_{\omega^{2}.2+\omega.3}(2)$
= $F_{\omega^{2}.2+\omega.2+3}(2)$
= $F_{\omega^{2}.2+\omega.2+2}(F_{\omega^{2}.2+\omega.2+2}(F_{\omega^{2}.2+\omega.2+2}(2)))$

Hyper-Ackermannian Bounds

Theorem

The height of the reduced reachability tree of a pushdown VAS A is at most $F_{\omega^{(d+1)}}(|A|)$ where d is the dimension of A.

Corollary

The size of the reduced reachability tree of a pushdown VAS ${\cal A}$ is at most

- multiply-recursive in $|\mathcal{A}|$ when the dimension d is fixed,
- hyper-Ackermannian in $|\mathcal{A}|$ when the dimension is part of the input.

Theorem

For all $n \in \mathbb{N}$, there exists a pushdown VAS \mathcal{A}_n , of size quadratic in n, such that the reduced reachability tree of \mathcal{A}_n has at least $F_{\omega^{\omega}}(n)$ nodes.

Lower Bound

Weak computation of $F_{\omega^d}(n)$ by a bounded pushdown VASS $\mathcal{A}_d(n)$

 \Rightarrow Use the stack to implement recursive calls

- r Maintain *n* in 2 counters r and \overline{r} such that $r + \overline{r} = n + 1$
- \Rightarrow Maintain $\alpha = \omega^d . c_d + \cdots + \omega^0 . c_0$ in d + 1 counters
- \Rightarrow Implement the inductive definition of F_{α} by pushdown VAS rules

Lower Bound

Weak computation of $F_{\omega^d}(n)$ by a bounded pushdown VASS $\mathcal{A}_d(n)$

 $\Rightarrow \text{ Use the stack to implement recursive calls} \\ \text{But we cannot store the calling context } \alpha!$

r Maintain *n* in 2 counters r and \overline{r} such that $r + \overline{r} = n + 1$

 \Rightarrow Maintain $\alpha = \omega^d . c_d + \cdots + \omega^0 . c_0$ in d + 1 counters

 \Rightarrow Implement the inductive definition of F_{α} by pushdown VAS rules

19 / 24

Lower Bound

Weak computation of $F_{\omega^d}(n)$ by a bounded pushdown VASS $\mathcal{A}_d(n)$

- $\Rightarrow \text{ Use the stack to implement recursive calls} \\ \text{But we cannot store the calling context } \alpha!$
- \Rightarrow Maintain *n* in 2 counters r and \overline{r} such that $r + \overline{r} = n + 1$
- \Rightarrow Maintain $\alpha = \omega^d . c_d + \cdots + \omega^0 . c_0$ in d + 1 counters
- \Rightarrow Implement the inductive definition of F_{α} by pushdown VAS rules

Trick to restore the calling context α of pending recursive calls

- Push the operations (increments and decrements) that are being performed on c_0,\ldots,c_d
- Revert them when popping

Upper Bound for VAS — Following [Figueira et al. 2011]

Each branch of the RRT is a bad sequence over (\mathbb{N}^d, \leq)

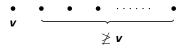
Bad sequences are finite, but can be arbitrarily long

A sequence v_0, v_1, \ldots is *n*-controlled if $\|\mathbf{v}_i\|_{\infty} \leq n+i$ for all $i \geq 0$

Given $S \subseteq \mathbb{N}^d$, define $L_S(n)$ to be the maximum length of *n*-controlled bad sequences over S

Upper Bound for VAS — Following [Figueira et al. 2011]

Each branch of the RRT is a bad sequence over (\mathbb{N}^d, \leq)



Bad sequences are finite, but can be arbitrarily long

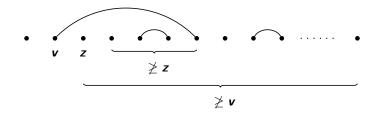
A sequence v_0, v_1, \ldots is *n*-controlled if $\|\mathbf{v}_i\|_{\infty} \leq n+i$ for all $i \geq 0$

Given $S \subseteq \mathbb{N}^d$, define $L_S(n)$ to be the maximum length of *n*-controlled bad sequences over S

$$L_{\mathcal{S}}(n) = \max_{\boldsymbol{v} \in \mathcal{S}, \|\boldsymbol{v}\|_{\infty} \leq n} 1 + L_{\mathcal{S}/\boldsymbol{v}}(n+1)$$

Upper Bound for Pushdown VAS

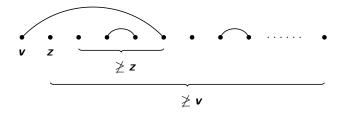
Each branch of the RRT is a bad nested sequence over (\mathbb{N}^d, \leq)



Define the maximum length of *n*-controlled bad nested sequences in the same way as non-nested ones

Upper Bound for Pushdown VAS

Each branch of the RRT is a bad nested sequence over (\mathbb{N}^d, \leq)



Define the maximum length of *n*-controlled bad nested sequences in the same way as non-nested ones

$$L_{S}(n) = \max_{\mathbf{v} \in S, \|\mathbf{v}\|_{\infty} \leq n} 1 + L_{S/\mathbf{v}}(n+1) + L_{S/\mathbf{v}}(n+1+L_{S/\mathbf{v}}(n+1))$$

2 Reduced Reachability Tree for Pushdown VAS

3 Worst-Case Size of the Reduced Reachability Tree

Summary

- - In the paper: extension to well-structured pushdown systems
- r Hyper-Ackermannian ($F_{\omega^{\omega}}$) worst-case running time
 - The reduced reachability tree of a pushdown VAS \mathcal{A} has at most $F_{\omega^{\omega}}(|\mathcal{A}|)$ nodes
 - This bound is tight
- \Rightarrow Bounds on the reachability set when it is finite

- r Complexity of the boundedness problem for pushdown VAS
 - Lower bound: tower of exponentials (F_3) from [Lazić 2012]
 - Upper bound: hyper-Ackermann $(F_{\omega^{\omega}})$
- I Decidability of coverability / reachability for Pushdown VAS
 - Open even for 1-dim VASS + stack
- \Rightarrow Complexity of these problems for VAS + full counter
 - Coverability for this model is harder than reachability for VAS

Thank You

Pushdown VAS — Syntax

Definition

A pushdown vector addition system is a triple $\langle \textbf{\textit{v}}_{\rm init}, \Gamma, \Delta \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- Γ : finite stack alphabet
- $\Delta \subseteq (\mathbb{Z}^d imes \mathtt{Op})$: finite set of actions, with

 $\mathtt{Op} = \{\varepsilon\} \cup \{\mathtt{push}(\gamma), \mathtt{pop}(\gamma) \mid \gamma \in \mathsf{F}\}$

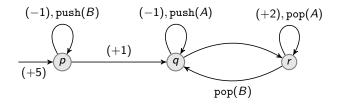
Pushdown VAS — Syntax

Definition

A pushdown vector addition system is a triple $\langle \textbf{\textit{v}}_{\rm init}, \Gamma, \Delta \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- Γ : finite stack alphabet
- $\Delta \subseteq (\mathbb{Z}^d imes \mathtt{Op})$: finite set of actions, with

 $\texttt{Op} = \{\varepsilon\} \cup \{\texttt{push}(\gamma), \texttt{pop}(\gamma) \mid \gamma \in \mathsf{F}\}$



The semantics of a pushdown VAS $\langle \mathbf{v}_{\mathrm{init}}, \Gamma, \Delta \rangle$ is the transition system $\langle \mathbb{N}^d \times \Gamma^*, (\mathbf{v}_{\mathrm{init}}, \varepsilon), \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$\frac{(\boldsymbol{a},\varepsilon)\in\Delta\ \land\ \boldsymbol{v}'=\boldsymbol{v}+\boldsymbol{a}\geq\boldsymbol{0}}{(\boldsymbol{v},\sigma)\rightarrow(\boldsymbol{v}',\sigma)}$$

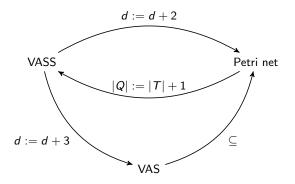
$$\frac{(\boldsymbol{a}, \mathtt{push}(\gamma)) \in \Delta \ \land \ \boldsymbol{v}' = \boldsymbol{v} + \boldsymbol{a} \geq \boldsymbol{0}}{(\boldsymbol{v}, \sigma) \rightarrow (\boldsymbol{v}', \sigma \cdot \gamma)}$$

$$\frac{(\textit{\textbf{a}}, \texttt{pop}(\gamma)) \in \Delta \land \textit{\textbf{v}}' = \textit{\textbf{v}} + \textit{\textbf{a}} \geq \textit{\textbf{0}}}{(\textit{\textbf{v}}, \sigma \cdot \gamma) \rightarrow (\textit{\textbf{v}}', \sigma)}$$

VASs \simeq Petri nets \simeq VASSs

Additional Feature of Petri nets

Test $x \ge cst$ without modifying x



Pushdown VASS $\mathcal{A}_d(n)$ for the Lower Bound

