Boundedness and Coverability for Pushdown
Vector Addition Systems

Grégoire Sutre

LaBRI, CNRS & University of Bordeaux, France

ACTS, CMI, Chennai — February 2017

Based on joint works with J. Leroux, M. Praveen and P. Totzke.



Table of Contents

@ Pushdown Vector Addition Systems

© Boundedness for Pushdown VAS

© Coverability for 1-dim Pushdown VAS

@ Conclusion

2/31



Table of Contents

@ Pushdown Vector Addition Systems

3/31



Vector Addition Systems

Definition
A VAS is a finite set of vectors @ € Z9. For u,v € N9 it has a step

u-2sv if v=u+a
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Vector Addition Systems

Definition
A VAS is a finite set of vectors @ € Z9. For u,v € N9 it has a step

u-2sv if v=u+a

Equivalent to Petri nets

Many decidable verification questions

Reachability: does u — v ?

Coverability: does there exist v/ > v such that u — v/ ?

Boundedness: is {v | u — v} finite ?
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Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.
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... are products of VAS with pushdown automata.

2
p, L, <1> —— p,AAL, <(1)> — q,AAL, (8)
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Pushdown Vector Addition Systems

... are products of VAS with pushdown automata.

They can for example model recursive programs with variables over N.

1: X< n

2: procedure DoubleX start o e

3: if (x A x> 0) then

4: x4+ (x—1

5 Doub(IeX ) push(4) e a pop(4)
6: end if -1 42

7: x <+ (x+2)

8: end procedure e @
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Pushdown Vector Addition Systems — Definition

Definition
A pushdown VAS is a triple (Q, ', A) where
@ Q@ : finite set of states
o [ : finite stack alphabet
o AC Q@ x(0Opx Zd) x @ : finite set of transitions, with

Op = {nop} U {push(y), pop(7) | v € T'}

Configurations: (g,0,v) with g € @, o € I'* and v € N
Steps: as expected

o Reachability: does (p, e, u) — (q,&,v) ?
e Coverability: does there exist v/ > v with (p,e,u) — (q,¢,v') ?

e Boundedness: is {(g,0,v) | (p,&,u) — (g, 0, v)} finite 7
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Pushdown Vector Addition Systems — Motivations

VAS
2 +
Petri net

o> Richer model for the verification of concurrent systems
@ Multi-threaded recursive programs

@ One recursive server + unboundedly many finite-state clients
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Pushdown Vector Addition Systems — Motivations

VAS
2 +
Petri net

o> Richer model for the verification of concurrent systems
@ Multi-threaded recursive programs

@ One recursive server + unboundedly many finite-state clients

> Is the model too powerful?

[VAS + zero—tests] Multi-PDA
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Brief State of the Art

’ H Boundedness Coverability ‘ Reachability
VAS EXPSPACE-c1? | EXPSPACE-c!? ‘ Decidable3*5
+ full counter Decidable’ Decidable®
+ stack Decidable? TOWER-h®

’ 1-VAS + stack H ExpTiME-ell ‘ Decidable!® ‘ ?

[1] Lipton 1976 [7] Finkel, Sangnier 2010

[2] Rackoff 1978 [8] Lazi¢ 2012

[3] Mayr 1981 [9] Leroux, Praveen, S. 2014
[4] Kosaraju 1982 [10] Leroux, S., Totzke 2015
[5] Leroux, Schmitz 2015 [11] Leroux, S., Totzke 2015

[6] Reinhardt 2008
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Brief State of the Art

|

H Boundedness

Coverability ‘ Reachability

VAS ExXPSPACE-c? | EXPSPACE-cl2 ‘ Decidable345
+ full counter Decidable’ Decidable®

+ stack Decidable® TOWER-h®

1-VAS + stack H ExpTIME-ell ‘ Decidablel® ‘ 7

Subclasses of pushdown VAS with decidable reachability

@ Multiset pushdown systems [Sen, Viswanathan 2006]
e VAS N CFL of finite index [Atig, Ganty 2011]

Related decidable models with counters and recursion

e BPA(Z) [Bouajjani, Habermehl, Mayr 2003]
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Reachability Tree of a Pushdown VAS

Qinit, €, Vinit

q7a7v

S\

d1,01, V1 An,Ons Vn

> Exhaustive and enumerative forward exploration from (Ginit, £, Vinit)

> Potentially infinite, need to truncate
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Reduced Reachability Tree for VAS [Karp, Miller 1969]

Truncation Rule a=(-12)
N (1,1)
% o
v (1)
% N
(0,3) (3,0)
if v S V/ (27 2) (27 2)

> The reduced reachability tree is finite
> It contains enough information to decide boundedness

> Crucial ingredient: the strict order < is a simulation relation
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Tentative Simulation-Based Truncation for Pushdown VAS

Truncation Rule

Qinit, €, Vinit

5

q7U7v

%

ror
q70—’v

if q= CI,, v S V, and o Sprefix 0',

= No loss of information to decide boundedness

But...
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Tentative Simulation-Based Truncation for Pushdown VAS

Truncation Rule push (A)
O G D s

Qinit, €, Vinit

% (5. 1)
v

q,0,Vv (q, AJ_)
A\
g (9, BAL)
A\
quo-/’ v (q7 BBAJ_)
if q= q,r v < v and o Sprefix o’ Y

= No loss of information to decide boundedness

But...
The reduced reachability tree may be infinite!
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Reduced Reachability Tree for Pushdown VAS

Truncation Rule

Qinit, €, Vinit

" g=q and v <V
i
0 <suffix P for all P

1 push(A), —1
po

(p, L,1)

l

(g,AL,0)

l

(g, BAL,1)

> The reduced reachability tree is finite

o> |t contains enough information to decide boundedness
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Finiteness of the Reduced Reachability Tree

Proposition
The reduced reachability tree of a pushdown VAS is finite.

Proof. By contradiction, assume that it is infinite.

The tree is finitely branching. So, by Konig's Lemma, there is an infinite
branch
(Ginit> €, Vinit) — (q1,01, v1) — (q2, 02, v2) - -
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RRT-based Algorithm for Pushdown VAS Boundedness

Proposition
A pushdown VAS is unbounded iff its reduced reachability tree contains

(q7 O’? V) NANANS (q7 0-/7 V/)

o remains a suffix

such that v < v/ and o <.,y o', and at least one of these inequalities
is strict.

Theorem ([Leroux, Praveen, S. 2014])
Boundedness is decidable for pushdown VAS.
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Worst-Case Complexity of the Algorithm

How big can the reduced reachability tree be?
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Worst-Case Complexity of the Algorithm

How big can the reduced reachability tree be?

Theorem ([Leroux, Praveen, S. 2014])

The reduced reachability tree of a pushdown VAS has at most an
hyper-Ackermannian number of nodes, and this bound is tight.
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Coverability versus Reachability in Pushdown VAS

Observation ([Lazi¢ 2012])

Reachability in dimension d reduces to Coverability in dimension d + 1.

Proof. Budget construction. Use the stack to test the budget for zero.
Add a new counter B and two new stack symbols A, $.

push(A),B++ pop(A),B——

push($ Q with budget @ pop(3)
e

(qiéitveao) i> (qé’lal’e’o) iff (qiﬂilmeaoao) i> (qfﬁ/al’s? _ _) U
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Coverability versus Reachability in Pushdown VAS

Observation ([Lazi¢ 2012])

Reachability in dimension d reduces to Coverability in dimension d + 1.

Reach(0) T Cover(1) T Reach(l) C Cover(2) C ---
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Coverability versus Reachability in Pushdown VAS

Observation ([Lazi¢ 2012])

Reachability in dimension d reduces to Coverability in dimension d + 1.

Reach(0) Q( Cover(1) t_ Reach(1) T Cover(2) C ---

Theorem ([Leroux, S., Totzke 2015])
Coverability for 1-dimensional pushdown VAS is decidable.
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Another Perspective

The coverability problem for d-dimensional pushdown VAS can be
rephrased as follows.

Input:
eaVASACZA
@ a context-free language L € A*

e vectors u, v € N9

Output: whether there exist ajap ... ax € L and v/ € N9 such that

a a: a
52 3 Y and V>
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Grammar-Controlled Vector Addition Systems

A context-free grammar is a triple G = (V, A, R) where

@ V : nonterminal symbols (variables)
@ A : terminal symbols

@ R : production rules X F a where X € V and o € (V U A)*

Definition (1-dimensional GVAS)

A GVAS is a context-free grammar G = (V, A, R) such that A C Z.

Every GVAS can be transformed into an equivalent one where
@ all variables X € V are productive
o A={-1,0,1}
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Summaries for Coverability

A GVAS is a context-free grammar G = (V, A, R) such that A C Z.

Notations:

Ly = {al~--ak€A*|X:*>al-~-ak}

X a
c5d & ¢ ... dforsomear---ag € Lx

Definition (Summary of a Variable)

Summaryx(c) = sup{d]|c X, d}

Coverability: Summaryg(c) > d 7 (given S, c, d)
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Example: Weak Computation of Multiplication by Two

SE -1S511 | ¢
Ls = {(-1)"A1)" | ne N}

For every ¢,d € N,

(=1"(Ly)”

dneN:c d

<
<— Elngczcii)i)c—nﬂ)chn:d
s

c<d<2c

Summaryg(c) = 2c
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Example: Weak Computation of Ackermann Functions

n+1 ifm=0
Am(n) =
(n) {Ag,tll(l) if m >0

23/31



Example: Weak Computation of Ackermann Functions

A(n):{n+1 if m=0 Ao(n) = n+1
" AL (1) ifm>0 Ai(n) = n+2
Ax(n) = 2n+3

( ) 2n+3 _3

23/31



Example: Weak Computation of Ackermann Functions

Anln) — {n+1 ifm=0 Ao(n) = n+1
" AML(1) i m>0 Ai(n) = n+2
Ax(n) = 2n+3
i As(n) = 23 -3
Xo F 1
Xi b —1XXo | 1X
Xo b —1XoX | 1X;

Xm B =1 XpXm—1 | 1 X1
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Example: Weak Computation of Ackermann Functions

Anln) — {n+1 if m=0 Ao(n) = n+1
" AML(1) i m>0 Ai(n) = n+2
AQ(H) = 2n+3
i As(n) = 23 -3
Xo F 1
X1 F —1XX | 1X

= —1"X, X!,
= —1"1X""!
=

&
.

—1XX | 1X

Xm B =1 XpXm—1 | 1 X1
An = Summaryy
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Flow Trees

Certificates for Summarys(c) > d? Annotated parse trees!
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Flow Trees

Certificates for Summarys(c) > d? Annotated parse trees!

Flow Conditions

O Nodes satisfy
Summary x(IN) > OUT

@ Labeling of neighboring
nodes is consistent
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Flow Trees ...can be arbitrarily large!

Certificates for Summarys(c) > d? Annotated parse trees!

Flow Conditions

O Nodes satisfy
Summary x(IN) > OUT

@ Labeling of neighboring
nodes is consistent

24 /31
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Truncating and Collapsing Flow Trees

X = uXv
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Truncating and Collapsing Flow Trees

b, b

b< b

X = uXv

Replace 2’ by a and b’ by b
and then collapse.
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Truncating and Collapsing Flow Trees

b, b

b>"b

X = uXv

Truncate at a’b’ since we
can iterate.
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Truncating and Collapsing Flow Trees

b, b’

b< b

X = uXv

If > u+> v >0 then
truncate at a/b’.
lf> u+> v<0then?
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Truncating and Collapsing Flow Trees

b, b’

b> b

X = uXv

If > u+ > v <0 then shift
by — > u and collapse.
lf> u+> v>0then?
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Asymptotic Ratios

Definition (Ratio of a Variable)

Summary x(n)

Ratiox = liminf,_ -

Grammar for Ackermann Functions A,,

Summaryyx = An
Ao(n) = n+1 Ratiox, = 1
Ai(n) = n+2 Ratiox, =
Ax(n) = 2n+3 Ratiox, =
As(n) = 2"3 3 Ratiox, = oo
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X = uXv
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ad=a+1

b= b2 X = uXv
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Pruning Flow Trees

ad=a+1

B —bi? X — uXv

1 -2

Assume Ratiox = co. There exists ng such that Summaryx(n) >3- n
for all n > ng.
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Pruning Flow Trees

ad=a+1

B = bt X = uXv

Assume Ratiox = co. There exists ng such that Summaryx(n) >3- n
for all n > ng.

n X n
a — a+n = n>3a+3n - 3a+n>n
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Pruning Flow Trees

ad=a+1

B = bt X = uXv

1-n —2-n

Assume Ratiox = co. There exists ng such that Summaryx(n) >3- n
for all n > ng.

n X n
a — a+n = n>3a+3n - 3a+n>n

Hence, Summary x(a) = oc.
27/31



Small Certificates

Definition

A certificate is a partial flow tree such that, for every leaf cd,
@ either Ratiox < oo, or
@ Ratiox = oo and there is an ancestor c/d/ with ¢’ < c.

Proposition

Summarys(c) > d iff there is a certificate with root cd of at most
exponential height and exponential input/output labels.
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Need to check that an annotated partial parse tree is a certificate

28 /31



Small Certificates and Decision Procedure

Definition

A certificate is a partial flow tree such that, for every leaf cd,
@ either Ratiox < oo, or
@ Ratiox = oo and there is an ancestor c/d’ with ¢’ < c.

Proposition

The question whether Ratiox = oo Is decidable. If Ratiox < oo, then
Summary x is computable.

Guess-and-check algorithm

Need to check that an annotated partial parse tree is a certificate

28 /31
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Summary

> Extension of the reduced reachability tree from VAS to pushdown VAS

@ In fact to pushdown well-structured transition systems

> Boundedness and termination are decidable for pushdown VAS
@ Hyper-Ackermannian (F,«) worst-case running time

@ Tight bounds on the reachability set when it is finite

> Coverability is decidable for 1-dim pushdown VAS

(Counter-)boundedness for 1-dim pushdown VAS is solvable in
exponential time
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Open Problems

> Complexity of the boundedness problem for pushdown VAS
@ Lower bound: tower of exponentials (F3) from [Lazi¢ 2012]

e Upper bound: hyper-Ackermann (F,«)

> Decidability of coverability / reachability for pushdown VAS

@ Reachability open even in dimension 1
> Complexity of boundedness and coverability for 1-dim pushdown VAS

@ Both are NP-hard by reduction from SUBSETSUM
e Boundedness is in EXPTIME and Coverability is (?) in EXPSPACE
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Pushdown Vector Addition Systems — Semantics

The semantics of a pushdown VAS (Q, T, A) is the transition system
(@ x ' x N9, —) whose transition relation — is given by

(p;nop,a,q) EA N vV =v+a>0
(p,o,v) = (g,0,Vv')

(p,push(v),a,q) e A A vV =v+a>0
(p7 ag, V) — (qafy‘o-a V/)

(p,pop(7),a,q) EA AN vV =v+a>0
(pﬂry g, V) — (qv g, V/)
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VASs ~ Petrinets =~ VASSs

Additional Feature of Petri nets
Test x > cst without modifying x

d=d+?2
VASS Petri net
Ql=I|T|+

d:=d+3

N

VAS
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Weak Computation of Ackermann Functions

n+1 fm=20
An(n) =
(n) {A”m+11(1) fm>0
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Weak Computation of Ackermann Functions

n+1 fm=20
An(n) =
(n) {A”m+11(1) fm>0

(n) = n+1

(n) = n+2
Ax(n) = 2n+3

(n) on+3 _ 3
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Weak Computation of Ackermann Functions

n+1 fm=20
An(n) =
(n) {A”m+11(1) fm>0

pop(0),
+1

S



Weak Computation of Ackermann Functions

An(n) n+1 fm=0
n =
" AL (1) ifm >0
pop(0),
+1

pop(1)

i

push(0), +
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Weak Computation of Ackermann Functions

n+1 fm=20
An(n) =
(n) {A”m+11(1) fm>0

pop(0),
+1
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Weak Computation of Ackermann Functions

An(n) n+1 ifm=0
n =
" AL (1) ifm >0
pop(0),
11

(s0,mL, n) — (s0, L Am(n))
If (sp,mL, n) — (sp, L, n") then n’ < A, (n)
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