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Vector Addition Systems

Definition
A VAS is a finite set of vectors a ∈ Zd . For u, v ∈ Nd it has a step

u a−−→ v if v = u + a.

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

(1, 1)

a = (−1, 2)

b = (2,−1)
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Vector Addition Systems

Definition
A VAS is a finite set of vectors a ∈ Zd . For u, v ∈ Nd it has a step

u a−−→ v if v = u + a.

Equivalent to Petri nets

Many decidable verification questions

Reachability: does u ∗−−→ v ?

Coverability: does there exist v ′ ≥ v such that u ∗−−→ v ′ ?

Boundedness: is {v | u ∗−−→ v} finite ?
. . .
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Pushdown Vector Addition Systems

. . . are products of VAS with pushdown automata.
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Pushdown Vector Addition Systems

. . . are products of VAS with pushdown automata.

They can for example model recursive programs with variables over N.

1: x ← n
2: procedure DoubleX
3: if (? ∧ x > 0) then
4: x ← (x − 1)
5: DoubleX
6: end if
7: x ← (x + 2)
8: end procedure

2start

3

5

6

7

8

−1

push(A)

+2

pop(A)
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Pushdown Vector Addition Systems — Definition

Definition
A pushdown VAS is a triple 〈Q, Γ,∆〉 where

Q : finite set of states
Γ : finite stack alphabet
∆ ⊆ Q × (Op× Zd)× Q : finite set of transitions, with

Op = {nop} ∪ {push(γ), pop(γ) | γ ∈ Γ}

Configurations: (q, σ, v) with q ∈ Q, σ ∈ Γ∗ and v ∈ Nd

Steps: as expected

Reachability: does (p, ε,u)
∗−−→ (q, ε, v) ?

Coverability: does there exist v ′ ≥ v with (p, ε,u)
∗−−→ (q, ε, v ′) ?

Boundedness: is {(q, σ, v) | (p, ε,u)
∗−−→ (q, σ, v)} finite ?
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Pushdown Vector Addition Systems — Motivations

VAS

'

Petri net
+

ê Richer model for the verification of concurrent systems
Multi-threaded recursive programs
One recursive server + unboundedly many finite-state clients

ê Is the model too powerful?

VAS PDA

VAS + zero-tests Multi-PDA
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Brief State of the Art

Boundedness Coverability Reachability

VAS ExpSpace-c1,2 ExpSpace-c1,2 Decidable3,4,5

+ full counter Decidable7 Decidable6

+ stack Decidable9 Tower-h8

1-VAS + stack ExpTime-e11 Decidable10 ?

[1] Lipton 1976
[2] Rackoff 1978
[3] Mayr 1981
[4] Kosaraju 1982
[5] Leroux, Schmitz 2015
[6] Reinhardt 2008

[7] Finkel, Sangnier 2010
[8] Lazić 2012
[9] Leroux, Praveen, S. 2014
[10] Leroux, S., Totzke 2015
[11] Leroux, S., Totzke 2015
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Brief State of the Art

Boundedness Coverability Reachability

VAS ExpSpace-c1,2 ExpSpace-c1,2 Decidable3,4,5

+ full counter Decidable7 Decidable6

+ stack Decidable9 Tower-h8

1-VAS + stack ExpTime-e11 Decidable10 ?

Subclasses of pushdown VAS with decidable reachability

Multiset pushdown systems [Sen, Viswanathan 2006]

VAS ∩ CFL of finite index [Atig, Ganty 2011]

Related decidable models with counters and recursion

BPA(Z) [Bouajjani, Habermehl, Mayr 2003]
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Reachability Tree of a Pushdown VAS

qinit, ε, v init

q, σ, v

q1, σ1, v1 qn, σn, vn

ê Exhaustive and enumerative forward exploration from (qinit, ε, v init)

ê Potentially infinite, need to truncate
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Reduced Reachability Tree for VAS [Karp, Miller 1969]

Truncation Rule

v init

v

v ′

if v ≤ v ′

(1, 1)

a = (−1, 2)

b = (2,−1)

(1, 1)

(0, 3) (3, 0)

(2, 2) (2, 2)

ê The reduced reachability tree is finite

ê It contains enough information to decide boundedness

ê Crucial ingredient: the strict order < is a simulation relation
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Tentative Simulation-Based Truncation for Pushdown VAS

Truncation Rule

qinit, ε, v init

q, σ, v

q′, σ′, v ′

if q = q′, v ≤ v ′ and σ ≤prefix σ
′

p q
push(A)

push(B)

(p,⊥)

(q,A⊥)

(q,BA⊥)

(q,BBA⊥)

ê No loss of information to decide boundedness

But...

The reduced reachability tree may be infinite!
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Reduced Reachability Tree for Pushdown VAS

Truncation Rule

qinit, ε, v init

q, σ, v

q′, σ′, v ′

if

{
q = q′ and v ≤ v ′

σ ≤suffix ρ for all ρ

(_,_, ρ)

p q
1 push(A),−1

push(B), 1

(p,⊥, 1)

(q,A⊥, 0)

(q,BA⊥, 1)

ê The reduced reachability tree is finite

ê It contains enough information to decide boundedness

13 / 31



Finiteness of the Reduced Reachability Tree

Proposition
The reduced reachability tree of a pushdown VAS is finite.

Proof. By contradiction, assume that it is infinite.
The tree is finitely branching. So, by König’s Lemma, there is an infinite
branch

(qinit, ε, v init)→ (q1, σ1, v1)→ (q2, σ2, v2) · · ·

· · ·
q

v

q

v ′ ≥ v

· · ·
q

v

q

v ′ ≥ vq

v

q

v ′ ≥ v
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RRT-based Algorithm for Pushdown VAS Boundedness

Proposition
A pushdown VAS is unbounded iff its reduced reachability tree contains

(q, σ, v) (q, σ′, v ′)︸ ︷︷ ︸
σ remains a suffix

such that v ≤ v ′ and σ ≤suffix σ
′, and at least one of these inequalities

is strict.

Theorem ([Leroux, Praveen, S. 2014])
Boundedness is decidable for pushdown VAS.
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Worst-Case Complexity of the Algorithm

How big can the reduced reachability tree be?

Theorem ([Leroux, Praveen, S. 2014])
The reduced reachability tree of a pushdown VAS has at most an
hyper-Ackermannian number of nodes, and this bound is tight.
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Coverability versus Reachability in Pushdown VAS

Observation ([Lazić 2012])
Reachability in dimension d reduces to Coverability in dimension d + 1.

Proof. Budget construction. Use the stack to test the budget for zero.
Add a new counter B and two new stack symbols A, $.

A
with budget

B

push($)

push(A), B++ pop(A), B−−

pop($)

(qAinit, ε, 0)
∗−→ (qAfinal, ε, 0) iff (qA

′
init, ε, 0, 0)

∗−→ (qA
′

final, ε,_,_)
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Coverability versus Reachability in Pushdown VAS

Observation ([Lazić 2012])
Reachability in dimension d reduces to Coverability in dimension d + 1.

Reach(0) v Cover(1) v Reach(1) v Cover(2) v · · ·

Theorem ([Leroux, S., Totzke 2015])
Coverability for 1-dimensional pushdown VAS is decidable.

18 / 31



Another Perspective

The coverability problem for d-dimensional pushdown VAS can be
rephrased as follows.

Input:
a VAS A ⊆ Zd

a context-free language L ∈ A∗

vectors u, v ∈ Nd

Output: whether there exist a1a2 . . . ak ∈ L and v ′ ∈ Nd such that

u a1−−→ a2−−→ · · · ak−−→ v ′ and v ′ ≥ v

19 / 31



Grammar-Controlled Vector Addition Systems

A context-free grammar is a triple G = (V ,A,R) where

V : nonterminal symbols (variables)

A : terminal symbols

R : production rules X ` α where X ∈ V and α ∈ (V ∪ A)∗

Definition (1-dimensional GVAS)
A GVAS is a context-free grammar G = (V ,A,R) such that A ⊆ Z.

Every GVAS can be transformed into an equivalent one where
all variables X ∈ V are productive
A = {−1, 0, 1}

20 / 31



Summaries for Coverability

A GVAS is a context-free grammar G = (V ,A,R) such that A ⊆ Z.

Notations:

LX = {a1 · · · ak ∈ A∗ | X ∗
==⇒ a1 · · · ak}

c
X−−→ d ⇔ c

a1−−→ · · · ak−−→ d for some a1 · · · ak ∈ LX

Definition (Summary of a Variable)

SummaryX (c) = sup {d | c X−−→ d}

Coverability: SummaryS(c) ≥ d ? (given S, c, d)

21 / 31



Example: Weak Computation of Multiplication by Two

S ` −1 S 1 1 | ε

LS = {(−1)n(11)n | n ∈ N}

For every c , d ∈ N,

c
S−−→ d ⇐⇒ ∃n ∈ N : c

(−1)n(11)n−−−−−−−→ d

⇐⇒ ∃n ≤ c : c
(−1)n−−−−→ c − n

(11)n−−−→ c + n = d

⇐⇒ c ≤ d ≤ 2c

SummaryS(c) = 2c

22 / 31



Example: Weak Computation of Ackermann Functions

Am(n) =

{
n + 1 if m = 0
An+1
m−1(1) if m > 0

 

X0 ` 1
X1 ` −1 X1X0 | 1 X0

X2 ` −1 X2X1 | 1 X1
...

Xm ` −1 XmXm−1 | 1 Xm−1

A0(n) = n + 1
A1(n) = n + 2
A2(n) = 2n + 3

A3(n) = 2n+3 − 3
...

Xm
∗

==⇒ −1nXmX
n
m−1

==⇒ −1n1X n+1
m−1

∗
==⇒ · · ·

Am = SummaryXm
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Flow Trees

. . . can be arbitrarily large!

Certificates for SummaryS(c) ≥ d? Annotated parse trees!

X1

5 3

−1

5 4

X1

4 3

X0

2 3

1

4 5

X0

4 3

1

2 3

1

2 3

(SummaryX1(5) ≥ 3)

Flow Conditions

1 Nodes satisfy
SummaryX (IN) ≥ OUT

2 Labeling of neighboring
nodes is consistent
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Truncating and Collapsing Flow Trees

Sc d

Xa b

Xa′ b′
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==⇒ uXv
a′ = a +

∑
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b′ = b −
∑

v

∑
u

∑
v a, a′ b, b′

≤ 0 ≤ 0 a ≥ a′ b ≤ b′
Replace a′ by a and b′ by b
and then collapse.
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Truncating and Collapsing Flow Trees
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u and collapse.
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Asymptotic Ratios

Definition (Ratio of a Variable)

RatioX = lim infn→∞
SummaryX (n)

n

Grammar for Ackermann Functions Am

SummaryXm
= Am

A0(n) = n + 1 RatioX0 = 1
A1(n) = n + 2 RatioX1 = 1
A2(n) = 2n + 3 RatioX2 = 2

A3(n) = 2n+3 − 3 RatioX3 =∞
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Pruning Flow Trees

Sc d

Xa b

Xa′ b′

u v

X
∗

==⇒ uXv

Assume RatioX =∞. There exists n0 such that SummaryX (n) ≥ 3 · n
for all n ≥ n0.

a
un−−→ a + n

X−−→ n′ ≥ 3a + 3n vn

−−→ 3a + n ≥ n

Hence, SummaryX (a) =∞.
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Pruning Flow Trees
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Small Certificates

Definition

A certificate is a partial flow tree such that, for every leaf Xc d,
either RatioX <∞, or
RatioX =∞ and there is an ancestor Xc ′ d ′ with c ′ < c .

Proposition

SummaryS(c) ≥ d iff there is a certificate with root Sc d of at most
exponential height and exponential input/output labels.

Guess-and-check algorithm

Need to check that an annotated partial parse tree is a certificate
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Small Certificates and Decision Procedure

Definition

A certificate is a partial flow tree such that, for every leaf Xc d,
either RatioX <∞, or
RatioX =∞ and there is an ancestor Xc ′ d ′ with c ′ < c .

Proposition

The question whether RatioX =∞ is decidable. If RatioX <∞, then
SummaryX is computable.

Guess-and-check algorithm

Need to check that an annotated partial parse tree is a certificate
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Summary

ê Extension of the reduced reachability tree from VAS to pushdown VAS

In fact to pushdown well-structured transition systems

ê Boundedness and termination are decidable for pushdown VAS
Hyper-Ackermannian (Fωω) worst-case running time
Tight bounds on the reachability set when it is finite

ê Coverability is decidable for 1-dim pushdown VAS

(Counter-)boundedness for 1-dim pushdown VAS is solvable in
exponential time
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Open Problems

ê Complexity of the boundedness problem for pushdown VAS

Lower bound: tower of exponentials (F3) from [Lazić 2012]

Upper bound: hyper-Ackermann (Fωω)

ê Decidability of coverability / reachability for pushdown VAS

Reachability open even in dimension 1

ê Complexity of boundedness and coverability for 1-dim pushdown VAS

Both are NP-hard by reduction from SubsetSum

Boundedness is in ExpTime and Coverability is (?) in ExpSpace

Thank You!
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Pushdown Vector Addition Systems — Semantics

The semantics of a pushdown VAS 〈Q, Γ,∆〉 is the transition system
〈Q × Γ∗ × Nd ,→〉 whose transition relation → is given by

(p, nop, a, q) ∈ ∆ ∧ v ′ = v + a ≥ 0
(p, σ, v)→ (q, σ, v ′)

(p, push(γ), a, q) ∈ ∆ ∧ v ′ = v + a ≥ 0
(p, σ, v)→ (q, γ · σ, v ′)

(p, pop(γ), a, q) ∈ ∆ ∧ v ′ = v + a ≥ 0
(p, γ · σ, v)→ (q, σ, v ′)
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VASs ' Petri nets ' VASSs

Additional Feature of Petri nets
Test x ≥ cst without modifying x

VAS

Petri netVASS

⊆

|Q| := |T |+ 1

d := d + 2

d := d + 3
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Weak Computation of Ackermann Functions

Am(n) =

{
n + 1 if m = 0
An+1
m−1(1) if m > 0

(s0, m⊥, n)
∗−−→ (s0,⊥,Am(n))

If (s0, m⊥, n)
∗−−→ (s0,⊥, n′) then n′ ≤ Am(n)
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