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A Two-Counter Machine with One Test and One Reset
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A Two-Counter Machine with One Test and One Reset

c2+0

(C17 Cz) — (C1 +1,¢c2 — 1)

ci<c1+1

(c1,¢2) ¢ (c1—2,c2+4)

p(1,0) — q(2,0) — q(0,4) # q

— r(0,4) —»— r(2,2) — p(2,0)
p(2,0) = q(3,0) — q(1,4) # q

Aor
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VASS Extended with Tests, Resets and Transfers

Definition
A d-dim VASS is a triple (Q, X, A) where
@ Q@ : finite set of states

@ Y : finite set of actions, with

Yy ¢ zd
o A C QXX x Q : finite set of transitions

Configurations: g(x) with g € Q and x € N9

(a1,a2) € Z2 stands for (c1,c2) « (c1+a1,c2+ a2)



VASS Extended with Tests, Resets and Transfers

Definition
A d-dim Extended VASS is a triple (Q, %, A) where
@ Q@ : finite set of states

@ Y : finite set of actions, with
Y C oz U (TR0, Tri)) | irj € (L., d},i #j}

o A C QXX x Q : finite set of transitions

Configurations: q(x) with g € Q and x € N9

(a1,a2) € Z2 stands for (c1,c2) « (c1+a1,c2+ a2)
T(1) c1==0
R(2) co+ 0
Tr(1,2) Crp4cr+cp;c1 <0
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Verification of Extended VASS

REACHABILITY
Instance: an EVASS and two configurations p(x), g(y).
Question: is p(x) = q(y) ?

COVERABILITY
Instance: an EVASS and two configurations p(x), g(y).
Question: is p(x) = q(z) for some z >y ?

BOUNDEDNESS
Instance: an EVASS and a configuration p(x).

Question: is {q(y) | p(x) = q(y)} finite ?



Verification of Extended VASS — Some Known Results

’ H Boundedness ‘ Coverability ‘ Reachability ‘

’ d-dim VASS H EXPSPACE-c ‘ Dec ‘

T(1) Dec

T (%) Und (d > 2)

R(1) Dec!

R(1), R(2) Dec Dec? Und (d > 3)
R(%) Und (d > 3) Dec? Und (d > 3)
Tr(1) Dec?

Tr(%) Dec? ‘ Und (d > 3)

[1] Resets R(i) and transfers Tr(i, ) can be simulated by tests T (/)

[2] By general results on well-structured transition systems
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Verification of 2-dim Extended VASS

REACHABILITY, COVERABILITY, BOUNDEDNESS, ...

s post* / pre* | = Presburger-definable? If so can we compute it?

FO(N, +)
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Verification of 2-dim Extended VASS

REACHABILITY, COVERABILITY, BOUNDEDNESS, ...

s post* / pre* | = Presburger-definable? If so can we compute it?

FO(N, +)
Classes T/R,Try with /,J, K C {1,2}
| : counters that can be tested for zero
J : counters that can be reset
K : counters that can be transfered from
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Verification of 2-dim Extended VASS — State of Art

/ T1,2R1,2Tr1,2

Ti2

2-dim VASS

Reachability undecidable
[Minsky 1967]

post™ /pre* eff. Presb.
[Hopcroft, Pansiot 1979]
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@ 2-dim VASS reachability problem:

» PSPACE-complete with integers in binary [Blondin, Finkel, Gdller,
Haase, McKenzie 2015]
» NL-complete with integers in unary [Englert, Lazic, Totzke 2016]

@ d-dim Hierarchically-Extended VASS:

» decidability status of reachability, coverability, termination and
deadlock-freedom [Akshay, Chakraborty, Das, Jagannath, Sandeep 2017]




Verification of 2-dim Extended VASS — State of Art
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Main Contribution of the Paper

TRVASS = T;Ry = 2-dim VASS extended with T(1) and R(2)

Theorem
The reachability relation of a TRVASS is effectively Presburger-definable.
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Theorem
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C2<—0

(Cl, Cz) — (C1 4 1, Co — 1)

(C]_, C2) < (Cl — 2, c2 + 4)
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Main Contribution of the Paper

TRVASS = T;Ry = 2-dim VASS extended with T(1) and R(2)

Theorem
The reachability relation of a TRVASS is effectively Presburger-definable.

(_27 4)
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A Crucial Observation on Runs of TRVASS

Y = AU{T,R}
A = {(1,0),(-2,4),(1,-1)}

Decomposition of runs from p in the example:

A" T A* R AT
P (Xinit s Yinit) —>— r(0,y1) —— p(x2,0) —— r(0, y3) - - -
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A Crucial Observation on Runs of TRVASS

Yy = AU{T,R}
{(1> 0)7 (_274)’ (17 _1)}

>
I

Decomposition of runs from p in the example:

A" T A* R AT
P (Xinit s Yinit) —>— r(0,y1) —— p(x2,0) —— r(0, y3) - - -

Decomposition of runs in general:

A* T|R A* T|R A* T|R A*
Cipit —>—> C —>——> Cp+++ —>—> Ckx — Cfinal

where at least one counter is zero in ¢;
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Presburger (One-Counter) Automata

Definition
A Presburger automaton is a pair (Q, A) where
@ @ : finite set of states
o AC Qx 2§é§b x Q : finite set of transitions

\ Presburger-definable binary relations S C N x N

Configurations: g(x) with g € Q and x € N

Steps:
p(x) = qly) iff 3(p>q) en:(xy)eS
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Presburger (One-Counter) Automata

Definition
A Presburger automaton is a pair (Q, A) where
@ @ : finite set of states
o AC Qx 2§rxe§b x Q : finite set of transitions

\ Presburger-definable binary relations S C N x N

Configurations: g(x) with g € Q and x € N

Steps:
p(x) = qly) iff 3(p>q) en:(xy)eS

> Reachability is undecidable for Presburger automata in general
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From TRVASS to Presburger Automata

Presburger automaton P associated to a TRVASS V = (Q, X, A)
o Summarizes runs of the TRVASS between two extended actions

States of P: {qT, g lgeQ}

Srr(m.n) & p(0.m) % (0. )
Srr(m,n) £ p(m,0) A*—T>q(0, n)
Str(m,n) £ p(0,m) ﬂ>q(n,0)
Srr(m.n) & p(m,0) == q(n.0)
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From TRVASS to Presburger Automata

Presburger automaton P associated to a TRVASS V = (Q, X, A)
o Summarizes runs of the TRVASS between two extended actions

States of P: {qT, g lgeQ}

T(n) ~ q(0.n) =
T \ aR(n) ~ q(n.0)

Transitions of P:

Str e A*T
@ 6 Srr(m,n) £ p(0,m) == q(0, n)

Theorem ([Leroux, Sutre 2004])

The reachability relation A s effectively Presburger-definable.
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From TRVASS to Presburger Automata — Continued

Presburger automaton P associated to a TRVASS V = (Q, X, A)

o Summarizes runs of the TRVASS between two extended actions

P limited to p® and r7

n<m

mée (14+2N)An=2(m+1)
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From TRVASS to Presburger Automata — Continued

Presburger automaton P associated to a TRVASS V = (Q, X, A)

o Summarizes runs of the TRVASS between two extended actions

If 55 is effectively Presburger-definable then so is —,

A* A*{T,R} A* A*{T,R}x*{T,R} A*
I L AUTRIA A (TRIE (TR}

p(x1,x2) AT RAT, q(y1, y2) iff there exist r,s € Q and m,n € N

such that

p(x1,x2) AT r(0,m) A rT(m) 55 SR(n) A s(n,0) A q(y1, y2)
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Diagonal Presburger-Definable Relations

Definition
A relation S C N x N is diagonal if

xSy = (x+¢)S(y+c)

p(0, m) AT, q(0, n) and p(m,0) AR, q(n,0) are diagonal

Str Skrr

Theorem

Diagonal Presburger-definable relations are effectively closed under union,
intersection, composition and transitive closure.
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Diagonal Presburger-Definable Relations — Example

xSy & x<yAy<2x

xSty & x<yA(x=0&y=0)
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Diagonal Presburger-Definable Relations — Proof

Is = {x|3y >x:xSy} Ds = {y|3x>y : xSy}

a = min{§ >0|Vx€els:(x,x+0)eS} (0if Is = 0)
B =mn{§>0|VyeDs:(y+dy)eS} (0if Ds=10)

o
@
&

(x=y)V(xels ANyex+Na)
(x=y)V (yeDs A xey+Np)

IHCS(XJ)
DeCS(va)

o
o
&

Lemma
IfS C N x N is diagonal then ST = Incs - (SU---U S¥A+1) . Decs.
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Horizontal Presburger-Definable Relations

Definition
A relation S C N x N is horizontal if

xSy = (x+¢)Sy

p(0, m) AR, q(n,0) is horizontal

Str

Theorem

Horizontal Presburger-definable relations are effectively closed under
union, intersection, composition and transitive closure.
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Horizontal Presburger-Definable Relations — Example

def

xSy & ye2NAy<2x

xSty & ye2NA (x=0=y=0)
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Horizontal Presburger-Definable Relations — Proof
Lemma
If S C N x N is horizontal then x S* y iff there exists z such that

zSy NVYue{x,....,.z—1},Iv>u:uSv

Assume x = x0Sx1 S --- Sxc = y.

If x;_1 > x; then x;_1 S x; 1. So we may suppose w.l.0.g. that
Xo < X1 < -0 < Xg—1

Hence uS x; for all u € {xj_1,...,x;— 1} and 0 < i < k.

So for all u € {xo,...,xxk—1 — 1}, thereis v > u with uSv.

Take z = xj_1.
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Horizontal Presburger-Definable Relations — Proof
Lemma
If S C N x N is horizontal then x S* y iff there exists z such that

zSy NVYue{x,....,.z—1},Iv>u:uSv

Assume zSy and for all u € {x,...,z— 1}, thereis v > u with uSv.
If x > z then x S y. Otherwise, there exists x; > x with x S xq.

Repeat this process to build x < x; < --- < x, with xSx1 S --- Sxi
and x, > z.

Since zSy, we get x, Sy.
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Shallow Presburger Automata

Definition
A Presburger automaton is shallow if every cycle contains

only diagonal transitions or an horizontal transition

O m23/\n:m+2

me (1+2N)An=2(m+1)

Theorem

The reachability relation of a shallow Presburger automaton is effectively
Presburger-definable.
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Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

Base case: every SCC contains only diagonal transitions
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Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

Base case: every SCC contains only diagonal transitions

Diagonal Presburger-definable relations effectively closed under union,
composition and reflexive-transitive closure

So = is effectively Presburger-definable within each SCC



Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

. . : . H
Induction step: pick an horizontal transition p — g

S ANAANANANS T
A run from s to t
. H
@ either never takes p — g
H
H
p W—’ q @ or takes p — g at least once
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Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

. . : . H
Induction step: pick an horizontal transition p — g

R
S AANAANANS T
A run from s to t
R, R: . H
' 3 @ either never takes p — g
H
H
p W—’ q @ or takes p — g at least once
R>

mRin & s(m)Z p(n) in the Presburger automata without p A, q

R1, Ro, R3, Ry are effectively Presburger-definable by Ind. Hyp.

(Removing transitions preserves shallowness.)
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Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

. . : . H
Induction step: pick an horizontal transition p — g

R
S AANAANANS T
A run from s to t
R. R: . H
! 3 @ either never takes p — g
H
H
p W—’ q @ or takes p — g at least once
R>

s(m) = t(n)
& mRyn Vv Im',n mRym A m (H-R)*-H)n" An'Rsn
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Shallow Presburger Automata — Proof

By induction on the number of horizontal transitions

. . : . H
Induction step: pick an horizontal transition p — g

R
S AANAANANS T
A run from s to t
R. R: . H
! 3 @ either never takes p — g
H
H
p W—’ q @ or takes p — g at least once
R>

s(m) = t(n)
& mRyn Vv IM n :mRym Am'(H-R)" -H)n" A n"Rgn

H - Ry is horizontal, so (H - R2)* is effectively Presburger-definable
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Wrap-Up
Presburger automaton P associated to a TRVASS V = (Q, X, A)

If 5 is effectively Presburger-definable then so is =y
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Wrap-Up
Presburger automaton P associated to a TRVASS V = (Q, X, A)

If 5 is effectively Presburger-definable then so is =y

Transitions of P:

Str(m,n) : diagonal

(
Srr(m,n) : ordinary
Str(m,n) : horizontal
(

Srr(m,n) : diagonal

P is shallow so =5 is effectively Presburger-definable
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Summary

’ Class

Post*

*

%

T1Tr2 ~ T1’2 ~ T1,2R172TI’1’2

Reachability, . ..

undecidable

TRVASS = T1R ~ T1R1 5Ty

Eff. Presburger

Eff. Presburger

R172TI’1 ~ R172Tr172

Eff. Presburger

Eff. Presburger

T1 ~ T1 R1TI’1

Eff. Presburger

Eff. Presburger

2-dim VASS

Eff. Presburger

Eff. Presburger

@ Simple proof that unifies and generalizes all existing results

@ Post” is effectively Presburger-definable for TRVASS

» Boundedness is decidable

Relies on the effective Presburger-definability of = for 2-dim VASS

[Leroux, Sutre 2004]
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Open Problems

e Boundedness for d-dim TRVASS (d > 3)
» Decidable for d-dim RRVASS [Dufourd, Janéar, Schnoebelen 1999]

e Complexity of reachability for TRVASS

» PSPACE-complete for 2-dim VASS in binary [Blondin, Finkel, Géller,
Haase, McKenzie 2015]
» NL-complete for 2-dim VASS in unary [Englert, Lazic, Totzke 2016]

@ Reachability for 1-dim Pushdown VASS
» Coverability is decidable [Leroux, Sutre, Totzke 2015]
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e Complexity of reachability for TRVASS
» PSPACE-com plet 2 for 2-dim \'ASS in biarv [Blencin, Finkel, Goller,
Haase, McKe nzie 2)75i
» NL-complete for 2-dim VASS in unary [Englert, Lazic, Totzke 2016]

@ Reachability for 1-dim Pushdown VASS
» Coverability is decidable [Leroux, Sutre, Totzke 2015]
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