A Relational Trace Logic for Vector Addition Systems with Application to Context-Freeness

Jérôme Leroux, M. Praveen, Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

CONCUR 2013, Buenos Aires, Argentina, August 2013

Table of Contents

- 1 The Context-Freeness Problem for VAS
- Simple Witnesses of Non-Context-Freeness
- 3 A Relational Trace Logic for VAS with EXPSPACE Solvability
- 4 Conclusion

Table of Contents

- 1 The Context-Freeness Problem for VAS
- Simple Witnesses of Non-Context-Freeness
- 3 A Relational Trace Logic for VAS with EXPSPACE Solvability
- 4 Conclusion

Vector Addition Systems

Definition

A vector addition system is a pair $\langle A, c_{\text{init}} \rangle$ where

- $A \subseteq \mathbb{Z}^d$: finite set of actions
- $c_{\text{init}} \in \mathbb{N}^d$: initial configuration

$$m{A} = \{(-1,2),(2,-1)\}\ m{c}_{\mathrm{init}} = (1,1)$$

Vector Addition Systems

Definition

A vector addition system is a pair $\langle \pmb{A}, \pmb{c}_{\mathrm{init}}
angle$ where

- ullet $A\subseteq \mathbb{Z}^d$: finite set of actions
- $c_{\text{init}} \in \mathbb{N}^d$: initial configuration

Vector Addition Systems

Definition

A vector addition system is a pair $\langle \pmb{A}, \pmb{c}_{\mathrm{init}}
angle$ where

- ullet $A\subseteq \mathbb{Z}^d$: finite set of actions
- $c_{\text{init}} \in \mathbb{N}^d$: initial configuration

Trace Language

Definition

A trace is a sequence a_1, \ldots, a_n such that

$$c_{\text{init}} \xrightarrow{a_1} c_1 \cdots c_{n-1} \xrightarrow{a_n} c_n$$

Trace Language

Definition

A trace is a sequence a_1, \ldots, a_n such that

$$c_{\text{init}} \xrightarrow{a_1} c_1 \cdots c_{n-1} \xrightarrow{a_n} c_n$$

- abb is a trace
- aa is not a trace

Trace Language

Definition

A trace is a sequence a_1, \ldots, a_n such that

$$c_{\text{init}} \xrightarrow{a_1} c_1 \cdots c_{n-1} \xrightarrow{a_n} c_n$$

- abb is a trace
- aa is not a trace

Definition

The trace language is the set of all traces

The Context-Freeness Problem

Definition

Input: A VAS $\langle \boldsymbol{A}, \boldsymbol{c}_{\text{init}} \rangle$

Output: Is the trace language of $\langle \pmb{A}, \pmb{c}_{\mathrm{init}} \rangle$ context-free?

The Context-Freeness Problem

Definition

Input: A VAS $\langle \pmb{A}, \pmb{c}_{\mathrm{init}}
angle$

Output: Is the trace language of $\langle \pmb{A}, \pmb{c}_{\mathrm{init}} \rangle$ context-free?

$$(-1,2) = a$$
 $(1,1)$
 $(2,-1) = b$

Its trace language is **not** context-free:

$$L \cap (ab)^* a^* b^* = \{(ab)^n a^m b^p \mid n+1 \ge m \land n+1+2m \ge p\}$$

Regularity and Context-Freeness: State of the Art

Regularity

- Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
 - Non-regular \Leftrightarrow the coverability graph contains a cycle $\mathbf{x} \xrightarrow{\sigma} \mathbf{x}$ with $\|\Delta(\sigma)\|^- \neq \emptyset$
- EXPSPACE-complete [Demri 10]
 - Witness: trace $u_1\sigma_1\cdots u_k\sigma_k$ such that $L\cap (u_1\sigma_1^\star\cdots u_k\sigma_k^\star)$ is not regular
 - Length at most doubly-exponential (in |A|)

$$\Delta(a_1 \cdots a_n) = a_1 + \cdots + a_n$$
 $\|v\|^+ = \{i \mid v(i) > 0\}$ $\|v\|^- = \{i \mid v(i) < 0\}$

Regularity and Context-Freeness: State of the Art

Regularity

- Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
 - Non-regular \Leftrightarrow the coverability graph contains a cycle $\mathbf{x} \xrightarrow{\sigma} \mathbf{x}$ with $\|\Delta(\sigma)\|^- \neq \emptyset$
- EXPSPACE-complete [Demri 10]
 - Witness: trace $u_1\sigma_1\cdots u_k\sigma_k$ such that $L\cap (u_1\sigma_1^*\cdots u_k\sigma_k^*)$ is not regular
 - ► Length at most doubly-exponential (in |A|)

Context-Freeness

- Decidable [Schwer 92]
 - Complex criterion, based on the coverability graph
- Decidable [Leroux&Penelle&Sutre 13]
 - Witness: trace $u_1\sigma_1\cdots u_k\sigma_k$ such that $L\cap (u_1\sigma_1^{\star}\cdots u_k\sigma_k^{\star})$ is not context-free

Table of Contents

- 1 The Context-Freeness Problem for VAS
- Simple Witnesses of Non-Context-Freeness
- 3 A Relational Trace Logic for VAS with EXPSPACE Solvability
- 4 Conclusion

Matching Schemes

Definition

A matching scheme is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $\sigma_1, \ldots, \sigma_k$: words in \mathbf{A}^*
- U: binary relation on $\{1, \ldots, k\}$ that is nested:

$$(s,t) \in U \quad \Rightarrow \quad s \leq t$$
 $(r,t) \in U \land (s,u) \in U \quad \Rightarrow \quad \neg (r < s < t < u)$

Matching Schemes

Definition

A matching scheme is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $\sigma_1, \ldots, \sigma_k$: words in \mathbf{A}^*
- U: binary relation on $\{1, \ldots, k\}$ that is nested:

$$(s,t) \in U \quad \Rightarrow \quad s \leq t$$
 $(r,t) \in U \land (s,u) \in U \quad \Rightarrow \quad \neg (r < s < t < u)$

• For every $(s,t) \in U$, $\Delta(\sigma_s) \geq \mathbf{0}$ and $\Delta(\sigma_t) \not\geq \mathbf{0}$

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

Use one a_s to do as many a_t as possible. What do we lose?

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

$$\begin{array}{rcl}
 a_s & = & (1,1) \\
 a_t & = & (-1,-2) \\
 \lambda_{s,t} & = & \frac{1}{2}
 \end{array}$$

Use one a_s to do as many a_t as possible. What do we lose?

Ratio:
$$\lambda_{s,t} = \max \{\lambda \in \mathbb{Q} \mid a_s + \lambda a_t \geq 0\}$$

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

Use one a_s to do as many a_t as possible. What do we lose?

Ratio:
$$\lambda_{s,t} = \max \{\lambda \in \mathbb{Q} \mid a_s + \lambda a_t \geq 0\}$$

Definition

$$lost(s,t) = \|\boldsymbol{a}_s + \lambda_{s,t}\boldsymbol{a}_t\|^+$$

Witnesses of Non-Context-Freeness

Definition

A witness of non-context-freeness is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $(\sigma_1, \ldots, \sigma_k, U)$: matching scheme
- $u_1\sigma_1\cdots u_k\sigma_k$ is a trace for some u_1,\ldots,u_k
- $\Delta(\sigma_k) \not \geq \mathbf{0}$ and $\|\Delta(\sigma_k)\|^- \subseteq \bigcup_{(s,t) \in U} \mathsf{lost}(s,t)$
- $\|\Delta(\sigma_t)\|^- \subseteq \|\Delta(\sigma_{s_{\min}(t)})\|^+$ for all $(\cdot, t) \in U$ with t < k

Witnesses of Non-Context-Freeness

Definition

A witness of non-context-freeness is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

•
$$\Delta(\sigma_k) \not\geq \mathbf{0}$$
 and $\|\Delta(\sigma_k)\|^- \subseteq \bigcup_{(s,t)\in U} \mathsf{lost}(s,t)$

• · ·

Theorem (Leroux&Penelle&Sutre:2013)

The trace language of $\langle A, c_{\rm init} \rangle$ is not context-free iff $\langle A, c_{\rm init} \rangle$ admits a witness of non-context-freeness

Witnesses of Non-Context-Freeness: Example

$$(-1,2) = \mathbf{a}$$

$$(1,1)$$

$$(2,-1) = \mathbf{b}$$

 $L \cap (ab)^* a^* b^*$ is not context-free

Witness

$$(ab, a, b, \{(1,2)\})$$

- ullet The largest rational λ such that $\Delta({m a}{m b}) + \lambda \Delta({m a}) \geq {m 0}$ is $\lambda_{1,2} = 1$
- $lost(1,2) = ||\Delta(ab) + 1\Delta(a)||^+ = ||(0,3)||^+ = \{2\} contains ||b||^-$

Towards an Encoding in Logic

Definition

A witness of non-context-freeness is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $\Delta(\sigma_k) \not\geq \mathbf{0}$ and $\|\Delta(\sigma_k)\|^- \subseteq \bigcup_{(s,t)\in U} \mathsf{lost}(s,t)$
- \Rightarrow Bound k
- Arr Non-linear arithmetic constraints over the $\Delta(\sigma_i)$

$$i \in \operatorname{lost}(s,t) \quad \Leftrightarrow \quad \bigvee_{j \neq i} \frac{\delta_t(i) > 0 \, \wedge \, (\delta_s(i) > 0 \vee \|\delta_t\|^- \subseteq \|\delta_s\|^+)}{\delta_t(i) \le 0 \, \wedge \, \bigvee_{j \ne i} \, \frac{\delta_s(i) \cdot \delta_t(j)}{\delta_s(j) \cdot \delta_t(i)}}$$

 $(\delta_i \text{ stands for } \Delta(\sigma_i))$

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ is not context-free iff $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $k \le 3d + 1$
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ is not context-free iff $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- k < 3d + 1
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Proof:

- ullet Simplify U by keeping only pairs that add new lost components
- ullet At most two pairs (s,t) and $(s_{\min}(t),t)$ for each $i\in\{1,\ldots,d\}$
- Remove useless σ_j but keep σ_k

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ is not context-free iff $\langle \mathbf{A}, \mathbf{c}_{\mathrm{init}} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- k < 3d + 1
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Proof:

- Let $(s,t) \in U$ with positive ratio $\lambda_{s,t} = rac{p}{q}$
- Replacing σ_s by $(\sigma_s)^q$ and σ_t by $(\sigma_t)^p$ yields the ratio $\frac{q}{p}\cdot \frac{p}{q}=1$
- But this modifies the ratio of other pairs (s', t) and (s, t')
- Follow nesting of *U* to prevent conflicts

Encoding by Linear Arithmetic Constraints

The requirement that $\lambda_{s,t} \in \{0,1\}$ simplifies the encoding of lost(s,t)

$$egin{aligned} i \in \mathsf{lost}(s,t) &\Leftrightarrow& i \in \|oldsymbol{\delta}_s + \lambda_{s,t} oldsymbol{\delta}_t\|^+ \ & \lambda_{s,t} = 0 \ \land \ \delta_s(i) > 0 \ & \Leftrightarrow \ \lor \ & \lambda_{s,t} = 1 \ \land \ \delta_s(i) + \delta_t(i) > 0 \end{aligned}$$
 $egin{aligned} \lambda_{s,t} = 0 \ \Leftrightarrow \ \bigvee_{i=1}^d \left(\delta_s(i) = 0 \ \land \ \delta_t(i) < 0
ight) \end{aligned}$

$$\lambda_{s,t} = 1 \;\;\Leftrightarrow\;\; oldsymbol{\delta}_s + oldsymbol{\delta}_t \geq oldsymbol{0} \;\; \wedge \; \bigvee_{i=1}^d \left(oldsymbol{\delta}_s(i) + oldsymbol{\delta}_t(i) = 0 \; \wedge \; oldsymbol{\delta}_t(i) < 0
ight)$$

Encoding by Linear Arithmetic Constraints

The requirement that $\lambda_{s,t} \in \{0,1\}$ simplifies the encoding of lost(s,t)

$$egin{aligned} i \in \mathsf{lost}(s,t) &\Leftrightarrow i \in \|oldsymbol{\delta}_s + \lambda_{s,t} oldsymbol{\delta}_t\|^+ \ & \lambda_{s,t} = 0 \ \land \ \delta_s(i) > 0 \ & \Leftrightarrow \ \lor \ & \lambda_{s,t} = 1 \ \land \ oldsymbol{\delta}_s(i) + oldsymbol{\delta}_t(i) > 0 \end{aligned}$$
 $\lambda_{s,t} = 0 \ \Leftrightarrow \ \bigvee_{i=1}^d \left(oldsymbol{\delta}_s(i) = 0 \ \land \ oldsymbol{\delta}_t(i) < 0
ight)$

$$ightharpoonup$$
 Need linear relations between $\Delta(\sigma_1), \ldots, \Delta(\sigma_k)$

 $\lambda_{s,t} = 1 \Leftrightarrow \delta_s + \delta_t \geq 0 \land \bigvee_{i=1}^d (\delta_s(i) + \delta_t(i) = 0 \land \delta_t(i) < 0)$

Table of Contents

- The Context-Freeness Problem for VAS
- Simple Witnesses of Non-Context-Freeness
- 3 A Relational Trace Logic for VAS with EXPSPACE Solvability
- 4 Conclusion

Logics for Expressing Properties of VAS Behaviors

Yen's path logic [Yen 92]

- Powerful enough to express witnesses of non-context-freeness
- Model-checking REACHABILITY-hard [Atig&Habermehl 09]

Logics solvable in exponential space

- Increasing fragment of Yen's path logic [Atig&Habermehl 09]
- Generalized unbounded properties [Demri 10]
- Eventually increasing $PrECTL_{\geq}(F)$ [Blockelet&Schmitz 11]

Lack the ability to express witnesses of non-context-freeness

- Witnesses need not be increasing
- Generalized unbounded properties are non-relational

Yet Another Logic for VAS Traces: Syntax

Given a trace of the form $u_1 \sigma_1 \cdots u_k \sigma_k$

$$\cdots \rightarrow \sigma_1 \cdots \rightarrow \sigma_2 \cdots \rightarrow \sigma_3 \cdots \rightarrow \sigma_4 \cdots \rightarrow \sigma_5 \cdots \rightarrow \sigma_6$$

The logic expresses properties of $\Delta(\sigma_1), \ldots, \Delta(\sigma_k)$

Definition

$$\begin{array}{lll} t & ::= & z \, \boldsymbol{\delta_j}(i) \mid t+t & & \left(z \in \mathbb{Z}, j \geq 1, 1 \leq i \leq d\right) \\ \\ \phi & ::= & t \geq n \mid \phi \lor \phi \mid \phi \land \phi & & \left(n \in \mathbb{N}\right) \end{array}$$

Variables δ_i are interpreted as $\Delta(\sigma_i)$

Yet Another Logic for VAS Traces: Semantics

Definition (Demri 10)

A trace $u_1 \sigma_1 \cdots u_k \sigma_k$ is self-covering when

$$\|\Delta(\sigma_j)\|^- \subseteq \|\Delta(\sigma_1)\|^+ \cup \cdots \cup \|\Delta(\sigma_{j-1})\|^+ \qquad (\forall j \leq k)$$

Definition

$$u_1 \sigma_1 \cdots u_k \sigma_k \models \phi$$
 if $\phi \left[\Delta(\sigma_j) / \delta_j \right]$ holds $\langle \mathbf{A}, \mathbf{c}_{\text{init}} \rangle \models \phi$ if $u_1 \sigma_1 \cdots u_k \sigma_k \models \phi$ for some s.-c. trace

- The model-checking problem would become REACHABILITY-hard if
 - arbitrary traces were allowed
 - intermediate steps were forbidden $(u_i = \varepsilon)$

A Few Example Properties

Unboundedness:
$$\bigvee_{i=1}^{u} \delta_1(i) \geq 1$$

Place unboundedness:
$$\bigvee_{j=1}^{a} \delta_{j}(p) \geq 1$$

Non-regularity:
$$\bigvee_{i=1}^d - oldsymbol{\delta}_{d+1}(i) \geq 1$$

Non-context-freeness:
$$\bigvee_{k=1}^{3d+1} \bigvee_{U \subset \{1,...,k\}} \cdots \delta_s(i) + \delta_t(i) = 0 \cdots$$

nested

Main Technical Result: Small Model Property

Theorem

If there is a self-covering trace in $\langle {\bf A}, c_{\rm init} \rangle$ satisfying ϕ , then there is one of length at most

$$2^{p(|\mathbf{A}|+|\phi|)\cdot c^{(\mathbf{d}\cdot \mathbf{k}(\phi))^3}}$$

where p is a polynomial and c is a constant

Corollary

The model-checking problem $\langle \pmb{A}, \pmb{c}_{\mathrm{init}} \rangle \stackrel{?}{\models} \phi$ is ExpSpace-complete

Corollary

The context-freeness problem for VAS is ExpSpace-complete

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k \qquad |\sigma_1| + \cdots + |\sigma_k| \leq L$$

$$\sigma \rightsquigarrow (b^-, b^+)$$

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k$$
 $|\sigma_1| + \cdots + |\sigma_k| \le L$

$$\sigma \sim (b^-, b^+) \qquad c \xrightarrow{\sigma} c' \Leftrightarrow c \xrightarrow{b^-} \cdot \xrightarrow{b^+} c'$$

New VAS:
$$\begin{bmatrix} \pmb{a} \\ 0 \end{bmatrix} \quad , \quad \begin{bmatrix} \pmb{b_j}^- \\ 1 \end{bmatrix} \quad , \quad \begin{bmatrix} \pmb{b_j}^+ \\ 1 \end{bmatrix} \qquad \quad (\pmb{a} \in \pmb{A}, 1 \leq j \leq k)$$

$$c_{\text{init}} \xrightarrow{w} \cdot \geq \begin{bmatrix} \mathbf{0} \\ 2k \end{bmatrix} \qquad w = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^+ \\ 1 \end{bmatrix} \cdots \begin{bmatrix} u_k \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^+ \\ 1 \end{bmatrix}$$

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k$$
 $|\sigma_1| + \cdots + |\sigma_k| \leq L$

$$\sigma \sim (b^-, b^+) \qquad c \xrightarrow{\sigma} c' \Leftrightarrow c \xrightarrow{b^-} \cdot \xrightarrow{b^+} c'$$

New VAS:
$$\begin{bmatrix} \boldsymbol{a} \\ 0 \end{bmatrix} \quad , \quad \begin{bmatrix} \boldsymbol{b_j}^- \\ 1 \end{bmatrix} \quad , \quad \begin{bmatrix} \boldsymbol{b_j}^+ \\ 1 \end{bmatrix} \qquad \quad (\boldsymbol{a} \in \boldsymbol{A}, 1 \leq j \leq k)$$

$$c_{\text{init}} \xrightarrow{w} \cdot \geq \begin{bmatrix} \mathbf{0} \\ 2k \end{bmatrix} \qquad w = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^+ \\ 1 \end{bmatrix} \cdots \begin{bmatrix} u_k \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^+ \\ 1 \end{bmatrix}$$

Lemma (Rackoff 78)

If $c_{\mathrm{init}} \xrightarrow{w} \cdot \geq c$ then $c_{\mathrm{init}} \xrightarrow{w'} \cdot \geq c$ for some short subword w' of w

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k$$
 $|\sigma_1| + \cdots + |\sigma_k| \leq L$

$$\sigma \sim (b^-, b^+) \qquad c \xrightarrow{\sigma} c' \Leftrightarrow c \xrightarrow{b^-} \cdot \xrightarrow{b^+} c'$$

New VAS:
$$\begin{bmatrix} \pmb{a} \\ 0 \end{bmatrix} \quad , \quad \begin{bmatrix} \pmb{b_j}^- \\ 1 \end{bmatrix} \quad , \quad \begin{bmatrix} \pmb{b_j}^+ \\ 1 \end{bmatrix} \qquad \quad (\pmb{a} \in \pmb{A}, 1 \leq j \leq k)$$

$$c_{\text{init}} \xrightarrow{w} \cdot \geq \begin{bmatrix} \mathbf{0} \\ 2k \end{bmatrix} \qquad w = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^+ \\ 1 \end{bmatrix} \cdots \begin{bmatrix} u_k \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^- \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^+ \\ 1 \end{bmatrix}$$

$$c_{\text{init}} \xrightarrow{w'} \cdot \geq \begin{bmatrix} \mathbf{0} \\ 2k \end{bmatrix} \qquad w' = \begin{bmatrix} u'_{\mathbf{1}} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^- \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{b_1}^+ \\ \mathbf{1} \end{bmatrix} \cdots \begin{bmatrix} u'_{k} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^- \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{b_k}^+ \\ \mathbf{1} \end{bmatrix}$$

$$\Rightarrow u_1' \sigma_1 \cdots u_k' \sigma_k$$
 is a trace of $\langle \mathbf{A}, \mathbf{c}_{\text{init}} \rangle$ with $|u_1'| + \cdots + |u_k'| \leq |w'|$

Overview of the Proof: Bounding Cycles

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k \models \phi$$

Reduce to finding short σ such that

$$m{x} \xrightarrow{\sigma} m{x}$$
 and $m{Z}\Delta(\sigma) \geq m{n}$ where $m{x} \in \mathbb{N}_{out}^{m{d}}$, $m{Z} \in \mathbb{Z}^{r \times d}$, $m{n} \in \mathbb{N}^r$

Overview of the Proof: Bounding Cycles

$$c_{\text{init}} \xrightarrow{u_1} c_1 \xrightarrow{\sigma_1} c'_1 \cdots \xrightarrow{u_k} c_k \xrightarrow{\sigma_k} c'_k \models \phi$$

Reduce to finding short σ such that

$$\mathbf{x} \xrightarrow{\sigma} \mathbf{x}$$
 and $\mathbf{Z}\Delta(\sigma) \geq \mathbf{n}$

where
$$\mathbf{x} \in \mathbb{N}_{\omega}^d$$
, $\mathbf{Z} \in \mathbb{Z}^{r \times d}$, $\mathbf{n} \in \mathbb{N}^r$

Reduce to finding short reversible traces and use [Leroux 13]

J. Leroux.

Vector addition system reversible reachability problem. Logical Methods in Computer Science, 9(1), 2013.

Table of Contents

- The Context-Freeness Problem for VAS
- Simple Witnesses of Non-Context-Freeness
- 3 A Relational Trace Logic for VAS with EXPSPACE Solvability
- 4 Conclusion

Conclusion

New logic for expressing properties of VAS traces

- Can express linear relations between cycles visited by a run
- Model-checking is EXPSPACE-complete
- Incomparable with existing logics that are solvable in EXPSPACE

Complexity of the context-freeness problem: EXPSPACE-complete

- Simplification and encoding in the logic of the criterion given in [Leroux&Penelle&Sutre 13]
- ullet EXPSPACE-hardness by reduction from the boundedness problem

Conclusion

New logic for expressing properties of VAS traces

- Can express linear relations between cycles visited by a run
- Model-checking is EXPSPACE-complete
- Incomparable with existing logics that are solvable in EXPSPACE

Complexity of the context-freeness problem: EXPSPACE-complete

- Simplification and encoding in the logic of the criterion given in [Leroux&Penelle&Sutre 13]
- ullet EXPSPACE-hardness by reduction from the boundedness problem

Open Problems

- Allow negative constants n in $t \ge n$
 - ▶ Subsumes generalized unbounded properties [Demri 10]
- Existing EXPSPACE logics are incomparable: try to unify them!

There is hopefully still time for . . .

Questions?

Overview of the Proof: Bounding Cycles

Let $c_{\text{init}} \xrightarrow{u} c \xrightarrow{\sigma} c'$ with $\Delta(\sigma) \geq 0$ and $u \sigma \models \phi$, where $\phi = Z\delta \geq n$ Require in $Z\delta \geq n$ that $\delta(i)$ has the same sign as $\Delta(\sigma)(i)$

$$m{Z}m{\delta} \geq m{n} \quad \Leftrightarrow \quad \bigvee_{ ext{finite}} m{\delta} \in m{p}_0 + \mathbb{N}m{p}_0 + \mathbb{N}m{p}_1 + \dots + \mathbb{N}m{p}_m$$

$$\Delta(\sigma) = m{p}_0 + lpha_0m{p}_0 + lpha_1m{p}_1 + \dots + lpha_mm{p}_m$$

Introduce $\mathbf{x} \in \mathbb{N}^d_\omega$ obtained by iterating $\sigma \colon \mathbf{c}_{\mathrm{init}} \overset{u}{ o} \mathbf{c} \overset{\sigma^\omega}{ o} \mathbf{x}$

In $\widetilde{A} = A \cup \{-p_0, \dots, -p_m\}$, the action $-p_0$ is reversible on x because $x \xrightarrow{-p_0} x \xrightarrow{v} x$ and $\Delta(v) = p_0$, where $v = (-p_0)^{\alpha_0} \cdots (-p_m)^{\alpha_m} \cdot \sigma$

By [Leroux 13], $x \xrightarrow{-{m p}_0} x \xrightarrow{v'} x$ for some short v' with $\Delta(v') = {m p}_0$

Project v' on ${\pmb A}$ to get a short σ' such that ${\pmb x} \stackrel{\sigma'}{\longrightarrow} {\pmb x}$ and ${\pmb Z} \Delta(\sigma') \geq {\pmb n}$

For β large enough, $(u\sigma^{\beta})\sigma'$ is a self-covering trace