
On the Context-Freeness Problem for Vector Addition
Systems

Jérôme Leroux, Vincent Penelle, M. Praveen and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

LIFO Seminar, University of Orléans, May 12th 2014

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 1 / 43

Verification of Concurrent Systems (1)

ê Concurrent systems everywhere!

ê Hard to design correctly
Complex and unforeseen interactions between components
Need for to automated verification tools

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 2 / 43

Verification of Concurrent Systems (2)

Model-checking

M
?

|= ϕ

Need modelsM with
enough expressive power to represent the system to verify
support for automatic verification (model-checking decidable)

Vector Addition Systems ' Petri nets
Classical model for (parametrized) concurrent systems

I Rendez-vous synchronization
I Asynchronous communication via unbounded unordered buffers
I Dynamic process creation

Fundamental class that is often used as a toolbox

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 3 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 4 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 5 / 43

Vector Addition Systems with States in a Nutshell

A vector addition system with states is a finite-state automaton that is

equipped with finitely many counters x, y, . . .

counters range over the set N of natural numbers

counter operations are:
I increment:

x := x + 1

I guarded decrement:

assert(x > 0) ; x := x− 1

Vector addition systems with states are similar to Petri nets

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 6 / 43

Vector Addition Systems — Syntax

Definition
A vector addition system is a pair 〈v init,A〉 where

v init ∈ Nd : initial vector
A ⊆ Zd : finite set of actions

A = {(−1, 2), (2,−1)}
v init = (1, 1)

(1, 1)

(−1, 2) = a

(2,−1) = b

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 7 / 43

Vector Addition Systems — Syntax

Definition
A vector addition system is a pair 〈v init,A〉 where

v init ∈ Nd : initial vector
A ⊆ Zd : finite set of actions

A = {(−1, 2), (2,−1)}
v init = (1, 1)

(1, 1)

(−1, 2) = a

(2,−1) = b

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 7 / 43

Vector Addition Systems — Semantics

The semantics of a VAS 〈v init,A〉 is the transition system 〈Nd , v init,→〉
whose transition relation → is given by

a ∈ A ∧ v ′ = v + a ≥ 0
v → v ′

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b

(1, 1)

(−1, 2) = a

(2,−1) = b

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 8 / 43

Vector Addition Systems — Semantics

The semantics of a VAS 〈v init,A〉 is the transition system 〈Nd , v init,→〉
whose transition relation → is given by

a ∈ A ∧ v ′ = v + a ≥ 0
v → v ′

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b

(1, 1)

(−1, 2) = a

(2,−1) = b

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 8 / 43

Vector Addition Systems — Semantics

The semantics of a VAS 〈v init,A〉 is the transition system 〈Nd , v init,→〉
whose transition relation → is given by

a ∈ A ∧ v ′ = v + a ≥ 0
v → v ′

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b

(1, 1)

(−1, 2) = a

(2,−1) = b

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 8 / 43

Vector Addition Systems with States — Syntax

Definition
A vector addition system with states is a tuple 〈Q, qinit, v init,∆〉 where

Q : finite set of states
qinit ∈ Q : initial state
v init ∈ Nd : initial vector
∆ ⊆ Q × Zd × Q : finite set of transition rules

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 9 / 43

Vector Addition Systems with States — Syntax

Definition
A vector addition system with states is a tuple 〈Q, qinit, v init,∆〉 where

Q : finite set of states
qinit ∈ Q : initial state
v init ∈ Nd : initial vector
∆ ⊆ Q × Zd × Q : finite set of transition rules

Q = {p, q}
qinit = p
v init = (1, 0, 0)

∆ = {(p, (−1, 1, 0), p), . . .}
p q

(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 9 / 43

Vector Addition Systems with States — Syntax

Definition
A vector addition system with states is a tuple 〈Q, qinit, v init,∆〉 where

Q : finite set of states
qinit ∈ Q : initial state
v init ∈ Nd : initial vector
∆ ⊆ Q × Zd × Q : finite set of transition rules

VAS

〈v init,A〉
'

VASS

〈{q}, q, v init, {q} × A× {q}〉

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 9 / 43

Vector Addition Systems with States — Semantics

The semantics of a VASS 〈Q, qinit, v init,∆〉 is the transition system
〈Q × Nd , (qinit, v init),→〉 whose transition relation → is given by

(q, a, q′) ∈ ∆ ∧ v ′ = v + a ≥ 0
(q, v)→ (q′, v ′)

(p, 1, 0, 0) (p, 0, 1, 0)

(q, 0, 1, 0)(q, 2, 0, 0)

(p, 2, 0, 1) (p, 1, 1, 1) (p, 0, 2, 1)

(q, 0, 2, 1)(q, 2, 1, 1)(q, 4, 0, 1)

(p, 4, 0, 2) (p, 3, 1, 2)

p q
(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 10 / 43

Vector Addition Systems with States — Semantics

The semantics of a VASS 〈Q, qinit, v init,∆〉 is the transition system
〈Q × Nd , (qinit, v init),→〉 whose transition relation → is given by

(q, a, q′) ∈ ∆ ∧ v ′ = v + a ≥ 0
(q, v)→ (q′, v ′)

(p, 1, 0, 0) (p, 0, 1, 0)

(q, 0, 1, 0)(q, 2, 0, 0)

(p, 2, 0, 1) (p, 1, 1, 1) (p, 0, 2, 1)

(q, 0, 2, 1)(q, 2, 1, 1)(q, 4, 0, 1)

(p, 4, 0, 2) (p, 3, 1, 2)

p q
(1, 0, 0)

(−1, 1, 0) (2,−1, 0)

0

(0, 0, 1)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 10 / 43

VAS ' Petri nets ' VASS

Additional Feature of Petri nets
Test x ≥ cst without modifying x

VAS

Petri netVASS

⊆

|Q| := |T |+ 1

d := d + 2

d := d + 3

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 11 / 43

State of the Art — Reachability, Coverability, . . .

Input: A VAS 〈v init,A〉 and a final vector vfinal

Reachability Problem — Whether v init
∗−→ vfinal

Decidable [Mayr 81, Kosaraju 82], ExpSpace-hard [Lipton 76]

Coverability Problem — Whether ∃v : v init
∗−→ v ≥ vfinal

Decidable [Karp&Miller 69], ExpSpace-complete [Rackoff 78]

Boundedness Problem — Whether {v ∈ Nd | v init
∗−→ v} is finite

Decidable [Karp&Miller 69], ExpSpace-complete [Rackoff 78]

Many ExpSpace-complete problems (place boundedness, . . .)
Some undecidable problems (equality of reachability sets, . . .)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 12 / 43

Trace Language

A trace of a VAS 〈v init,A〉 is a sequence a1, . . . , an such that

v init
a1−→ v1 · · · vn−1

an−→ vn

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b
abb is a trace
aa is not a trace

Definition
The trace language is the set
of all traces

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 13 / 43

Trace Language

A trace of a VAS 〈v init,A〉 is a sequence a1, . . . , an such that

v init
a1−→ v1 · · · vn−1

an−→ vn

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b
abb is a trace
aa is not a trace

Definition
The trace language is the set
of all traces

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 13 / 43

Trace Language

A trace of a VAS 〈v init,A〉 is a sequence a1, . . . , an such that

v init
a1−→ v1 · · · vn−1

an−→ vn

(1, 1)

(0, 3) (3, 0)

(2, 2)

(1, 4) (4, 1)

(3, 3)(0, 6) (6, 0)

a b

b a

a b

b aa b

a b
abb is a trace
aa is not a trace

Definition
The trace language is the set
of all traces

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 13 / 43

The Regularity and Context-Freeness Problems

Definition
Input: A VAS 〈v init,A〉
Output: Is the trace language of 〈v init,A〉 regular/context-free?

Regularity
Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
ExpSpace-complete [Demri 10]

I Witness: trace u1σ1 · · · ukσk such that L ∩ (u1σ
?
1 · · · ukσ?

k) is not
regular

I Length at most doubly-exponential (in |A|)

Context-Freeness
Decidable [Schwer 92]

I Complex criterion, based on the coverability graph
I Intricate proof with flaws

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 14 / 43

The Regularity and Context-Freeness Problems

Definition
Input: A VAS 〈v init,A〉
Output: Is the trace language of 〈v init,A〉 regular/context-free?

Regularity
Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
ExpSpace-complete [Demri 10]

I Witness: trace u1σ1 · · · ukσk such that L ∩ (u1σ
?
1 · · · ukσ?

k) is not
regular

I Length at most doubly-exponential (in |A|)

Context-Freeness
Decidable [Schwer 92]

I Complex criterion, based on the coverability graph
I Intricate proof with flaws

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 14 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 15 / 43

Example 1

a = (1, 1) b = (1, 0) c = (−1,−1)

Its trace language is context-free:

L = {anbmcp | n ≥ p ∧m ≥ 0}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 16 / 43

Example 1

a = (1, 1) b = (1, 0) c = (−1,−1)

Its trace language is context-free:

L = {anbmcp | n ≥ p ∧m ≥ 0}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 16 / 43

Example 2

a = (0, 1)
////////////a = (1, 1) b = (1, 0) c = (−1,−1)

Its trace language is not context-free:

m ≥ p
L = {anbmcp | n ≥ p ∧ ///////m ≥ 0}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 17 / 43

Example 2

a = (0, 1)
////////////a = (1, 1) b = (1, 0) c = (−1,−1)

Its trace language is not context-free:

m ≥ p
L = {anbmcp | n ≥ p ∧ ///////m ≥ 0}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 17 / 43

Example 3

a = (1, 2) b = (2, 1) c = (−2,−1) d = (−1,−2)

Its trace language is context-free:

a, push(A) b, push(B) c , pop(B)

d , pop(BB) d , pop(A)

pop(B)

c , pop(AA) d , pop(A)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 18 / 43

Example 3

a = (1, 2) b = (2, 1) c = (−2,−1) d = (−1,−2)

Its trace language is context-free:

a, push(A) b, push(B) c , pop(B)

d , pop(BB) d , pop(A)

pop(B)

c , pop(AA) d , pop(A)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 18 / 43

Example 4 (Running Example)

(1, 1)

(−1, 2) = a

(2,−1) = b

Its trace language is not context-free:

L ∩ (ab)?a?b? = {(ab)nambp | n + 1 ≥ m ∧ n + 1 + 2m ≥ p}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 19 / 43

Example 4 (Running Example)

(1, 1)

(−1, 2) = a

(2,−1) = b

Its trace language is not context-free:

L ∩ (ab)?a?b? = {(ab)nambp | n + 1 ≥ m ∧ n + 1 + 2m ≥ p}

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 19 / 43

Simulation of a VAS by a Pushdown Automaton: Main Ideas

Goal: recognize the traces of a VAS with a pushdown automaton

Use the stack to store the values of the counters

For each vector read from the input tape

Positive vector → Push it onto the stack

Non-positive vector → Match it with the stack

Problem: some components may be lost by matching

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 20 / 43

Match and Remainder

u ≥ 0, v 6≥ 0, and λ the greatest rational such that u + λv ≥ 0,

mat(u, v) =

{
(1− λ) · v if λ < 1
(1− 1

λ) · u if λ ≥ 1

rem(u, v) = u + v −mat(u, v) ≥ 0

push(mat(u, p))

p ← mat(u, p)

read(u) push(u) read(v) p ← v pop(u) λ
≥

1

λ
<

1

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 21 / 43

Match and Remainder: Example with λ < 1

Take u = (1, 2, 1) and v = (−1,−3, 2)

The greatest λ such that u + λv ≥ 0 is λ =
2
3

After matching u and v , we are left with

mat(u, v) = (1− λ) · v = (−1
3
,−1, 2

3
)

The remainder is

rem(u, v) = u + λv = (
1
3
, 0,

7
3

)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 22 / 43

Simulation of a VAS by a Pushdown Machine (Variables)

Global variables
local buffer w ∈ A∗

accumulated remainder r ∈ Qd
≥0

stack of extracted vectors in Qd
≥0

They represent the VAS configuration:

v init + ∆(w) + r + ∆(stack)

Initialize ()

1 w ← ε
2 r ← 0
3 stack ← ε

∆(a1 · · · an) =
a1 + · · ·+ an

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 23 / 43

Simulation of a VAS by a Pushdown Machine (Read)

VAS configuration: v init + ∆(w) + r + ∆(stack)

Read (a ∈ A)

1 if v init + ∆(w) + r + ∆(stack) + a ≥ 0 then
2 w ← w · a
3 Simplify ()
4 else
5 reject

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 24 / 43

Simulation of a VAS by a Pushdown Machine (Simplify)

Simplify ()

1 while ∆(σ) + r + ∆(stack) ≥ 0 for some suffix σ 6= ε of w do
2 Pick such a suffix σ
3 w ← w · σ−1

4 p ← ∆(σ)
5 while p 6≥ 0 do
6 if stack is empty then
7 fail
8 else
9 pop γ from stack

10 (p, r) ← (mat(γ, p), r + rem(γ, p))
11 if p(i) > 0⇒ r(i) > 0 for every index i then
12 r ← r + p
13 else
14 push p onto stack

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 25 / 43

Properties of the Simulation

Proposition
If fail is not reachable, then the pushdown machine recognizes the trace
language of the VAS

Proof: easy

Proposition
The language recognized by the pushdown machine is context-free

Proof: next slide

Corollary
If fail is not reachable, the trace language of the VAS is context-free

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 26 / 43

Proof: The Pushdown Machine Recognizes a CFL

Proposition
The set of reachable values of w is finite

Proposition
The reachable alphabet for stack is finite

ê Standard PDA, with stack alphabet Γ ⊆ Qd
≥0, augmented with:

counters r ∈ Qd
≥0, updated by assignments r ← r + v with v ≥ 0

tests: r(i) + ∆(stack)(i) # z and r(i) # z where # ∈ {≤,≥}

Replace Qd
≥0 by Nd

≥0 and let K ∈ N be the maximum z of the tests

Abstract by > components of r and ∆(stack) larger than K

ê Store r in the state and ∆(stack) within the stack

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 27 / 43

Proof: The Pushdown Machine Recognizes a CFL

Proposition
The set of reachable values of w is finite

Proposition
The reachable alphabet for stack is finite

ê Standard PDA, with stack alphabet Γ ⊆ Qd
≥0, augmented with:

counters r ∈ Qd
≥0, updated by assignments r ← r + v with v ≥ 0

tests: r(i) + ∆(stack)(i) # z and r(i) # z where # ∈ {≤,≥}

Replace Qd
≥0 by Nd

≥0 and let K ∈ N be the maximum z of the tests

Abstract by > components of r and ∆(stack) larger than K

ê Store r in the state and ∆(stack) within the stack

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 27 / 43

Proof: The Pushdown Machine Recognizes a CFL

Proposition
The set of reachable values of w is finite

Proposition
The reachable alphabet for stack is finite

ê Standard PDA, with stack alphabet Γ ⊆ Qd
≥0, augmented with:

counters r ∈ Qd
≥0, updated by assignments r ← r + v with v ≥ 0

tests: r(i) + ∆(stack)(i) # z and r(i) # z where # ∈ {≤,≥}

Replace Qd
≥0 by Nd

≥0 and let K ∈ N be the maximum z of the tests

Abstract by > components of r and ∆(stack) larger than K

ê Store r in the state and ∆(stack) within the stack

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 27 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 28 / 43

Matching Schemes

σ1 σ2 σ3 σ4 σ5 σ6

≥

0

≥

0

6≥

0

6≥

0

≥
0

6≥

0

Definition
A matching scheme is a tuple (σ1, . . . , σk ,U) such that

σ1, . . . , σk : words in A?

U : binary relation on {1, . . . , k} that is nested:

(s, t) ∈ U ⇒ s ≤ t

(r , t) ∈ U ∧ (s, u) ∈ U ⇒ ¬(r < s < t < u)

For every (s, t) ∈ U, ∆(σs) ≥ 0 and ∆(σt) 6≥ 0

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 29 / 43

Matching Schemes

σ1 σ2 σ3 σ4 σ5 σ6≥

0

≥

0

6≥

0

6≥

0

≥
0

6≥

0

Definition
A matching scheme is a tuple (σ1, . . . , σk ,U) such that

σ1, . . . , σk : words in A?

U : binary relation on {1, . . . , k} that is nested:

(s, t) ∈ U ⇒ s ≤ t

(r , t) ∈ U ∧ (s, u) ∈ U ⇒ ¬(r < s < t < u)

For every (s, t) ∈ U, ∆(σs) ≥ 0 and ∆(σt) 6≥ 0

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 29 / 43

Loss by Matching (s, t) ∈ U

Consider the case of single actions: σs = as and σt = at

as at≥

0

6≥

0

as = (1, 1)
at = (−1,−2)

λs,t = 1
2

lost(s, t) = {1}

Use one as to do as many at as possible. What do we lose?

Ratio: λs,t = max {λ ∈ Q | as + λat ≥ 0}

Definition

lost(s, t) = ‖as + λs,tat‖+ = ‖ rem(as , at)‖+

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 30 / 43

Loss by Matching (s, t) ∈ U

Consider the case of single actions: σs = as and σt = at

as at≥

0

6≥

0

as = (1, 1)
at = (−1,−2)

λs,t = 1
2

lost(s, t) = {1}

Use one as to do as many at as possible. What do we lose?

Ratio: λs,t = max {λ ∈ Q | as + λat ≥ 0}

Definition

lost(s, t) = ‖as + λs,tat‖+ = ‖ rem(as , at)‖+

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 30 / 43

Loss by Matching (s, t) ∈ U

Consider the case of single actions: σs = as and σt = at

as at≥

0

6≥

0

as = (1, 1)
at = (−1,−2)

λs,t = 1
2

lost(s, t) = {1}

Use one as to do as many at as possible. What do we lose?

Ratio: λs,t = max {λ ∈ Q | as + λat ≥ 0}

Definition

lost(s, t) = ‖as + λs,tat‖+ = ‖ rem(as , at)‖+

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 30 / 43

Witnesses of Non-Context-Freeness

σ1 σ2 σ3 σ4 σ5 σ6≥

0

≥

0

6≥

0

6≥

0
≥

0

6≥

0

Definition
A witness of non-context-freeness is a tuple (σ1, . . . , σk ,U) such that

(σ1, . . . , σk ,U) : matching scheme
u1σ1 · · · ukσk is a trace for some u1, . . . , uk

∆(σk) 6≥ 0 and ‖∆(σk)‖− ⊆
⋃

(s,t)∈U

lost(s, t)

‖∆(σt)‖− ⊆ ‖∆(σsmin(t))‖
+ for all (·, t) ∈ U with t < k

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 31 / 43

Characterization of Context-Freeness through Witnesses

Proposition
If fail is reachable, then a witness of non-context-freeness can be
constructed from a run reaching fail

Proposition
If a VAS admits a witness of non-context-freeness, then its trace
language is not context-free

Proof: based on the characterization of bounded context-free languages
by Ginsburg and Spanier

Theorem
The trace language of a VAS 〈v init,A〉 is not context-free

⇐⇒ fail is reachable
⇐⇒ 〈v init,A〉 admits a witness of non-context-freeness

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 32 / 43

Characterization of Context-Freeness through Witnesses

Proposition
If fail is reachable, then a witness of non-context-freeness can be
constructed from a run reaching fail

Proposition
If a VAS admits a witness of non-context-freeness, then its trace
language is not context-free

Proof: based on the characterization of bounded context-free languages
by Ginsburg and Spanier

Theorem
The trace language of a VAS 〈v init,A〉 is not context-free

⇐⇒ fail is reachable
⇐⇒ 〈v init,A〉 admits a witness of non-context-freeness

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 32 / 43

Witnesses of Non-Context-Freeness: Example

(1, 1)

(−1, 2) = a

(2,−1) = b

L ∩ (ab)?a?b? is not context-free

Witness

(ab, a,b, {(1, 2)}) ab a b≥

0

6≥

0

6≥

0

The largest rational λ such that ∆(ab) + λ∆(a) ≥ 0 is λ1,2 = 1

lost(1, 2) = ‖∆(ab) + 1∆(a)‖+ = ‖(0, 3)‖+ = {2} contains ‖b‖−

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 33 / 43

Towards an Encoding in Logic

Definition
A witness of non-context-freeness is a tuple (σ1, . . . , σk ,U) such that

∆(σk) 6≥ 0 and ‖∆(σk)‖− ⊆
⋃

(s,t)∈U

lost(s, t)

· · ·

ê Bound k

ê Non-linear arithmetic constraints over the ∆(σj)

i ∈ lost(s, t) ⇔
δt(i) > 0 ∧ (δs(i) > 0 ∨ ‖δt‖− ⊆ ‖δs‖+)

∨
δt(i) ≤ 0 ∧

∨
j 6=i δs(i) · δt(j) < δs(j) · δt(i)

(δj stands for ∆(σj))

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 34 / 43

Simpler Witnesses of Non-Context-Freeness

Proposition
The trace language of 〈v init,A〉 is not context-free iff 〈v init,A〉 admits a
witness of non-context-freeness (σ1, . . . , σk ,U) such that

k ≤ 3d + 1
for every (s, t) ∈ U, the ratio λs,t is either 0 or 1

Proof:

Simplify U by keeping only pairs that add new lost components

At most two pairs (s, t) and (smin(t), t) for each i ∈ {1, . . . , d}

Remove useless σj but keep σk

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 35 / 43

Simpler Witnesses of Non-Context-Freeness

Proposition
The trace language of 〈v init,A〉 is not context-free iff 〈v init,A〉 admits a
witness of non-context-freeness (σ1, . . . , σk ,U) such that

k ≤ 3d + 1
for every (s, t) ∈ U, the ratio λs,t is either 0 or 1

Proof:

Simplify U by keeping only pairs that add new lost components

At most two pairs (s, t) and (smin(t), t) for each i ∈ {1, . . . , d}

Remove useless σj but keep σk

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 35 / 43

Simpler Witnesses of Non-Context-Freeness

Proposition
The trace language of 〈v init,A〉 is not context-free iff 〈v init,A〉 admits a
witness of non-context-freeness (σ1, . . . , σk ,U) such that

k ≤ 3d + 1
for every (s, t) ∈ U, the ratio λs,t is either 0 or 1

Proof:

Let (s, t) ∈ U with positive ratio λs,t = p
q

Replacing σs by (σs)q and σt by (σt)
p yields the ratio q

p ·
p
q = 1

But this modifies the ratio of other pairs (s ′, t) and (s, t ′)

Follow nesting of U to prevent conflicts

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 35 / 43

Encoding by Linear Arithmetic Constraints

The requirement that λs,t ∈ {0, 1} simplifies the encoding of lost(s, t)

i ∈ lost(s, t) ⇔ i ∈ ‖δs + λs,tδt‖+

⇔
λs,t = 0 ∧ δs(i) > 0

∨
λs,t = 1 ∧ δs(i) + δt(i) > 0

λs,t = 0 ⇔
d∨

i=1

(δs(i) = 0 ∧ δt(i) < 0)

λs,t = 1 ⇔ δs + δt ≥ 0 ∧
d∨

i=1

(δs(i) + δt(i) = 0 ∧ δt(i) < 0)

ê Need linear relations between ∆(σ1), . . . ,∆(σk)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 36 / 43

Encoding by Linear Arithmetic Constraints

The requirement that λs,t ∈ {0, 1} simplifies the encoding of lost(s, t)

i ∈ lost(s, t) ⇔ i ∈ ‖δs + λs,tδt‖+

⇔
λs,t = 0 ∧ δs(i) > 0

∨
λs,t = 1 ∧ δs(i) + δt(i) > 0

λs,t = 0 ⇔
d∨

i=1

(δs(i) = 0 ∧ δt(i) < 0)

λs,t = 1 ⇔ δs + δt ≥ 0 ∧
d∨

i=1

(δs(i) + δt(i) = 0 ∧ δt(i) < 0)

ê Need linear relations between ∆(σ1), . . . ,∆(σk)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 36 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 37 / 43

Yet Another Logic for VAS Traces: Syntax

Given a trace of the form u1 σ1 · · · uk σk

σ1 σ2 σ3 σ4 σ5 σ6

The logic expresses properties of ∆(σ1), . . . ,∆(σk)

Definition
t ::= z δj(i) | t + t (z ∈ Z, j ≥ 1, 1 ≤ i ≤ d)

φ ::= t ≥ n | φ ∨ φ | φ ∧ φ (n ∈ N)

Variables δj are interpreted as ∆(σj)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 38 / 43

Yet Another Logic for VAS Traces: Semantics

Definition (Demri 10)
A trace u1 σ1 · · · uk σk is self-covering when

‖∆(σj)‖− ⊆ ‖∆(σ1)‖+ ∪ · · · ∪ ‖∆(σj−1)‖+ (∀j ≤ k)

Definition
u1 σ1 · · · uk σk |= φ if φ [∆(σj) / δj] holds

〈v init,A〉 |= φ if u1 σ1 · · · uk σk |= φ for some s.-c. trace

ê The model-checking problem would become Reachability-hard if
arbitrary traces were allowed
intermediate steps were forbidden (uj = ε)

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 39 / 43

A Few Example Properties

Unboundedness:
d∨

i=1

δ1(i) ≥ 1

Place unboundedness:
d∨

j=1

δj(p) ≥ 1

Non-regularity:
d∨

i=1

−δd+1(i) ≥ 1

Non-context-freeness:
3d+1∨
k=1

∨
U ⊆{1,...,k}

nested

· · · δs(i) + δt(i) = 0 · · ·

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 40 / 43

Small Model Property

Theorem
If there is a self-covering trace in 〈v init,A〉 satisfying φ, then there is
one of length at most

2p(|A|+|φ|)·c
(d·k(φ))3

where p is a polynomial and c is a constant

Corollary

The model-checking problem 〈v init,A〉
?

|= φ is ExpSpace-complete

Corollary
The context-freeness problem for VAS is ExpSpace-complete

Proof: ExpSpace-hardness by reduction from the boundedness problem

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 41 / 43

Table of Contents

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

4 A Relational Trace Logic for VAS with ExpSpace Solvability

5 Conclusion

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 42 / 43

Conclusion and Open Problems

New proof, simpler than the one of Schwer
Characterization of non-context-freeness through simple witnesses
The trace language of a VAS is context-free if, and only if, it has a
context-free intersection with every bounded regular language

New logic for expressing properties of VAS traces
Can express linear relations between cycles visited by a run
Model-checking is ExpSpace-complete
Incomparable with existing logics that are solvable in ExpSpace

Complexity of the context-freeness problem: ExpSpace-complete

Open Problems
Existing ExpSpace logics are incomparable: try to unify them!
Coverability and reachability for Pushdown VAS

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 43 / 43

Conclusion and Open Problems

New proof, simpler than the one of Schwer
Characterization of non-context-freeness through simple witnesses
The trace language of a VAS is context-free if, and only if, it has a
context-free intersection with every bounded regular language

New logic for expressing properties of VAS traces
Can express linear relations between cycles visited by a run
Model-checking is ExpSpace-complete
Incomparable with existing logics that are solvable in ExpSpace

Complexity of the context-freeness problem: ExpSpace-complete

Open Problems
Existing ExpSpace logics are incomparable: try to unify them!
Coverability and reachability for Pushdown VAS

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 43 / 43

There is hopefully still time for . . .

Questions ?

Leroux, Penelle, Praveen, Sutre Context-Freeness for VAS May 2014 43 / 43

	Vector Addition Systems
	Decidability of the Context-Freeness Problem for VAS
	Simple Witnesses of Non-Context-Freeness
	A Relational Trace Logic for VAS with ExpSpace Solvability
	Conclusion

