On the Context-Freeness Problem for Vector Addition Systems

Jérôme Leroux, Vincent Penelle, M. Praveen and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

LIFO Seminar, University of Orléans, May 12th 2014

Leroux, Penelle, Praveen, Sutre

Verification of Concurrent Systems (1)

- Concurrent systems everywhere!
- \Rightarrow Hard to design correctly
 - Complex and unforeseen interactions between components
 - Need for to automated verification tools

Leroux, Penelle, Praveen, Sutre

Context-Freeness for VAS

Verification of Concurrent Systems (2)

 $\begin{array}{c} \mathsf{Model-checking} \\ \mathcal{M} & \stackrel{?}{\models} & \varphi \end{array}$

Need models ${\mathcal M}$ with

- enough expressive power to represent the system to verify
- support for automatic verification (model-checking decidable)

Vector Addition Systems \simeq Petri nets

- Classical model for (parametrized) concurrent systems
 - Rendez-vous synchronization
 - Asynchronous communication via unbounded unordered buffers
 - Dynamic process creation
- Fundamental class that is often used as a toolbox

- Vector Addition Systems
- 2 Decidability of the Context-Freeness Problem for VAS
- 3 Simple Witnesses of Non-Context-Freeness
- A Relational Trace Logic for VAS with EXPSPACE Solvability

5 Conclusion

Table of Contents

Vector Addition Systems

- 2 Decidability of the Context-Freeness Problem for VAS
- 3 Simple Witnesses of Non-Context-Freeness
- [4] A Relational Trace Logic for VAS with $\operatorname{ExpSpace}$ Solvability

5 Conclusion

Vector Addition Systems with States in a Nutshell

A vector addition system with states is a finite-state automaton that is

- \bullet equipped with finitely many counters x,y,\ldots
- \bullet counters range over the set $\mathbb N$ of natural numbers
- counter operations are:
 - increment:

$$\mathbf{x} := \mathbf{x} + \mathbf{1}$$

guarded decrement:

$$\texttt{assert}(\texttt{x} > \texttt{0}) ; \texttt{x} := \texttt{x} - 1$$

Vector addition systems with states are similar to Petri nets

Definition

A vector addition system is a pair $\langle \textbf{\textit{v}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\mathbf{A} \subseteq \mathbb{Z}^d$: finite set of actions

Definition

A vector addition system is a pair $\langle \textbf{\textit{v}}_{\mathrm{init}}, \textbf{\textit{A}} \rangle$ where

- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\mathbf{A} \subseteq \mathbb{Z}^d$: finite set of actions

$$m{A} = \{(-1,2), (2,-1)\}$$

 $m{
u}_{
m init} = (1,1)$

(-1,2) = a

(2, -1) = b

Vector Addition Systems — Semantics

The semantics of a VAS $\langle \boldsymbol{\nu}_{\mathrm{init}}, \boldsymbol{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \boldsymbol{\nu}_{\mathrm{init}}, \rightarrow \rangle$ whose transition relation \rightarrow is given by

Vector Addition Systems — Semantics

The semantics of a VAS $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \mathbf{v}_{init}, \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$egin{array}{cccc} m{a}\inm{A}\ \wedge\ m{v}'=m{v}+m{a}\geqm{0}\ m{v}
ightarrowm{v}' \end{array}$$

Vector Addition Systems — Semantics

The semantics of a VAS $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is the transition system $\langle \mathbb{N}^d, \mathbf{v}_{init}, \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$\frac{\boldsymbol{a} \in \boldsymbol{A} \land \boldsymbol{v}' = \boldsymbol{v} + \boldsymbol{a} \ge \boldsymbol{0}}{\boldsymbol{v} \to \boldsymbol{v}'}$$

Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{\rm init}, oldsymbol{
u}_{
m init}, \Delta
angle$ where

- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules

Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{ ext{init}}, oldsymbol{
u}_{ ext{init}}, \Delta
angle$ where

- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules

Vector Addition Systems with States — Syntax

Definition

A vector addition system with states is a tuple $\langle Q, q_{\rm init}, oldsymbol{
u}_{
m init}, \Delta
angle$ where

- Q : finite set of states
- $q_{\text{init}} \in Q$: initial state
- $\mathbf{v}_{\text{init}} \in \mathbb{N}^d$: initial vector
- $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$: finite set of transition rules

Vector Addition Systems with States — Semantics

The semantics of a VASS $\langle Q, q_{\text{init}}, \mathbf{v}_{\text{init}}, \Delta \rangle$ is the transition system $\langle Q \times \mathbb{N}^d, (q_{\text{init}}, \mathbf{v}_{\text{init}}), \rightarrow \rangle$ whose transition relation \rightarrow is given by

Vector Addition Systems with States — Semantics

The semantics of a VASS $\langle Q, q_{\text{init}}, \mathbf{v}_{\text{init}}, \Delta \rangle$ is the transition system $\langle Q \times \mathbb{N}^d, (q_{\text{init}}, \mathbf{v}_{\text{init}}), \rightarrow \rangle$ whose transition relation \rightarrow is given by

$$egin{array}{lll} (q,oldsymbol{a},q')\in\Delta &\wedge oldsymbol{v}'=oldsymbol{v}+oldsymbol{a}\geq 0 \ (q,oldsymbol{v})
ightarrow (q',oldsymbol{v}') \end{array}$$

$$(p, 1, 0, 0) \rightarrow (p, 0, 1, 0)$$

$$\downarrow$$

$$(q, 2, 0, 0) \leftarrow (q, 0, 1, 0)$$

$$\downarrow$$

$$(p, 2, 0, 1) \rightarrow (p, 1, 1, 1) \rightarrow (p, 0, 2, 1)$$

$$\downarrow$$

$$(q, 4, 0, 1) \leftarrow (q, 2, 1, 1) \leftarrow (q, 0, 2, 1)$$

$$\downarrow$$

$$(p, 4, 0, 2) \rightarrow (p, 3, 1, 2) \dots \rightarrow$$

$$(q, 1, 0) \rightarrow (p, 1, 1, 1) \rightarrow (p, 0, 2, 1)$$

$$\downarrow$$

$$(1, 0, 0) \rightarrow (0, 0, 1)$$

VAS \simeq Petri nets \simeq VASS

Additional Feature of Petri nets

Test $x \ge cst$ without modifying x

State of the Art — Reachability, Coverability, ...

Input: A VAS $\langle \textbf{\textit{v}}_{\rm init}, \textbf{\textit{A}} \rangle$ and a final vector $\textbf{\textit{v}}_{\rm final}$

Reachability Problem — Whether $v_{init} \xrightarrow{*} v_{final}$ Decidable [Mayr 81, Kosaraju 82], EXPSPACE-hard [Lipton 76]

Coverability Problem — Whether $\exists v : v_{init} \xrightarrow{*} v \ge v_{final}$ Decidable [Karp&Miller 69], EXPSPACE-complete [Rackoff 78]

Boundedness Problem — Whether $\{ \mathbf{v} \in \mathbb{N}^d \mid \mathbf{v}_{init} \xrightarrow{*} \mathbf{v} \}$ is finite Decidable [Karp&Miller 69], EXPSPACE-complete [Rackoff 78]

- Many ExpSpace-complete problems (place boundedness, ...)
- Some undecidable problems (equality of reachability sets, ...)

Trace Language

A trace of a VAS $\langle \boldsymbol{v}_{\mathrm{init}}, \boldsymbol{A} \rangle$ is a sequence $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ such that

$$\mathbf{v}_{\text{init}} \xrightarrow{\mathbf{a}_1} \mathbf{v}_1 \cdots \mathbf{v}_{n-1} \xrightarrow{\mathbf{a}_n} \mathbf{v}_n$$

Trace Language

A trace of a VAS $\langle \pmb{v}_{\mathrm{init}}, \pmb{A} \rangle$ is a sequence $\pmb{a}_1, \ldots, \pmb{a}_n$ such that

$$\mathbf{v}_{\text{init}} \xrightarrow{\mathbf{a}_1} \mathbf{v}_1 \cdots \mathbf{v}_{n-1} \xrightarrow{\mathbf{a}_n} \mathbf{v}_n$$

abb is a trace

• aa is not a trace

Trace Language

A trace of a VAS $\langle \boldsymbol{v}_{\mathrm{init}}, \boldsymbol{A} \rangle$ is a sequence $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ such that

$$\mathbf{v}_{ ext{init}} \xrightarrow{\mathbf{a}_1} \mathbf{v}_1 \cdots \mathbf{v}_{n-1} \xrightarrow{\mathbf{a}_n} \mathbf{v}_n$$

• **abb** is a trace

• aa is not a trace

Definition

The trace language is the set of all traces

The Regularity and Context-Freeness Problems

Definition

Input:	A VAS $\langle m{v}_{ m init},m{A} angle$
Output:	Is the trace language of $\langle \boldsymbol{v}_{\rm init}, \boldsymbol{A} \rangle$ regular/context-free?

Regularity

- Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
- EXPSPACE-complete [Demri 10]
 - Witness: trace $u_1\sigma_1\cdots u_k\sigma_k$ such that $L\cap (u_1\sigma_1^*\cdots u_k\sigma_k^*)$ is not regular
 - Length at most doubly-exponential (in $|\mathbf{A}|$)

The Regularity and Context-Freeness Problems

Definition

Input:	A VAS $\langle m{ u}_{ m init},m{A} angle$
Output:	Is the trace language of $\langle \boldsymbol{v}_{\rm init}, \boldsymbol{A} \rangle$ regular/context-free?

Regularity

- Decidable [Valk&Vidal-Naquet 81, Ginzburg&Yoeli 80]
- EXPSPACE-complete [Demri 10]
 - Witness: trace $u_1\sigma_1\cdots u_k\sigma_k$ such that $L\cap (u_1\sigma_1^*\cdots u_k\sigma_k^*)$ is not regular
 - Length at most doubly-exponential (in |A|)

Context-Freeness

- Decidable [Schwer 92]
 - Complex criterion, based on the coverability graph
 - Intricate proof with flaws

1 Vector Addition Systems

2 Decidability of the Context-Freeness Problem for VAS

3 Simple Witnesses of Non-Context-Freeness

[4] A Relational Trace Logic for VAS with $\operatorname{ExpSpace}$ Solvability

5 Conclusion

Its trace language is context-free:

$$L = \{ \boldsymbol{a}^n \boldsymbol{b}^m \boldsymbol{c}^p \mid n \ge p \land m \ge 0 \}$$

Leroux, Penelle, Praveen, Sutre

Example 2

Example 2

Its trace language is not context-free:

$$L = \{ \boldsymbol{a}^n \boldsymbol{b}^m \boldsymbol{c}^p \mid n \ge p \land \#/\#/\#/\emptyset \}$$

Example 3

Its trace language is context-free:

Example 4 (Running Example)

Example 4 (Running Example)

Its trace language is not context-free:

 $L \cap (\boldsymbol{ab})^{\star} \boldsymbol{a}^{\star} \boldsymbol{b}^{\star} = \{(\boldsymbol{ab})^{n} \boldsymbol{a}^{m} \boldsymbol{b}^{p} \mid n+1 \geq m \wedge n+1+2m \geq p\}$

Goal: recognize the traces of a VAS with a pushdown automaton

Use the stack to store the values of the counters

For each vector read from the input tape

- \bullet Positive vector \to Push it onto the stack
- Non-positive vector \rightarrow Match it with the stack

Problem: some components may be lost by matching

Match and Remainder

 $m{u} \geq m{0}, \ m{v} \not\geq m{0}$, and λ the greatest rational such that $m{u} + \lambda m{v} \geq m{0}$,

$$\mathsf{mat}(\boldsymbol{u}, \boldsymbol{v}) \;=\; egin{cases} (1-\lambda) \cdot \boldsymbol{v} & ext{if } \lambda < 1 \ (1-rac{1}{\lambda}) \cdot \boldsymbol{u} & ext{if } \lambda \geq 1 \end{cases}$$

$$\mathsf{rem}(\boldsymbol{u},\boldsymbol{v}) \;=\; \boldsymbol{u}+\boldsymbol{v}-\mathsf{mat}(\boldsymbol{u},\boldsymbol{v})\geq \boldsymbol{0}$$

$$\xrightarrow{read(u)} \xrightarrow{push(u)} \xrightarrow{read(v)} \xrightarrow{p \leftarrow v} \xrightarrow{pop(u)} \xrightarrow{p \leftarrow mat(u, p)}$$

Match and Remainder: Example with $\lambda < 1$

Take
$$u = (1, 2, 1)$$
 and $v = (-1, -3, 2)$

The greatest λ such that $\boldsymbol{u} + \lambda \boldsymbol{v} \ge \boldsymbol{0}$ is $\lambda = \frac{2}{3}$

After matching \boldsymbol{u} and \boldsymbol{v} , we are left with

$$mat(\boldsymbol{u}, \boldsymbol{v}) = (1 - \lambda) \cdot \boldsymbol{v} = (-\frac{1}{3}, -1, \frac{2}{3})$$

The remainder is

$$\operatorname{rem}(\boldsymbol{u},\boldsymbol{v}) = \boldsymbol{u} + \lambda \boldsymbol{v} = (\frac{1}{3},0,\frac{7}{3})$$

Leroux, Penelle, Praveen, Sutre

Simulation of a VAS by a Pushdown Machine (Variables)

Global variables

- local buffer $w \in \mathbf{A}^*$
- accumulated remainder $r \in \mathbb{Q}_{\geq 0}^d$
- stack of extracted vectors in $\mathbb{Q}^d_{\geq 0}$

They represent the VAS configuration:

 $m{v}_{\mathrm{init}} + \Delta(\mathtt{w}) + \mathtt{r} + \Delta(\mathtt{stack})$

Initialize ()

- $\mathbf{1} \quad \mathbf{W} \leftarrow \boldsymbol{\varepsilon}$
- 2 r $\leftarrow \mathbf{0}$
- 3 stack $\leftarrow \varepsilon$

 $\Delta(\boldsymbol{a}_1\cdots \boldsymbol{a}_n) = \ \boldsymbol{a}_1+\cdots+\boldsymbol{a}_n$

VAS configuration: $\mathbf{v}_{init} + \Delta(w) + r + \Delta(stack)$

Read $(a \in A)$ 1 if $\mathbf{v}_{init} + \Delta(w) + r + \Delta(stack) + a \ge 0$ then 2 $w \leftarrow w \cdot a$ 3 Simplify() 4 else 5 reject

Simulation of a VAS by a Pushdown Machine (Simplify)

Simplify ()

1	while $\Delta(\sigma) + r + \Delta(\text{stack}) \ge 0$ for some suffix $\sigma \neq \varepsilon$ of w do
2	Pick such a suffix σ
3	$\mathbf{w} \leftarrow \mathbf{w} \cdot \sigma^{-1}$
4	$\mathtt{p} \leftarrow \Delta(\sigma)$
5	while p ≱ 0 do
6	if stack is empty then
7	fail
8	else
9	pop γ from <code>stack</code>
10	$(\mathtt{p},\mathtt{r}) \leftarrow (mat(oldsymbol{\gamma},\mathtt{p}),\mathtt{r}+rem(oldsymbol{\gamma},\mathtt{p}))$
11	if $p(i) > 0 \Rightarrow r(i) > 0$ for every index <i>i</i> then
12	$\mathtt{r} \leftarrow \mathtt{r} + \mathtt{p}$
13	else
14	push p onto stack

Properties of the Simulation

Proposition

If fail is not reachable, then the pushdown machine recognizes the trace language of the VAS

Proof: easy

Proposition

The language recognized by the pushdown machine is context-free

Proof: next slide

Corollary

If fail is not reachable, the trace language of the VAS is context-free

Leroux, Penelle, Praveen, Sutre

Context-Freeness for VAS

Proof: The Pushdown Machine Recognizes a CFL

Proposition

The set of reachable values of w is finite

Proposition

The reachable alphabet for stack is finite

Proof: The Pushdown Machine Recognizes a CFL

Proposition

The set of reachable values of w is finite

Proposition The reachable alphabet for stack is finite

r Standard PDA, with stack alphabet $\Gamma \subseteq \mathbb{Q}^d_{\geq 0}$, augmented with:

- counters $\mathtt{r} \in \mathbb{Q}^d_{\geq 0}$, updated by assignments $\mathtt{r} \leftarrow \mathtt{r} + oldsymbol{\nu}$ with $oldsymbol{\nu} \geq oldsymbol{0}$
- tests: $r(i) + \Delta(\texttt{stack})(i) \ \# \ z \ \texttt{and} \ r(i) \ \# \ z \ \texttt{where} \ \# \in \{\leq, \geq\}$

Proof: The Pushdown Machine Recognizes a CFL

Proposition

The set of reachable values of w is finite

Proposition The reachable alphabet for stack is finite

- r Standard PDA, with stack alphabet $\Gamma \subseteq \mathbb{Q}^d_{>0}$, augmented with:
 - counters $\mathtt{r} \in \mathbb{Q}^d_{\geq 0}$, updated by assignments $\mathtt{r} \leftarrow \mathtt{r} + oldsymbol{v}$ with $oldsymbol{v} \geq oldsymbol{0}$
 - tests: $r(i) + \Delta(\texttt{stack})(i) \ \# \ z \ \texttt{and} \ r(i) \ \# \ z \ \texttt{where} \ \# \in \{\leq, \geq\}$

Replace $\mathbb{Q}_{\geq 0}^d$ by $\mathbb{N}_{\geq 0}^d$ and let $K \in \mathbb{N}$ be the maximum z of the tests Abstract by \top components of r and $\Delta(\texttt{stack})$ larger than K \Rightarrow Store r in the state and $\Delta(\texttt{stack})$ within the stack

Leroux, Penelle, Praveen, Sutre

Context-Freeness for VAS

- 1 Vector Addition Systems
- 2 Decidability of the Context-Freeness Problem for VAS
- 3 Simple Witnesses of Non-Context-Freeness
- 4 A Relational Trace Logic for VAS with EXPSPACE Solvability

5 Conclusion

Matching Schemes

Definition

A matching scheme is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $\sigma_1, \ldots, \sigma_k$: words in A^*
- U: binary relation on $\{1, \ldots, k\}$ that is nested:

$$(s,t) \in U \quad \Rightarrow \quad s \leq t \ (r,t) \in U \land (s,u) \in U \quad \Rightarrow \quad \neg (r < s < t < u)$$

Matching Schemes

Definition

A matching scheme is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $\sigma_1, \ldots, \sigma_k$: words in A^*
- U: binary relation on $\{1, \ldots, k\}$ that is nested:

$$(s,t) \in U \quad \Rightarrow \quad s \leq t \ (r,t) \in U \land (s,u) \in U \quad \Rightarrow \quad \neg (r < s < t < u)$$

• For every $(s,t) \in U$, $\Delta(\sigma_s) \geq \mathbf{0}$ and $\Delta(\sigma_t) \not\geq \mathbf{0}$

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

$$a_s = (1,1)$$

 $a_t = (-1,-2)$

Use one a_s to do as many a_t as possible. What do we lose?

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

Use one a_s to do as many a_t as possible. What do we lose?

Ratio: $\lambda_{s,t} = \max \{ \lambda \in \mathbb{Q} \mid \boldsymbol{a}_s + \lambda \boldsymbol{a}_t \geq \boldsymbol{0} \}$

Loss by Matching $(s, t) \in U$

Consider the case of single actions: $\sigma_s = a_s$ and $\sigma_t = a_t$

Use one a_s to do as many a_t as possible. What do we lose?

Ratio:
$$\lambda_{s,t} = \max \{ \lambda \in \mathbb{Q} \mid \boldsymbol{a}_s + \lambda \boldsymbol{a}_t \geq \boldsymbol{0} \}$$

Definition

$$\mathsf{lost}(s,t) = \|\boldsymbol{a}_s + \lambda_{s,t}\boldsymbol{a}_t\|^+ = \|\mathsf{rem}(\boldsymbol{a}_s, \boldsymbol{a}_t)\|^+$$

Leroux, Penelle, Praveen, Sutre

Witnesses of Non-Context-Freeness

Definition

A witness of non-context-freeness is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $(\sigma_1, \ldots, \sigma_k, U)$: matching scheme
- $u_1\sigma_1\cdots u_k\sigma_k$ is a trace for some u_1,\ldots,u_k
- $\Delta(\sigma_k) \not\geq \mathbf{0} \text{ and } \|\Delta(\sigma_k)\|^- \subseteq \bigcup_{(s,t)\in U} \mathsf{lost}(s,t)$
- $\|\Delta(\sigma_t)\|^- \subseteq \|\Delta(\sigma_{s_{\min}(t)})\|^+$ for all $(\cdot, t) \in U$ with t < k

Proposition

If fail is reachable, then a witness of non-context-freeness can be constructed from a run reaching fail

Proposition

If a VAS admits a witness of non-context-freeness, then its trace language is not context-free

Proof: based on the characterization of bounded context-free languages by Ginsburg and Spanier

Proposition

If fail is reachable, then a witness of non-context-freeness can be constructed from a run reaching fail

Proposition

If a VAS admits a witness of non-context-freeness, then its trace language is not context-free

Proof: based on the characterization of bounded context-free languages by Ginsburg and Spanier

Theorem

The trace language of a VAS $\langle \textbf{v}_{\rm init}, \textbf{A} \rangle$ is not context-free

- \iff fail is reachable
- \iff $\langle \textbf{v}_{\mathrm{init}}, \textbf{A} \rangle$ admits a witness of non-context-freeness

Witnesses of Non-Context-Freeness: Example

 $L \cap (ab)^* a^* b^*$ is not context-free

• The largest rational λ such that $\Delta(\boldsymbol{ab}) + \lambda \Delta(\boldsymbol{a}) \geq \mathbf{0}$ is $\lambda_{1,2} = 1$

• $lost(1,2) = ||\Delta(ab) + 1\Delta(a)||^+ = ||(0,3)||^+ = \{2\}$ contains $||b||^-$

Towards an Encoding in Logic

Definition A witness of non-context-freeness is a tuple $(\sigma_1, \ldots, \sigma_k, U)$ such that • $\Delta(\sigma_k) \not\geq 0$ and $\|\Delta(\sigma_k)\|^- \subseteq \bigcup_{(s,t)\in U} \text{lost}(s, t)$

Sound k

. . . .

r > Non-linear arithmetic constraints over the $\Delta(\sigma_j)$

$$egin{aligned} &\delta_t(i) > 0 \ \land \ (\delta_s(i) > 0 \lor \|\delta_t\|^- \subseteq \|\delta_s\|^+) \ &\delta_t(i) \le 0 \ \land \ igvee_{j
eq i} \ \delta_s(i) \cdot \delta_t(j) < \delta_s(j) \cdot \delta_t(i) \end{aligned}$$

 $(\delta_j \text{ stands for } \Delta(\sigma_j))$

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is not context-free iff $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $k \leq 3d+1$
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is not context-free iff $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $k \leq 3d+1$
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Proof:

- Simplify U by keeping only pairs that add new lost components
- At most two pairs (s,t) and $(s_{\min}(t),t)$ for each $i\in\{1,\ldots,d\}$
- Remove useless σ_j but keep σ_k

Simpler Witnesses of Non-Context-Freeness

Proposition

The trace language of $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ is not context-free iff $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ admits a witness of non-context-freeness $(\sigma_1, \ldots, \sigma_k, U)$ such that

- $k \leq 3d+1$
- for every $(s,t) \in U$, the ratio $\lambda_{s,t}$ is either 0 or 1

Proof:

- Let $(s,t) \in U$ with positive ratio $\lambda_{s,t} = rac{p}{q}$
- Replacing σ_s by $(\sigma_s)^q$ and σ_t by $(\sigma_t)^p$ yields the ratio $\frac{q}{p} \cdot \frac{p}{q} = 1$
- But this modifies the ratio of other pairs (s', t) and (s, t')
- Follow nesting of U to prevent conflicts

Leroux, Penelle, Praveen, Sutre

Encoding by Linear Arithmetic Constraints

The requirement that $\lambda_{s,t} \in \{0,1\}$ simplifies the encoding of lost(s,t)

 $i \in \mathsf{lost}(s,t) \; \Leftrightarrow \; i \in \| oldsymbol{\delta}_s + \lambda_{s,t} oldsymbol{\delta}_t \|^+$

$$egin{aligned} &\lambda_{s,t}=0 \ \land \ oldsymbol{\delta}_{s}(i)>0 \ \Leftrightarrow ⅇ ⅇ & \lambda_{s,t}=1 \ \land \ oldsymbol{\delta}_{s}(i)+oldsymbol{\delta}_{t}(i)>0 \end{aligned}$$

$$egin{aligned} \lambda_{s,t} &= 0 & \Leftrightarrow & \bigvee_{i=1}^d \left(\delta_s(i) = 0 \ \land \ \delta_t(i) < 0
ight) \ \lambda_{s,t} &= 1 & \Leftrightarrow & \delta_s + \delta_t \geq \mathbf{0} \ \land \ \bigvee_{i=1}^d \left(\delta_s(i) + \delta_t(i) = 0 \ \land \ \delta_t(i) < 0
ight) \end{aligned}$$

Encoding by Linear Arithmetic Constraints

The requirement that $\lambda_{s,t} \in \{0,1\}$ simplifies the encoding of lost(s,t)

 $i \in \mathsf{lost}(s,t) \; \Leftrightarrow \; i \in \| oldsymbol{\delta}_s + \lambda_{s,t} oldsymbol{\delta}_t \|^+$

$$egin{aligned} &\lambda_{s,t}=0 \ \land \ \delta_s(i)>0 \ &\Leftrightarrow ⅇ \ & \lambda_{s,t}=1 \ \land \ \delta_s(i)+\delta_t(i)>0 \end{aligned}$$

$$\begin{split} \lambda_{s,t} &= 0 \quad \Leftrightarrow \quad \bigvee_{i=1}^{d} \left(\delta_{s}(i) = 0 \; \land \; \delta_{t}(i) < 0 \right) \\ \lambda_{s,t} &= 1 \quad \Leftrightarrow \quad \delta_{s} + \delta_{t} \geq 0 \; \land \; \bigvee_{i=1}^{d} \left(\delta_{s}(i) + \delta_{t}(i) = 0 \; \land \; \delta_{t}(i) < 0 \right) \end{split}$$

 $rightarrow Need linear relations between <math>\Delta(\sigma_1), \ldots, \Delta(\sigma_k)$

Leroux, Penelle, Praveen, Sutre

Context-Freeness for VAS

- 1 Vector Addition Systems
- 2 Decidability of the Context-Freeness Problem for VAS
- 3 Simple Witnesses of Non-Context-Freeness
- A Relational Trace Logic for VAS with EXPSPACE Solvability

5 Conclusion

Yet Another Logic for VAS Traces: Syntax

Given a trace of the form $u_1 \sigma_1 \cdots u_k \sigma_k$

 $\cdots \rightarrow \sigma_1 \cdots \rightarrow \sigma_2 \cdots \rightarrow \sigma_3 \cdots \rightarrow \sigma_4 \cdots \rightarrow \sigma_5 \cdots \rightarrow \sigma_6$

The logic expresses properties of $\Delta(\sigma_1), \ldots, \Delta(\sigma_k)$

Variables δ_j are interpreted as $\Delta(\sigma_j)$

Leroux, Penelle, Praveen, Sutre

Yet Another Logic for VAS Traces: Semantics

Definition (Demri 10) A trace $u_1 \sigma_1 \cdots u_k \sigma_k$ is self-covering when $\|\Delta(\sigma_j)\|^- \subseteq \|\Delta(\sigma_1)\|^+ \cup \cdots \cup \|\Delta(\sigma_{j-1})\|^+ \quad (\forall j \le k)$

Definition

$$\begin{array}{ll} u_1 \, \sigma_1 \, \cdots \, u_k \, \sigma_k \models \phi & \text{if} & \phi \left[\Delta(\sigma_j) \, / \, \delta_j \right] \, \text{holds} \\ \langle \mathbf{v}_{\text{init}}, \mathbf{A} \rangle \models \phi & \text{if} & u_1 \, \sigma_1 \, \cdots \, u_k \, \sigma_k \models \phi \text{ for some } \mathbf{s.-c.} \text{ trace} \end{array}$$

 ${ \ensuremath{ \$

- arbitrary traces were allowed
- intermediate steps were forbidden $(u_j = \varepsilon)$

A Few Example Properties

Small Model Property

Theorem

If there is a self-covering trace in $\langle \mathbf{v}_{init}, \mathbf{A} \rangle$ satisfying ϕ , then there is one of length at most

 $2^{p(|\boldsymbol{A}|+|\phi|)\cdot c^{(d\cdot k(\phi))^3}}$

where p is a polynomial and c is a constant

Corollary

The model-checking problem $\langle \mathbf{v}_{\mathrm{init}}, \mathbf{A} \rangle \stackrel{?}{\models} \phi$ is ExpSpace-complete

Corollary

The context-freeness problem for VAS is ExpSpace-complete

 $\mathsf{Proof:}\ \mathrm{ExpSpace}\text{-hardness}$ by reduction from the boundedness problem

Leroux, Penelle, Praveen, Sutre

Context-Freeness for VAS

- 1 Vector Addition Systems
- 2 Decidability of the Context-Freeness Problem for VAS
- 3 Simple Witnesses of Non-Context-Freeness
- [4] A Relational Trace Logic for VAS with $\operatorname{ExpSpace}$ Solvability

5 Conclusion

Conclusion and Open Problems

New proof, simpler than the one of Schwer

- Characterization of non-context-freeness through simple witnesses
- The trace language of a VAS is context-free if, and only if, it has a context-free intersection with every bounded regular language

New logic for expressing properties of VAS traces

- Can express linear relations between cycles visited by a run
- Model-checking is EXPSPACE-complete
- \bullet Incomparable with existing logics that are solvable in $\mathrm{ExpSpace}$

 $Complexity \ of \ the \ context-freeness \ problem: \ ExpSpace-complete$

Conclusion and Open Problems

New proof, simpler than the one of Schwer

- Characterization of non-context-freeness through simple witnesses
- The trace language of a VAS is context-free if, and only if, it has a context-free intersection with every bounded regular language

New logic for expressing properties of VAS traces

- Can express linear relations between cycles visited by a run
- Model-checking is EXPSPACE-complete
- \bullet Incomparable with existing logics that are solvable in $\operatorname{ExpSpace}$

Complexity of the context-freeness problem: $\operatorname{Exp}\operatorname{Space}$ -complete

Open Problems

- Existing EXPSPACE logics are incomparable: try to unify them!
- Coverability and reachability for Pushdown VAS

There is hopefully still time for

Questions?

Leroux, Penelle, Praveen, Sutre